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Abstract

In recent years, there has been an increase in the frequency of severe weather events (like
hurricanes). These events are responsible for most power outages in power distribution
systems (PDSs). Particularly susceptible to storms are overhead PDSs. In this study,
the dynamic Bayesian network (DBN)-based failure model was developed for different
hurricane scenarios to predict the line failure of overhead lines. Based on the outcomes of
the DBN model, a service restoration model was formulated to maximize restored loads
and minimize power losses using Particle Swarm Optimization (PSO)-based distributed
generation (DG) integration and system reconfiguration. Three different case studies based
on the IEEE 33 bus system were conducted. The overhead line failure prediction and
service restoration model findings were further used to calculate resilience metrics. With
reconfiguration the load restored from 90.3% to 100% for Case 1 and from 34.994% to 80.35%
for Case 2. However, for Case 3, reconfiguration alone was not sufficient to show any
improvement in performance. On the other hand, DG integration successfully restored
load to 100% in all three cases. These results demonstrated that the combined DBN-based
failure modeling and PSO-driven optimal restoration strategy under hurricane-induced
disruptions can effectively strengthen system resilience.

Keywords: high impact low probability events; overhead line failure prediction; power
distribution system (PDS); service restoration; power systems resilience

1. Introduction
1.1. Motivation

In recent years, there has been an increase in the frequency of severe weather events
(also called High-Impact Low-Probability events—HILP), including floods and hurri-
canes [1,2]. These extreme weather events are responsible for most power outages in
power distribution systems (PDSs) [3,4], while earthquakes can be responsible for damag-
ing substations [5] and, in a few circumstances, can affect the generators and transmission
system [6]. Compared to the power transmission system, the PDSs that deliver electricity
to individual customers from neighboring substations are more susceptible to damage and
are more likely to cause consumers to lose power during severe weather events [7].

Hurricanes are among the most damaging of these natural disasters [8], causing
significant damage to homes, towns, and infrastructure [9-11]. PDSs can be significantly
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and permanently impacted by hurricanes, which can have a significant impact on public
safety, economic output, and general quality of life [12-16]. Because PDSs are so important
to society, it is necessary to have a thorough understanding of how hurricanes affect these
systems and to create practical plans for making them more resilient [17,18].

Particularly susceptible to storms are overhead PDSs, such as conductors and wood
utility poles [19], where strong winds, storm surges, and heavy precipitation can cause
prolonged outages and interfere with the power supply [20]. For example, Hurricanes
Wilma and Katrina in 2005 damaged approximately 12,000 poles, and Hurricane Hugo in
1989 caused over 15,000 pole failures [21]. The main causes of this increased susceptibility
are the quick deterioration of wood and significant exposure to wind pressures. Over the
past ten years, risk assessment and life cycle cost analysis have received much attention in
response to this problem. These methods seek to assess system weaknesses and develop
economic management plans. The likelihood of failure for each component, such as wood
utility poles, must be estimated to carry out risk assessments.

1.2. Literature Review

PDS automation and distributed mobile devices form the foundation for improv-
ing resilience to HILP events [22-25]. Numerous resources, like communication devices,
switches, static energy resources (like Distributed Energy Resources), and mobility re-
sources (like repair trucks and Mobile Power Sources), are involved in the post-disaster
restoration process.

PDS communication devices are necessary for the functioning of PDS. Using fault
indicators, the PDS operator finds the fault, and with the help of remote-controlled switches
(RCS), regulates the line switching status [26]. In a typical PDS, there are multiple feeders.
The RCS is divided into normally open (tie switches) and normally closed (sectionalizing
switches). The entire system is constructed in radial topology, as the design of protection
devices is based on radial topology [26]. In urban PDS, Distributed Energy Resources
typically relate to small-scale, geographically stationary energy sources, such as battery
energy storage systems (BESSs), solar (PV) systems, and fuel-based distributed generation
(DG). Fuel-based DGs and BESSs are dispatchable DERs, whereas PV systems are typically
non-dispatchable DERs [24,26].

Fuel-based DG, which includes natural gas and diesel generators, is also known
as a micro-turbine generator [24]. Fuel-based DGs offer the advantage of steady power
generation as compared to renewable energy sources. The generator can be promptly
activated to supply the local load after the system has been islanded. One drawback is that
the generator makes a lot of noise when it is running [27]. For photovoltaic system:s, it is
reasonable to assume that they are constantly operating at maximum power. There is no
operational cost for the PV. However, the sun’s irradiation may fluctuate during severe
weather conditions (such as hurricanes). Therefore, stable power production for post-fault
restoration cannot be guaranteed by distributed PV systems [26,27]. As far as BESSs are
concerned, their benefits include safe operation, consistent power output, and adjustable
sizing. However, because of its energy capacity, a battery can only last for a maximum of
four hours when discharged at the rated power. To reduce power production fluctuations
and provide stable power output, BESSs should work together with PV systems [26,27].

During the post-disaster recovery, the resilient operation of PDS focuses on minimiz-
ing economic losses caused by unserved load through the optimal utilization of existing
PDS resources. The resilience enhancement operational approaches, termed as outage man-
agement strategies (OMS) by researchers Farzin et al. [28,29], are implemented across two
critical phases: pre- and post-disaster restoration. Pre-disaster resource allocation involves
finding strategic positions for mobile resources (e.g., repair crews, Mobile Power Sources
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(MPSs)) to enable the dispatch of resources within a smaller area after the event [30-32].
Post-disaster restoration involves dispatching Distributed Energy Resources (DERs)/MPSs
and reconfiguration of the network to restore services [19,20]. Also, Arif et al. [33] have
integrated the two critical phases to achieve a hybrid methodology.

Current models for overhead line failures are reactive, relying on post-event damage
assessments. These models fail to forecast spatiotemporal overhead line failures proactively
ahead of time, leaving utilities unprepared for cascading outages. Review of resilience
framework studies by Hughes et al. [34] and M. Li et al. [35] indicated that traditional failure
models ignore proactive spatiotemporal forecasting in favor of post-event recovery. Existing
probabilistic models (e.g., Markov chains) lack granularity in capturing spatial-temporal
interdependencies during hurricanes, limiting their utility for preemptive actions. These
authors emphasized the need for predictive tools to anticipate failures, a gap this paper
addresses through dynamic Bayesian networks (DBNSs). In this paper, DBN was used to
predict the failure probability of overhead lines five time steps ahead. This gives sufficient
time to prepare proactively to avoid cascading outages due to overhead line failure.

Recent studies that have focused on resilience-oriented service restoration mostly treat
network reconfiguration and distributed generation (DG) deployment as isolated solutions.
Shen et al. [36] and Kahouli et al. [37] proposed reconfiguration strategies for service
restoration, underscoring the need for complementary solutions like DG deployment.
Moradi & Abedini [38] optimized DG placement for resilience but ignored reconfiguration.
However, a few studies by Bie et al. [39], Haider et al. [40], Vai et al. [41], and Gallego Pareja
et al. [42] also used reconfiguration along with DG placement, but they lack understanding
of their relative effectiveness under varying HILP scenarios (minor, major, and worst-case
hurricane conditions). In this paper, the proposed model estimated the impact of several
scenarios (minor, major, and worst) on the PDS and how to overcome this challenge by
testing both reconfiguration and DG deployment strategies under dynamic HILP-induced
failures. Utilities lack guidance on whether reconfiguration or DG placement performs
better, a limitation this paper overcomes by testing both strategies under dynamic HILP-
induced failures.

