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Abstract: Extended Reality (XR) is increasingly gaining momentum in industries such as retail, health,
and education. To protect users’ personal data, establishing a secure authentication system for XR
devices becomes essential. Recently, the focus on authentication methods for XR devices has been
limited. To further our understanding of this topic, we surveyed authentication schemes, particularly
systems and methods deployed in XR settings. In this survey, we focused on reviewing and evaluating
papers published during the last decade (between 2014 and 2023). We compared knowledge-based
authentication, physical biometrics, behavioral biometrics, and multi-model methods in terms of
accuracy, security, and usability. We also highlighted the benefits and drawbacks of those methods.
These highlights will direct future Human—computer Interaction (HCI) and security research to
develop secure, reliable, and practical authentication systems.

Keywords: authentication; biometrics; extended reality; virtual reality; augmented reality; head-
mounted displays

1. Introduction

Engagement in various online activities, such as education and meetings, has height-
ened during the COVID-19 pandemic. However, it has limitations in terms of real-world
experiences, physical expression, and collaboration since online environments only provide
simple interaction services using microphones, cameras, and screens. In the recent past,
Metaverse environments—interconnected virtual spaces where users could interact using
Extended Reality (XR), a general term for immersive technologies namely Augmented
Reality (AR), Virtual Reality (VR), and Mixed Reality (MR)—have attracted interest to
unravel these limitations. However, the realization of a fully functional metaverse is still
complicated by the fact that it requires the integration of different technologies. Many
advanced technologies, such as 5G, Web 3.0, Blockchain, and Artificial Intelligence (Al),
are becoming more promising and feasible to make the metaverse a reality, which marks
a fundamental change in terms of human—computer interactions (HCI), ubiquity, and
decentralization. This has caught the attention of numerous large tech corporations, which
are investing billions in developing various metaverse platforms and XR technologies.
For instance, Microsoft offers Microsoft Mesh for live virtual collaborations, Meta offers
Horizon Workrooms for immersive virtual workspaces, Nvidia offers Omniverse for the
development of advanced 3D applications, and Decentraland which is owned by its users
and developers, among many others. As a result, XR innovative solutions naming AR
developing platforms (e.g., Google ARCore, Apple ARKit), VR headsets (e.g., HTC Vive
Pro 2), and MR glasses (e.g., Microsoft Hololens) have progressed into marketable and
affordable technologies. Furthermore, the numbers of XR users are anticipated to increase,
and XR experiences are expected to become more immersive. Given the future potential of
the Metaverse, there are significant cybersecurity threats that need to be resolved before
the metaverse can be put to practical use. Sensitive user data such as identity, passwords,
and biometric information is likely to become vulnerable to privacy and security breaches.
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Extended reality devices collect massive amounts of sensitive biometric information
about their users. Various privacy and security risks stemming from this considerable
data collection, inputs, outputs, and user interactions have been identified by researchers.
Another difficulty that applies to XR wearables is that of user authentication, which is used
as a first barrier for technology devices and systems. Efficient authentication techniques
and strong access control models aim to identify authorized and unauthorized access. Less
reliable authentication systems lead to users risking their security. The absence of a physical
keyboard in XR makes it challenging to authenticate users and secure user profiles and
the data generated by XR devices. Therefore, additional safety measures will be needed to
ensure users’ privacy in the future. In essence, to further understand authentication and its
related privacy risks in the XR ecosystem, it became crucial to study XR authentication as a
whole instead of segmented AR, MR, and VR technologies as it has been typically practiced.

The evolution of authentication in XR has been marked by a shift from traditional
methods to more advanced and context-aware approaches. At first, XR authentication
relied heavily on conventional methods like passwords and PINs, leading to usability
challenges within immersive environments. As XR technologies developed, biometric
authentication methods gained attention due to their convenience and added layers of
security. Behavioral biometrics such as eye tracking and gait recognition seem promising
considering users’ unique interactions in XR environments. This allows for smoother and
more robust authentication solutions suitable for the immersive nature of XR, enhancing
both security and user experience across various applications and sectors.

Despite the current efforts to improve authentication in the field of XR, it is still
evolving, putting both users’ privacy and data security at risk. Thus, we strongly believe
that it is time to review existing research to guide the design and creation of innovative XR
authentication systems. Therefore, we aim to comprehensively evaluate and compare recent
proposed authentication systems. To the best of our knowledge, a survey targeting both
traditional knowledge-based and biometric-based techniques used in XR environments is
lacking. This survey makes the following contributions:

An in-depth exploration of recent research on authentication aspects in XR.

An overview of various authentication approaches used within XR.

A taxonomy outlining the diverse authentication techniques applied in XR.

A critical analysis of recent research outcomes and evaluation of usability and security
studies regarding authentication systems in XR

Before proceeding to the review of the different user authentication schemes, we clarify
that we do not focus on network security or any related topics. This paper is organized as
follows: Our methodology is presented in Section 2. Related research and how it differs
from our survey are discussed in Section 3. Next, Sections 4 and 5 present an overview of
authentication methods in XR. Section 6 presents a discussion and future research directions.
This paper concludes in Section 7.