Resilience is often assessed using traditional metrics (e.g., SAIDI, SAIFI) that do not
capture the phased degradation and recovery dynamics unique to hurricanes. Operators
lack metrics to evaluate how reconfiguration or DG deployment accelerates recovery in
time-critical HILP scenarios. Bie et al. [39] introduced the resilience trapezoid framework
for PDS. However, their metrics lack integration with predictive models, a gap the proposed
method bridges by linking to DBN forecasts.

1.3. Paper Contribution

The primary goal of this paper is to propose a practical and efficient resilience-oriented
service restoration model for PDS in response to unprecedented HILP events. The specific
objectives of this research are as follows:

1.  To develop a spatiotemporal dynamic Bayesian network (DBN) model with a step-
ahead predictive time horizon for probabilistic risk assessment of overhead power
distribution line failures during hurricanes.

2. To develop a service restoration model based on the results of the DBN failure model,
incorporating two independent service restoration strategies, PSO-based reconfigura-
tion and PSO-optimized DG placement.

3. To test the scenario-wise performance of overhead line failure and service restoration
models on modeled test systems.

4. To assess the operational resilience of PDS using resilience metrics.
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This work advances hurricane resilient distribution operation in the following key-
ways. First, a DBN model that learns spatiotemporal hurricane behavior was used to deliver
one-hour-ahead linefailure probabilities information that conventional static fragility mod-
els cannot provide. Next, these probabilistic outages drive a two-stage service-restoration
model. The first stage reconfigures the feeder topology using PSO, and the second stage
performs PSO-based optimal DG siting/sizing, ensuring radiality, loss minimization, and
maximum load pick-up. The integrated DBN and PSO framework was validated on three
escalating hurricane cases (minor, major, blackout). Finally, resilience metrics were used to
quantify severity, recovery efficiency, and phased adaptability, offering a holistic benchmark
for future research.

1.4. Paper Organization

The paper is organized as follows. Section 1 explains the study and the background
related to pre- and post-event system restoration. Section 2 presents the overhead line
failure and service restoration modeling developed and the quantification of resilience of
the system using resilience metrics. The case studies are introduced in Section 3. Results
and discussion are presented in Section 4. Finally, the conclusion is presented in Section 5.

2. Materials and Methods

The performance evaluation of the proposed method was performed on the standard
IEEE 33 bus test network. The electrical data for the test system can be found in [43]. A
PDS is composed of various geographic regions [44]. In this work, therefore, a disruptive
event consisting of hurricanes of different categories was set up for the test system. Figure 1
presents an outline of the proposed methodology.

Step 1

‘ DBN based Overhead Line Failure Prediction Model | ’ Service Restoration Model ‘

Structural learning | Step i | l Step iii |
I Step ii l I Step iii } | PSO-based NR l I PSO-based DG placement ‘

Prior probability
distributions

Bayesian
updating

Posterior
'?ml?ab‘!“y | PSO-based NR + DG placement |
distribution
Time step

t=t+l Bayesian ‘ Objective function: to maximize unserved load and ‘

inference minimize losses
Step 3

‘ Resilience metrics calculation

Parameter learning

System line outage prediction
for different time slices

Figure 1. Overview of proposed methodology.

In Figure 1, step i (structural learning) was the creation of the Bayesian network model
for the IEEE 33 bus system. The output of this step was a graphical model representing
pole failure parameters and interdependencies. In step ii, the static BN developed was
transformed into a DBN. In this step, parameter learning was performed. In parameter
learning, the prior probabilities and conditional probability tables (CPTs) of nodes in the
DBN were assigned probabilistic values, between 0 and 1, to each node in the developed
structure of the BN model. The prior probabilities are for root nodes (nodes without
parents), while CPTs are for nodes with parents. CPTs were defined at time slice = 0,
while for time slice = 1, transition probabilities were defined. The outcome of this step
was the temporal BN model, which provided the changes in quantitative variables based
on time. In step iii, Bayesian inference was performed to update the probabilistic beliefs
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of different time steps. The outcome of this step was the posterior probabilities or line
failure probabilities for three different cases. Any line found to have a failure probability
greater than 0.5 was assumed to suffer an outage. The faulted line information was used to
identify which buses (downstream buses) were isolated and how much load they required.
Accordingly, the constraints and the objective function were defined with the purpose of
PSO-based service restoration.

2.1. Overhead Line Failure Prediction Model (Preliminaries)

Overhead line failure is mainly due to extreme winds and falling trees. In this study,
overhead line failure due to extreme winds was addressed. Evaluating overhead line’s
failure probability as a result of pole bending failure was the goal. When the maximum
stress from the wind load surpasses the poles’ fiber strength, pole failure takes place. The
corresponding failure probability for a specific failure mode is given by the following [45]:

FP = P[G(xi) < 0 M

where G(x;) is a measure known as the limit state function, which assesses survival or
failure, and x; is a set of random variables involved. In the context of pole structural
reliability, the limit state function, G, can be represented as follows [45]:

G=R-S5 )

where S represents wind stress/pressure applied and R represents the resistance offered by
the pole. For the wind scenario, according to the National Electrical Safety Code (NESC)
(IEEE 2017), the value of S on poles can be computed as follows [46]:

S = 0.5 pok.GCU; (3)

where U) is projected 3 s gust wind speed (U, = [30, 70] m/s), Cy is the force coefficient
(Cr =1); G = 0.88, represents the gust response factor, k is the velocity pressure exposure
coefficient (k; = 1.1), and p, is air density (0, = 1). Due to the lack of design details,
these parameters have been adopted from [46]. Assuming the material of conductors to
be aluminum conductor steel reinforced material (ACSR), the breaking strength of ACSR
wire was taken equal to 406.5 Mpa. The failure probability of poles can be derived by
Equation (4) [21]:

FP= ['PG(xy) < O)fo (1) @)

where the fragility function, P[G(x;) < 0], defines the conditional failure probability. The
wind speed is denoted by ¢ and the probability density function (PDF) of wind speed is
defined by f,(t). The Poisson process of constant rate describes hurricane events. Exponen-
tial distribution is commonly employed in Poisson processes to simulate the time between
extreme events, such as the intervals between successive pole failures [46]. The failure rate,
a precise figure determined from statistical data, is typically a constant rate that can be used
to illustrate the failure features [47]. Consequently, if A;, represents the i pole’s failure
rate, such that:

Ay = A; x elBixo) (5)

where A; and B; denote the pole coefficients [47], then the probability function is expressed

by Equation (6) [48]:
. )\hei)\ht, t>0
folt) = { S ©
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In this study, the FP for poles was a function of failure stress () of HWSI [49] and is
expressed as follows:

FP(0)=1—¢ @) )

where FP(0) is the pole’s FP, o represents the reference value of stress, and m represents
the statistical Weibull modulus. The reference value of g = 60.95 and m = 3.862 were
adopted from [50].

The effects of HWSI on the grid at specific times and locations were considered. As
illustrated in Figure 2, the standard IEEE 33 bus system was divided into four sections
depending on the number of buses. There were eight buses for regions 1, 2, and 3 each,
while there were nine for region 4. Regions 1, 2, 3, and 4 were affected by hurricanes of 4, 3,
2, and 1 category, respectively.

— 28
—'_'—I: --------------------- 28 27 28 20 MI"30° 31 32 33
| -

Region 1 19 20 21 22

Figure 2. A disruptive event set up for the IEEE 33 bus radial PDS [49].

To determine the line failure due to bending of poles, the dynamic Bayesian network
overhead line failure model used by Fatima & Shareef [49] for the test system shown
in Figure 2 has been adopted. The model was developed using Genie 4.1 software [51].
The transition probabilities between two time instants/steps in a DBN are given by the

following [52]:
P(XiJrAt = O’Xg =0) = e ¥ ®)
P(Xjar = 1|Xi =0) = 1— e )
P(Xjp = 0|Xi =1) =1— e (10)
P(Xjya = 1|Xi = 1) = e (11)

where A represents the failure rate and y represents the repair rate, t denotes the current
time, and At denotes the time interval between two time slices. Figure 3 shows the graphical
representation of time slices in a DBN.
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Time slice 1

Time slice 2 Time slice N

Figure 3. DBN model for N time slices: a graphical representation.

2.2. Service Restoration Model (Main Methodology)

The service restoration model in this study was formulated as a constrained opti-

mization task aimed at maximizing restored loads and minimizing the power losses while

adhering to the physical and operational limits of the PDS. The mathematical model

incorporates the following assumptions:

1.

Balanced Three-Phase AC System: The distribution network was assumed to operate
under balanced conditions, allowing the use of single-phase equivalent models for
power flow analysis. Power generated should be capable of supplying the demand
capacity and the system losses [40]. For this, the following equations should be
satisfied for each bus in Figure 4.

PG,i — PD,i — Z]Iil Vl'V]"Yi]‘|COS (91' — 9] — 91]) =0 (12)
—Qp,i — Z 1 ViVj|Yij|sin (6; — 6; — 6;5) = 0 (13)
vViel, 2,3...N

where V; is the voltage at bus j, Pg ; is the active power generation at bus i, Pp ; is the
active power demand at bus 7, Q¢ ; is the reactive power generation at bus i, Qp ; is
the reactive power demand at bus i, Yj; is the admittance of the line connecting buses

iand j, and |Y ;| is the magnitude of the admittance.

ij ’
Radial Topology: The restored PDS must maintain a radial structure to ensure protec-

tion coordination and avoid loop currents and should satisfy [43].
Nyoge — Np, =1 (14)

where N4, is the count of nodes in the system and Ny, is the total count of the
network’s branches.

Operational Limits: Voltage magnitudes at all buses must remain within permissible
bounds. The generator voltage will be the bus/load voltage in addition to the voltage
drop caused by the impedance of the line and the power flow along the line. The
generator voltage must increase with increasing impedance and power flow to main-
tain a constant bus/load voltage. Because the resistive elements of the distribution
network’s lines are higher than those of other lines, the increased active power flows
have a significant effect on the voltage level. Instead of the more common number of
5 on transmission networks, this results in an X/R ratio of roughly 1 [40]. Based on
the American National Standards Institute (ANSI C84.1), the voltage limits expressed
in Equation (15) were to ensure voltage stability and power quality.

Vi,min S Vz S Vi,max (15)
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where V; 5, and V; i, are the maximum (+5% of the nominal voltage) and min-
imum (—5% of the nominal voltage) limits at the sending end node of the "
branch, respectively.

Vi V]

PG,i+jQG,i R; +jX;

_l Pp;+Qp, _l Ppj+Qp;

i j

Figure 4. A representation of two bus radial PDS.

The problem formulation has the following objective function:

p? 2
max( Z Piserved + Q?erved> y; + minleb’ Ri i +2Qz (16)
i€restored buses Vv

i

where Pl.serv"d is the active load demand restored at the node i, Qf”ved is the reactive load
demand restored at node 7, and y; is a binary variable representing the operational status of
the bus i. The variable is 1 if the bus is in service and 0 if the bus is out of service. R; is the
i'" branch resistance, V; is the voltage at the bus i, P; is the active power at the sending end
of the i*" branch, and Q; is the reactive power at the sending end of the i branch.

The first term in the objective function emphasizes the maximization of the load to be
restored. The second term symbolizes the minimization of power losses. In an AC power
system, the active power, P; and reactive power, Q; can be expressed using the bus voltage
magnitudes, | V|, and angles, 6, along with the network’s admittance matrix, Y = G + jB
(where G is the conductance and B is the susceptance). The power flow equations for an N
bus system are represented as follows:

N
P = 1V;I?Gii+ Y |Vil|Vj|[G jcos (6;~8;) + Bijcos (6,~6;)] (17)
=1,
j#i
9 N
Qi = —|Vi|"Bii + ) |Vi||V}|[G;;sin (8;,—6;) —Bjjcos (6;~6;)] (18)
=1
j#i

where |V;| and |V]| are the voltage magnitudes at buses i and j, 6; and 6; are the voltage
angles at buses i and j, G;; is the conductance between buses i and j (real part of admittance
Yij), and B;; is the susceptance between buses i and j (reactive part of admittance Yj;).

2.3. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm uses swarming to identify the
optimal solution among a set of problems and was developed iteratively. A higher number
of iterations results in better convergence of the problem. At each iteration, a particle,
which is also referred to as an individual, updates its position. The PSO algorithm begins
by randomly generating particles in the function domain’s search space. The symbols x
and v stand for the particle’s present position and velocity, respectively. The initial particle
positions and velocities were created at random. For PSO, a maximum of 100 iterations
(itermax ) with 30 particles (N) were utilized in this study. The PSO convergence conditions
X:ﬁ+1

were — Xlk < goriter = itermay.
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2.4. Reconfiguration of PDS

In this study, the IEEE 33 bus system taken into consideration consisted of 5 tie
switches and 32 sectionalizing switches. It was a 12.66 kV PDS with a total of 3750 KW
active and 2300 KVAR reactive demand. A PSO-based network reconfiguration was used,
where specific tie lines and sectionalizing lines were closed and opened automatically
using the PSO algorithm, changing the distribution network topology. The objective was to
find an optimal solution for the system after the fault occurrence, such that power losses
were minimized and the load restored was maximized. Figure 5 shows the flow chart for
PSO-based network reconfiguration used in the IEEE 33 bus PDS.

|

[ Input network data and simulate line failure ]

l

Initialize particles representing line statuses

{

[ Evaluate Objective Function for Each Particle }}:

g

Find Pp.s; and Gp.s; by comparing the individua best

¢

Update velocity and position of Pp.s; and Gpeet

¥

PSO Algorithm

Convergence _No

criteria

[ Close / Open lines based on the Gy, ; particle ]

4

[ Simulate the network for optimal reconfiguration ]

Figure 5. Flow chart for PSO-based network reconfiguration in PDS.

An optimized PDS was achieved by developing without violating any discussed
constraints and evaluating the objective of the goal for all possible radial designs of the
given network.

2.5. DG Units Placement

In this study, DGs were incorporated into the network of the IEEE 33 bus system
following a system line failure due to a hurricane. The aim was to minimize power loss and
boost load performance by maximizing the restored load. The optimization algorithm used
in this study to integrate DGs into the network was the PSO algorithm. The energy resources
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available at any specific point inherently limit DG capacity. It is therefore necessary to
constrain the capacity between the maximum and minimum levels [38], as follows:

Pg in < pg; < PE* (19)

where Pgﬁ" is the minimum active power generation limit of DG and PZ7* is the maximum
active power generation limit of DG. The DGs were modeled in pandapower (an open-
source Python 3.11.2 library designed for power system analysis and optimization) using
the “gen” element, which represents PV (voltage-controlled) generators. Each DG injected a
specified active power output (within the range: 0.1 MW < DG capacity < 1.5 MW) while
maintaining its bus voltage at the nominal value 1.0 p.u. The reactive power was adjusted
automatically by the solver. This setup reflects dispatchable DGs (e.g., micro turbines or
inverter-based units with voltage control). Figure 6 displays the PSO algorithm’s flow chart

for the optimal DG placement.

|
Input load data and line data ]

[

4 5
[ Voltage limits
[

1l

Load flow analysis

Randomly generate DG units

4
[ Calculate total power losses and voltage };:

{4

Find Ppes: and Gpese by comparing the individua best ]

g

I
I
|
I
I
I
I
I
Update velocity and position of Py, and Gp.s: ] I
I
I
I
I
I
I
I

PSO Algorithm

Convergence
criteria

[ Optimal location and size of DG units ]

|
End

Figure 6. Flow chart of PSO algorithm for optimal DG placement in distribution network.

In this study, it was the DG units’ position and size that were generated randomly and
then adjusted in compliance with Equations (20) and (21).

Xi= (X1, Xip, ---) XiN) (20)

Vi = (vi1, Vip, ---, ViN) (21)
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Ppest, which may be computed using Equation (22), is the problem’s personal best
position in the search space. The global best position, or Gy, given by Equation (23),
indicates which particle is the best among all the particles in the group. The particle that
yields the most accurate findings for each individual will be displayed.

Presti = Prest,its Prest,ins -+ -+ Prest,iN (22)

Gbest,i = Gbest,ilr Gbest,in ceey Gbest,iN (23)

The different scenarios that were investigated in this study are discussed below:

1.  Scenario 0—Base System: In scenario 0 (S0), the IEEE 33 bus radial PDS before
the fault was investigated for the line power losses using Newton—Raphson power
flow analysis.

2. Scenario 1—System After the Fault: In scenario 1 (S1), the system was investigated
after the occurrence of a line fault.

3. Scenario 2—Reconfigured PDS: In scenario 2 (S2), the system, after a fault, undergoes
the optimal reconfiguration process using the PSO algorithm.

4. Scenario 3—PDS with DG Placement: In scenario 3 (S3), the system, after a fault,
undergoes the optimal DG placement and sizing using the PSO algorithm.

5. Scenario 4—PDS with Reconfiguration and DG Placement: In scenario 4 (54), the
system, after a fault, undergoes reconfiguration with optimal DG placement and
sizing using the PSO algorithm.

In all the above-mentioned scenarios, the total real power losses were computed, and
voltage profiles were obtained to look for any improvement. Also, the amount of load
restored was calculated for each scenario and the line power loss profile was obtained
to look for maximization of load restored and power loss minimization. The power flow
analysis was performed using a Newton-Raphson-based power flow approach to calculate
the power losses and the load restored in the network.

2.6. Resilience Metric

In this section, the resilience metrics that have been used to measure the capability
of the grid in restoring the service to normal after the occurrence of a fault have been
discussed. According to Bajwa et al. [44], to incorporate different classes of loads (critical,
semi-critical, and non-critical), a resilience metric R; has been proposed by Luo et al. [53]
in which each load class is assigned to weight according to its priority and is given by

the following:
1
Ry = — 24
1 Loss (24)
where Lo
t Ly M oAy,
Loss:/ Mtjt (25)
0 Py

where p(x;) is the total weighted load lost, Py is the total weighted load before the disruptive
events, M is the sampling number, and x; is a fault scenario.

Almoghathawi & Barker [54] proposed a metric, Ry, for evaluating network resilience
based on the network operation transition stages. Figure 7 displays the network’s transition
states. The function which measures the network’s performance under certain operational
phases is denoted by P(t). So, if Sy denotes the network’s stable operation state before the
event occurrence, S, is the network’s degraded operation state after the event occurrence e/,
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and S ¥ is the network’s stable operation state after the restoration process; so, the resilience
metric, Ry which is defined as the time-dependent ratio of recovery over loss, is given by:

B P(tf‘ej) — P(t4]el)
T P(to|el) — P(tylef)

(26)

where P (t f‘ef ) measures the performance of the network after the restoration process

restores the system to a desired level, P(t, ’ej ) measures the network’s performance in
a degraded state following a disruptive event, and P(t, ’ej ) measures the network’s per-
formance in a stable state before a disruptive event. At each given time t, following a
disruptive event, the resilience metric R, value ranges from 0 to 1. When the network’s R,
value is 1, it means that it is completely resilient; when it is 0, it means that it is not.

A
System
Load Disruptive
event: e’ I 1 I
P(to) TN T T T AT e T NI (T Pty
T | i
Ez N I
|
|
P(ty) |
to t, tq t, F o time
Pre-event L P—— . Recovered
stable state  Disruptive State T ) State
So g S¢

Figure 7. Resilience curve representing network operation states [44].

Liu et al. [55] put forward a metric to evaluate the power system’s operational re-
silience. The resilience trapezoid in Figure 7 is also the basis for the suggested metric. The
disturbance phase, post-disturbance phase, and restoration phase are the three system
stages for which the authors suggested distinct metrics. The areas of two right-angled
triangles and one rectangle, shown by the blue lines in Figure 7 and designated I, II, and 1II,
can also be added to combine these metrics.

Equation (27) provides an illustration of the metric for phase I, which represents system
degradation. The system following degradation is represented by phase II, during which
the network operator will evaluate the system damage and create a restoration strategy.
Equation (28) provides an illustration of Phase II. System restoration is represented by
phase III, when the network operator carries out the repair plan. Equation (29) provides an
illustration of phase III. Equations (27)—(30) illustrate the combined resilience measure, Rs.

[— P(to|e/) — P(talel) * (ta — te)

> (27)

1= P(to‘e]) - P(td‘e]) % (ts — tg) (28)
I P(tf)ej) —P(t;]ef)* (tf—ts) 29)
Ry = I+ II+III (30)

Our contribution is an integrated DBN-guided restoration framework. First, a DBN
provided hour-ahead failure probabilities, which were converted into outage sets. Second, a
PSO-based service restoration model was developed using the outage outcomes of the DBN
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model. The objective of service restoration was to maximize served load and minimize
losses using two different strategies: (i) PSO-based optimal reconfiguration and (ii) PSO-
based optimal DG placement. Finally, resilience metrics were used to quantify performance
over the disturbance assessment restoration phases.

3. Case Studies

This section familiarizes the details of various case studies carried out in this study.
The DBN model was run for two time steps, resulting in three different cases. The outage
prediction for these three cases is given in Table 1, and it represents minor, major, and worst-
case scenarios depending upon the number of buses being isolated /unserved because of
these faulty lines. Case 1 (faulted lines: 18, 21), representing minor scenario, corresponds to
Region 2 affected by category 3 hurricane at time instant t = 0, while Case 2 (faulted lines:
5,6,7,8,18,19, 20, 21, 25, and 33), representing major scenario, corresponds to Region
2 affected by category 3 hurricane at time instant t = 1, and Case 3 (faulted lines: 1, 2, 3,
4,18, 22, 23, and 24), representing worst-case scenario, (blackout) corresponds to Region
1 affected by category 4 hurricane at time instant t = 0. Table 1 also lists the connection
between different buses (i.e., a system line) and the HWSI affecting the different system
lines of the IEEE 33 test system. Also, due to the unavailability of actual critical load data, a
representative assumption was made by designating buses 19 and 5 as critical nodes.

Table 1. Results of overhead line failure prediction for Case 1, Case 2, and Case 3.

System Lines From Bus to Bus HWSI (m/s) CASE1(t=0) CASE2(t=1) CASE 3 (t=0)
1 1-2 58.115 1 1 0
2 2-3 59.903 1 1 0
3 34 61.691 1 1 0
4 4-5 63.479 1 1 0
5 5-6 50.068 1 0 1
6 67 50.962 1 0 1
7 7-8 51.856 1 0 1
8 89 52.750 1 0 1
9 9-10 42915 1 1 1
10 10-11 43.586 1 1 1
11 11-12 44.257 1 1 1
12 12-13 44.927 1 1 1
13 13-14 33.528 1 1 1
14 14-15 34.422 1 1 1
15 15-16 35.316 1 1 1
16 16-17 36.210 1 1 1
17 17-18 37.104 1 1 1
18 2-19 59.903 0 0 0
19 19-20 54.538 1 0 1

20 20-21 55.433 1 0 1
21 21-22 56.327 0 0 1
22 3-23 61.691 1 1 0
23 23-24 67.056 1 1 0
24 24-25 68.844 1 1 0
25 6-26 50.962 1 0 1
26 26-27 46.268 1 1 1
27 27-28 46.939 1 1 1
28 28-29 48.056 1 1 1
29 29-30 37.998 1 1 1
30 30-31 38.892 1 1 1
31 31-32 39.786 1 1 1
32 32-33 40.680 1 1 1
33 8-21 52.750 1 0 1
34 9-15 42915 1 1 1
35 12-22 44.927 1 1 1
36 18-33 42.468 1 1 1
37 25-29 49.397 1 1 1
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Figure 8 shows the number of unserved/isolated buses caused due to the faulty lines
for the three cases. Due to programming conventions and zero-based indexing in Python,
the numbering of the IEEE 33 bus system starts from 0 instead of 1. This means that
disconnected buses 18, 19, 20, and 21, shown in Figure 8a, have bus numbers 19, 20, 21, and
22, respectively. The same is true for the rest of the cases as well.

829 @
v 27
% 03132

5 7 1

10 1
28 55 ol 10
6 9
B
2 0 u zqa
29 U .15 19 2
4 8 1020 1%3 2 %21 1256 6 ¢ 31
31 10 : 18 1 234 18 5 2
o 1 pi 1 4
0
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u 2 a
B 6 5 3
21 L 3
) 0
(a) (b) (c)

Figure 8. Network connectivity graph under system line failures: (a) Case 1, (b) Case 2, and (c) Case 3.

4. Results and Discussion

In this section, the test results for different cases of the PDS are presented and discussed.
All cases were programmed using Python (in Jupyter notebook), and simulations were
carried out on an Intel Core i5 processor, 8 GB RAM platform.

4.1. Case 0
Base System (Scenario S0)

For the Base System (No Faults), the total real power loss after running the Newton—
Raphson power flow analysis was found to be 202.677 KW. The minimum voltage on bus
18 was 0.9131 p.u. In this case, the system was fully operational, supplying all buses, and
the network was fully connected, as shown in Figure 9, and power flows optimally through
all lines. Since all loads were being served, (I 2R> losses were relatively higher compared
to other faulty scenarios.

8
26 25 5
58— 21
8
30 29 4
31
32 9 24
3 23
10 22
11 2
12
N 13
0
18
19
20
21

Figure 9. Network connectivity graph under normal operating conditions.



Appl. Syst. Innov. 2025, 8, 149

15 of 28

4.2. Case 1
4.2.1. Faulty System (Scenario S1)

For scenario 1, the total power loss after running the power flow analysis was found
to be 0.1880 MW. The faulty lines in Case 1 (C1) were 18 and 21, because of which only
four buses (19, 20, 21, 22) were isolated or unserved, as shown in Figure 8a, meaning most
of the network was still active and serving the load. These four buses were disconnected,
which means less power was flowing through the system, leading to a small reduction in
(I 2R> losses (—15.1 KW from the base case). However, since a significant portion of the
load was still being served, power loss remained close to the base case. So, the system was
still mostly operational, with a minor drop in power loss due to losing only a small part of
the load, as is evident from Figure 10. But still, the system requires restoration strategies
through either network reconfiguration or DG placement.

Voltage Profile: Base vs Faulted System

1.00 4 —&— Base System
—&— Faulted System

0.98 4

0.96 1

Voltage (p.u.)

0.94

0.92 1

T T T T T T T
0 5 10 15 20 25 30
Bus Index

Figure 10. Voltage profiles for the base and faulted system for Case 1.

4.2.2. Only Reconfiguration (Scenario S2)

A PSO algorithm was used for reconfiguration, where tie lines were closed and
sectionalizing lines were opened, changing the distribution network topology as shown
in Figure 11. The system was also checked for radiality. The tie lines closed during the
reconfiguration process included lines 33, 34, 35, 36, and 37, while the sectionalizing lines
opened included lines 9, 16, and 23. In scenario 2, after the reconfiguration of the test system,
the active and reactive power losses were 197.85 kW and 132.54 kVAR, respectively. This
means that there was an active power loss reduction of approximately 2.38%. Figure 12a
compares the voltage profiles of the base system (normal) and reconfigured system across
all buses in the IEEE 33 bus network. For the base system, there was a smooth decline
as the buses moved farther from the substation. It is seen that loads of buses 19, 20, 21,
and 22 were unserved/isolated because of the fault; therefore, the voltage magnitude was
missing in the voltage profile plot of the faulty system in Figure 10. It was found that
reconfiguration was successful in restoring power to all four unserved buses (including
the critical node 19), and the voltage profile also improved. The voltages at several buses
have increased, but fluctuations indicate that further optimization (e.g., DG placement)
may be needed. The lowest value of the bus voltage magnitude after reconfiguration was
measured to be 0.9335 p.u. at bus 22, while for the base system, the minimum bus voltage
was 0.9131 p.u. at bus 18. Figure 12b shows the line power losses for both the reconfigured
and base test systems.
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Figure 11. Network topology for Case 1: (a) faulty system; (b) after reconfiguration; (c) with DG
placement (red) and with reconfiguration and DG placement (green).
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Figure 12. Case 1 before and after reconfiguration: (a) voltage profile, (b) line power losses.
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4.2.3. Only DG (Scenario S3)

In scenario 3, the optimal DG placement was decided by PSO algorithm to provide
power to unserved buses. The optimized locations for DG1 and DG2 were buses 13 and 17,
with an optimized size of 162.685 KW and 197.314 KW, respectively. The system topology
is shown in Figure 11c with DG placement shown in red. In scenario 3, the active and
reactive power losses were reduced to 161.63 KW (20.25%) and —106.71 kVAr (21.04%),
respectively. Active power was locally injected into a system by the integration of a DG.
Consequently, the integration of DGs reduced the net power from a substation. The power
loss dropped to 161.63 KW as a result of the DGs’ integration, and the minimum bus
voltage was 0.9224 p.u. at bus 33. DG placement successfully restored power to previously
unserved buses (including the critical node 19). Voltage profiles improved significantly and
are shown in Figure 13a. The power loss profile is shown in Figure 13b.

Voltage Profile Comparison (With and Without DGs)

Line Power Loss Comparison (With and Without DGs)

—e— Line Loss Without DGs (kW)
—e— Line Loss With DG (kW)

098

Voltage (p.u.)
Line Power Loss (kW)

—e— Voltage Profile Without DGs (p.u.)
—e~ \oltage Profile With DGs (p.u.)
--- Nominal Voltage (1.0 p.u.) o

0 H 10 15 20 25 30 0 1 10 15 20 25 30 3
8us Index Line Index

(a) (b)

Figure 13. Case 1 before and after DG placement: (a) voltage profile, (b) line power losses.

4.2.4. Reconfiguration and DG (Scenario S4)

As discussed in Section 4.2.2, the reconfiguration successfully restored the power
to all four (19, 20, 21, and 22) unserved buses (including the critical node 19). However,
in scenario 54, to optimize the results further, PSO-based optimal DG placement was
performed on the already reconfigured network. The optimized locations for DG1 and
DG2 were buses 12 and 32, with an optimized size of 0.5 MW each. The system topology
for scenario 54 is shown in Figure 11c with DG placement shown in green. In 54, the active
and reactive power losses were 120.06 kW and 79.79 kVAr, respectively. The minimum bus
voltage was 0.951 p.u. on bus 23. Voltage profiles for reconfiguration with DG placement
are given in Figure 14a. It shows significant improvement over the reconfiguration alone
scenario. The power loss profile for this case is shown in Figure 14b.

Voltage Profile Comparison With and Without (Reconfiguration + DG) Line Power Loss Comparison With and Without (Reconfiguration + DG)

—#— Base System —#— Base System
—4— After Reconfig.
—e— After Reconfig. + DG i

-®- After Reconfiguration
—&— After Reconfiguration with DG Placement
0.98

°
©
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0.94

Line Power Loss (KW)
w
8

o 5 10 15 20 25 30 0 5 10 15 20 25 30 35
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Figure 14. Case 1 before and after reconfiguration with DG placement: (a) voltage profile, (b) line
power losses.
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4.3. Case 2
4.3.1. Faulty System (Scenario S1)

For Case 2 (C2), the total power loss after running the power flow analysis was found
to be 0.0152 MW. The faulty lines in C2 caused 25 out of 33 buses to lose power, which
means a huge portion of the system was disconnected, as shown in Figure 8b. Since most
of the load was not being served, there was very little current flowing in the system. As
a result, line losses decreased drastically because the remaining active network carried
almost no load. The small remaining loss (0.0152 MW) was likely due to a few buses still
receiving power, as shown in the voltage profile in Figure 15, but it is nearly negligible.
This was an extreme case where almost the entire system was lost, leading to minimal
power loss because hardly any power was flowing.

Voltage Profile: Base vs Faulted System

1.00 —&— Base System
=&~ Faulted System
0.98 1 \'
3
£ 0.96 |
L
o
S
£
0.94 1
0.92 1

- . T
0 5 10 15 20 25 30
Bus Index

Figure 15. Voltage profiles for the base and faulted system for Case 2.

4.3.2. Only Reconfiguration (Scenario S2)

In scenario 2, after reconfiguring the test system, the active and reactive power losses
were 262.80 kW and 198.05 kVAR, respectively. This means that there was an active power
loss reduction of approximately —29.66%. The tie lines closed in S2 include lines 33, 34, 35,
36, and 37, while the sectionalizing lines opened included lines 11, 12, 14, 24, and 27. The
system topology is shown in Figure 16b. Figure 17a compares the voltage profiles of the
base case (normal) and reconfigured system across all buses in the IEEE 33 bus network
for C2. Figure 17b shows the line power losses for both the reconfigured and base test
systems. It was seen that loads of buses 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22,26,27,28,29, 30, 31, 32, and 33 were unserved /isolated because of the fault; therefore,
the voltage magnitude was missing in Figure 17. However, with the help of network
reconfiguration, some of the loads of these unserved buses were restored, as is evident from
the voltage profile in Figure 17a. The lowest voltage magnitude after reconfiguration was
measured to be NaN at bus 6. The remaining unserved buses, which could not be restored
by reconfiguration, include buses 6, 7, 8, 19, 20, and 21, totaling 0.73 MW of unrestored
power. However, in S3, the critical node 19 was not recovered. Since reconfiguration was
not able to restore the power of unserved buses completely, the next step was the restoration
of power using optimal DG placement.
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Figure 16. Network topology for Case 2: (a) faulty system; (b) after reconfiguration; (c) with DG
placement (red) and with reconfiguration and DG placement (green).
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Figure 17. Case 2 before and after reconfiguration: (a) voltage profile, (b) line power losses.
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4.3.3. Only DG (Scenario S3)

In scenario 3, the optimal DG placement was decided by PSO algorithm to provide
power to unserved buses. The optimized locations for DG1, DG2, and DG3 were buses 24,
5, and 23 with an optimized size of 1000 KW, 969.876 KW, and 775.123 KW, respectively.
The system topology is shown in Figure 16¢ with DG placement shown in red. In scenario
3, the active and reactive power losses were reduced to 119.689 KW and 36,815.476 kVAr,
respectively. The minimum bus voltage was 0.93485 p.u. at bus 18. DG placement success-
fully restored power to previously unserved buses (including the critical node 19, which
was not restored in 52). Voltage profiles improved significantly and are shown in Figure 18a.
The power loss profile for this case is shown in Figure 18b.

Voltage Profile Comparison (With and Without DGs) Line Power Loss Comparison (With and Without DGs)
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Figure 18. Case 2 before and after DG placement: (a) voltage profile (b) line power losses.

4.3.4. Reconfiguration and DG (Scenario S4)

As discussed in Section 4.3.2, there were still some unserved buses that could not be
restored after the reconfiguration (including the critical node 19). Therefore, in scenario 54,
power restoration for the remaining unserved buses (6, 7, 8, 19, 20, and 21) was achieved
using PSO-based optimal DG placement. For S4, the optimized locations for DG1, DG2,
and DG3 were buses 8, 21, and 30 with an optimized size of 1.341 MW, 0.365 MW, and
0.858 MW, respectively. The network topology is shown in Figure 16¢c with DG placement
shown in green. In 54, the active and reactive power losses were 43.9 KW and 35.0 kVAr,
respectively. The minimum bus voltage was 0.9518 p.u. on bus 18. Reconfiguration, along
with DG placement, successfully restored power to previously unserved buses. Voltage
profiles improved significantly and are shown in Figure 19a. The power loss profile for this
case is shown in Figure 19b.

Voltage Profile Comparison With and Without (Reconfiguration + DG) Line Power Loss Comparison With and Without (Reconfiguration + DG)
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Figure 19. Case 2 before and after reconfiguration with DG placement: (a) voltage profile, (b) line
power losses.
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4.4. Case 3
4.4.1. Faulty System (Scenario S1)

For Case 3 (C3), the total power loss after running the power flow analysis was found
to be 0.00 MW. The faulty lines in C3 rendered the entire system practically disconnected,
as shown in Figures 8c and 20, leaving only bus 1 (the substation) as active. No current was
flowing because no loads were being served at all. Since power loss was proportional to
current (I 2R) and I = 0, the power loss was also 0 MW. This was the worst-case scenario,
where the system was completely blacked out with no load being served, leading to zero
power loss (but also zero functionality).

Voltage Profile: Base vs Faulted System

1.00 4 —&— Base System
—&— Faulted System
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Figure 20. Voltage profiles for the base and faulted system for Case 3.

4.4.2. Only Reconfiguration (Scenario S2)

Since the system was completely blacked out, reconfiguration alone was not able
to restore power in this case, as shown in Figure 21a. The power loss came out to be
0 MW because no loads were being served. Also, both the critical nodes 19 and 5 were
affected and not restored. In such situations, DGs play a critical role in restoring supply to
unserved buses.
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Figure 21. Network topology for Case 3 (a) before and after reconfiguration; (b) with DG placement
(red) and with reconfiguration and DG placement (green).
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4.4.3. Only DG (Scenario S3)

For C3, the optimized locations for DG1, DG2, and DG3 were buses 14, 5, and 31 with
an optimized size of 629.376 KW, 1485.624 KW, and 1500 KW, respectively. In scenario 3,
the active and reactive power losses were 97.5897 KW and 36,719.720 kVAr, respectively.
The system topology is shown in Figure 21b with DG placement shown in red. The
minimum bus voltage was 0.9712 p.u. at bus 18. DG placement successfully restored power
to previously unserved buses. Voltage profiles improved significantly and are shown
in Figure 22a, while Figure 22b shows the line power losses for Case 3 before and after
DG placement.

Voltage Profile Cs ison (With and Without DGs) Line Power Loss Ct i (With and Without DGs)

—e— Line Loss Without DGs (kW)
50 —e— Line Loss With DGs (kW)

098

Line Power Loss (kW)

—e~ Voltage Profile Without DGs (p.u.)
—e— \oltage Profile With DGs (p.u.)
=== Nominal Voltage (1.0 p.u.)

0 5 10 15 20 25 30

(a) (b)

Figure 22. Case 3 before and after DG placement: (a) voltage profile, (b) line power losses.

4.4.4. Reconfiguration and DG (Scenario S4)

In Case 3, reconfiguration alone was not sufficient to restore power to any unserved
buses. However, even under such blackout conditions, the configuration derived from
the PSO-based reconfiguration remains relevant, as it provides the structural backbone
for subsequent DG placement. The optimized tie-line closures included lines 33, 34, 35,
36, and 37, and the sectionalizing lines opened were 19, 11, 21, 32, and 30, forming a
radial base for DG-based recovery. For 5S4, the optimized locations for DG1, DG2, and
DG3 were buses 6, 12, and 21 with an optimized size of 1.5 MW, 0.822 MW, and 0.1 MW,
respectively. The system topology is shown in Figure 21b with DG placement shown in
green. In 54, the active and reactive power losses were 48.8 KW and 37.2 kVAr, respectively.
The minimum bus voltage was 0.9687 p.u. (at bus 33). Scenario S4 successfully restored
power to previously unserved buses, including the critical nodes (19 and 5). Voltage profiles
improved significantly and are shown in Figure 23a. The power loss profile for this case is
shown in Figure 23b.

Voltage Profile Comparison With and Without (Reconfiguration + DG) Line Power Loss Comparison With and Without (Reconfiguration + DG)

—e— After Reconfiguration with DG Placement
—=— Base System

0.98

o
©
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Voltage (p.u.)
Line Power Loss (kW)

0.94

—=— Base System
—e- After Reconfig. + DG 0

0 5 10 15 20 25 30 0 5 10 15 20 25 30 35

Figure 23. Case 3 before and after reconfiguration with DG placement: (a) voltage profile, (b) line
power losses.

Figure 24 shows the percentage load restored for every case and scenario. Table 2
summarizes the results of the service restoration model. Objective 1 tells us about the
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amount of load of unserved buses restored, while Objective 2 tells us about the total power
loss in the system for different scenarios.

& Scenario 1 B Scenario 2 B Scenario 3 B Scenario 4

Case 1 (t=0) Case 2 (t=1) Case 3 (t=0)

Figure 24. Percentage load restored for different scenarios.

Table 2. Results of the service restoration model.

Case Scenario  Objective 1 (MW)  Objective 2 (kW)  Min. Voltage (p.u.)

Co S0 3.715 202.677 0.9131 (Bus 18)
s1 3.355 188.00 -

) 3.715 197.85 0.9335 (Bus 22)

Cl S3 3.715 161.63 0.9224 (Bus 33)
sS4 3.715 120.06 0.9510 (Bus 22)
s1 13 15.20 -

) 2.985 262.80 -

C2 S3 3.715 119.689 0.9348 (Bus 18)
S4 3.715 43.90 0.9518 (Bus 18)
s1 0 0.00 -

) 0 0.00 -

C3 S3 3.715 97.589 0.9712 (Bus 18)

S4 3.715 27.0 0.9687 (Bus 33)

4.5. Resilience Metric Results

Three resilience indicators, discussed in Section 2.3, were used to measure the resilience
of the restoration model outcomes. The findings of the overhead line failure model and the
service restoration model were used to calculate resilience measures. The outcomes of the
resilience metric computations for various scenarios are displayed in Table 3. The system
degradation period, which in this case was the length of the catastrophic occurrence, was
represented by the term t; — t,. The time it takes the system operator to evaluate damage,
calculate a solution, and begin implementation was represented by ts — ;. It is the amount
of time needed for the restoration model to produce a solution in this investigation, which
in these scenarios came out to be in seconds. The time required to apply the solution and
restore the system was represented by #; — t;. This time in this study depends on how
many switching operations were performed for each case. According to the assumptions
by Bajwa et al. [44], it was expected that operating a single manual switch would take an
hour in the interim. The time fg — f4, is mentioned in hours in Table 3 to keep the time scale
the same with that of f; — . and #; — t;. Additionally, the other parameters required for the
computation of the resilience metrics include degraded and restored system percentages.
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Table 3. Results of resilience metrics.

Scenario
Parameter Case
1 2 3 4
Degraded 1 9.69 9.69 9.69 9.69
system 2 65.006 65.006 65.006 65.006
state (%) 3 100 100 100 100
Restored 1 90.31 100 100 100
system 2 34.994 80.35 100 100
state (%) 3 0 0 100 100
1 1 1 1 1
ty — te(hr) 2 2 2 2 2
3 1 1 1 1
1 0 0.01 0.01 0.01
tg — ty(hr) 2 0 0.01 0.01 0.01
3 0 0.01 0.01 0.01
1 0 8 0 8
tr — ts(hr) 2 0 10 0 10
3 0 10 0 10
1 5.319 5.054 6.186 8.329
R4 2 65.789 3.805 8.354 22.779
3 inf inf 10.247 37.037
1 0 1 1 1
Ry 2 0 0.6977 1 1
3 0 0 1 1
1 329.717 415.182 153.942 415.182
R3 2 115.006 249.451 164.656 189.626
3 150 150 200 300

Degradation times (f; — t.) for cases 1, 2, and 3 were assumed to correspond to the
time step. Since each step in this study was assumed to be a 1 h duration, the (t; — t.)
duration for cases 1, 2, and 3 was 1, 2, and 1 h, respectively. The values of tr —ts, referring
to the time taken for implementing the obtained solution, were based on the number of
switching sequences. For example, in scenario 2, cases 1 and 2, five tie lines were closed and
three and five sectionalizing lines were opened, respectively. This means that a total of 8
and 10 switching operations for Case 1 and Case 2, respectively, need to be implemented to
restore the system. Therefore, the value of tr—ts for scenario 2 and cases 1 and 2 was 8 and
10, respectively. The values of Rj, Ry, and R3 were calculated for all three cases, substituting
the parameters, i.e., degraded system state, restored system state, t; — t,, ts — t;, and
t; — ts, into their respective equations discussed previously in Section 2.3.

The metrics R1, Ry, and R3 were calculated using the parameters in Table 3. A range
of values for Ry and R3 were obtained. Whenever the system was not able to restore power
at all, an infinite value for Ry and a 0 value for R, were obtained. When the network’s R,
value was 1, the system was completely resilient, and it was otherwise when the value of R,
was 0 [44]. The value of R3 decreased from 415.182 to 150 for Case 1 and Case 3, respectively,
for scenario 2, indicating a maximum restoration in Case 1 to partial restoration in Case 2
and minimum /no restoration in Case 3. On the other hand, the value of R3 increased
from 153.942 to 200 for Case 1 to Case 3, respectively, for scenario 3, indicating a minimum
requirement of DG placement for load restoration for Case 1, to partial in Case 2, and
maximum requirement of DG placement in Case 3 for full/maximum restoration. For
scenario 4, the value of R3 decreased from 415.182 to 300 for cases 1 to 3, respectively. In the
blackout scenario (Case 3), R3 is minimized in scenarios 1 and 2 due to zero recovery but
increased in scenarios 3 and 4 as distributed generation restores energy supply, improving
system-wide resilience.
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5. Conclusions

In conclusion, this comprehensive study has provided valuable insights into the
operational measures of pre- and post-hurricane disasters for the PDS. Unlike conventional
approaches, this work uses a DBN-based prediction model, enabling the failure probability
of overhead lines one time step ahead. Furthermore, the integration of reconfiguration
and an optimal DG placement-based service restoration model strengthen the practical
relevance of this methodology.

The key findings of this research are as follows:

e A dynamic Bayesian network (DBN) was used to model the evolution of overhead
line failures across a predictive time horizon. The model was run for two time steps
(time step was assumed to be of 1 h duration) to obtain failure probability for time
instants t = 0 and t = 1, and accordingly, three different cases were considered. Case
1 depicts a minor case scenario and corresponds to region 2 affected by a category 3
hurricane (49.38-57.72 m/s) at time instant t = 0. Case 2 depicts a major case scenario
and corresponds to region 2 affected by category 3 hurricanes at the time instant,
i.e., t =1. Case 3 depicts a blackout and corresponds to region 1 affected by a category
4 hurricane (57.72-69.65 m/s) at time instant t = 0. Regions 3 and 4 did not experience
any outages due to category 2 and 1 hurricanes, respectively; therefore, no case was
considered for regions 3 and 4. Any line found to have a failure probability greater
than 0.5 using the DBN model was assumed to suffer an outage.

e Depending on the DBN’s outage predictions results, three independent restoration
strategies, reconfiguration, optimal DG placement, and reconfiguration with optimal
DG placement using PSO, were formulated for the IEEE 33 bus system. The objective
was to ensure maximal load recovery with minimal power losses. The integration of
DG only, reconfiguration only, and reconfiguration along with DG placement restored
the load from 90.3% to 100% for Case 1 (t = 0). For Case 2 (t = 1), reconfiguration only
restored the load from 34.994% to 80.35%, while DG only and reconfiguration with DG
placement restored the load from 34.994% to 100%. For Case 3 (t = 0), reconfiguration
was insufficient in restoring the load, while DG placement restored the load from 0%
to 100% in scenarios 3 and 4. The case studies demonstrated that integrating DGs
achieved superior restoration outcomes compared to reconfiguration alone.

e  The findings of the overhead line failure model and the service restoration model were
used to calculate resilience metrics. While R, and Rz were derived from the resilience
trapezoid framework, evaluating recovery efficiency and phased performance, R;
provided a complementary perspective by quantifying cumulative losses across all
nodes. Together, these metrics holistically assess resilience in terms of severity (R;),
restoration success (Rz), and phased adaptability (R3).

This paper highlights the value of decentralized resources like DGs in HILP scenarios
where traditional reconfiguration was insufficient due to grid fragmentation. Thus, the
DBN-based overhead line failure analysis, combined with reconfiguration and optimal DG
placement-based service restoration, improved load recovery and reduced power losses
by one time step ahead. Future work may include the incorporation of real-time data
(like IoT sensors) and other factors (like the effect of falling trees on overhead lines). Also,
including the objectives such as restoration time, cost of restoration, and the time during
which the distributed generators can keep servicing the restored loads may result in a more
pragmatic solution.
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