2. Methods

In this work, we survey and summarize the most recent research that highlights
authentication schemes for XR over the last decade. The adopted approach was a two-stage
process to review authentication in XR. The initial stage was collecting and identifying
relevant papers published between 2014 and July 2023. As such, papers containing the
XR-related index terms “Augmented Reality” OR “Virtual Reality” OR “Mixed Reality” OR
“Extended Reality” OR “Metaverse” OR “Head-mounted Displays” and authentication-
related terms “Authentication” OR “Identification” OR “Security and Privacy” in the title,
keywords, and abstract fields were collected using five major scientific databases naming
Scopus, IEEE Xplore, Web of Science, ScienceDirect, and ACM. A total of 1186 journal and
conference publications were the outcome of this search. In the second stage, we performed
an abstract and full text screening to make sure that the content of our selection included
papers related to our index terms search from the first stage. This allowed us to define
a taxonomy of the different sub-topics that researchers in the field of authentication in
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XR are currently focusing on. Then, we specified our review sub-topics, further selected
publications that contributed to these sub-topics, and presented summaries of the studies’
findings. Regarding XR and the metaverse, those publications’ specific emphasis was on the
technical and security aspects of authentication systems (data collection studies, deployed
schemes, proposed techniques, and usability and security evaluations). This stage resulted
in 197 publications. To reflect current trends, we only included recent publications in our
review. We also did not exclude articles based on the number of citations alone, to ensure
we did not overlook any potentially innovative ideas. Figure 1. presents a PRISMA flow
model of the process of selecting relevant papers for our survey.

p
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\ v
)
2 § (N=1186) Number of papers from Exclusion criteria:
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Figure 1. Methodology process.
3. Related Work

Computing systems in general and XR systems in particular require safe and accurate
authentication. Several traditional authentication mechanisms, naming passwords, cards,
and security keys, are subject to being lost, stolen, or hacked, resulting in security breaches.
Thus, cybersecurity researchers have recently placed a significant focus on biometric
authentication. Biometric attributes such as fingerprints, iris, and signatures provide
an excellent choice for user authentication. Physiological and behavioral traits are the
two main categories of those biometric attributes. The physiological category includes
characteristics relating to physical structures like face, palm, and feet, while the behavioral
category is associated with the user’s behavior like keystroke, speech, and gait. Table 1 lists
the latest surveys on biometric authentication methods.
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Table 1. Summary of recent surveys on biometric authentication, security, and privacy methods

in general.
Biometric Authentication
Ref. Year Biometrics Title Contribution
1] 2023 Various Combining blockchain and biometrics: A survey on Provides a survey of the technical literature on the integration of
Blockchain technical aspects and a first legal analysis blockchain and biometrics including a first legal analysis.
2] 2021 Various Authentication mechanisms and classification: A Surveys and classifies various methods of authentication based on
Blockchain literature survey particular criteria.
3] 2022 Various A Comprehensive overview on biometric authentication ~ Discusses the different Artificial Intelligence techniques used in
] systems using artificial intelligence techniques biometric user authentication.
B ®2 Varow  Biomoio: Gong D Providesa onomy of $Dblomerics e 1L preens e
= . Attacks and defenses in user authentication systems: Reviews attacks and corresponding defense mechanisms in
[5] 2021 Various Y P &
A survey authentication systems.
6] 2021 Various User authentication schemes using machine learning Examines the different machine learning user authentication
methods—A review schemes proposed to increase the security of different devices.
7] 2020 Various Biometric authenticztion systems towards secure and Indicates the types of biometric authentication measurements, and
privacy identiflcation: A review their applications.
8] 2019 Various Process of biometric authentication and its Presents a review on many biometric authentication processes
application—A review and devices.
[9] 2018 Various A Survey on Biometric Authentication: Toward ecure Classifies the existing biometric authentication systems by
and Privacy-Preserving Identification focusing on the security and privacy solutions.
[10] 2018 Various Multi-factor authentication: A survey Sheds the }1ght on the evolution of mul_tl-fa'ctor authentication and
the emerging sensors used for authenticating a user.
[11] 2016 Various Biometric authentication technologies and applications In}i{sshgates bg)nﬁe’snc asthle n.tlca"t ion technologies, their
utilization, and their underlying issues.
[12] 2015 Various Biometric: Types and its applications Classifies biometric authentication factors and applications.
. Surveying the development of biometric user Creates a taxonomy of existing biometric authentication
[13] 2015 Various authentication on mobile phones techniques on mobile phones
[14] 2022 Behavioural Continuous user authentication on smartphone via Systematizes literature and public datasets in continuous
Continuous behavioral biometrics: A survey authentication using behavioral biometrics for smartphones.
Behavioural A review of continuous authentication using behavioral ~ Presents a literature review on the topic of Continuous
[15] 2016 & P
- Continuous biometrics Authentication using behavioral biometrics.
[6] 2021 Elheieumzl Behavioral biometrics & continuous user authentication ~ Surveys on behavioral biometrics and continuous authentication
on mobile devices: A survey technologies for mobile devices.
. A survey on behavioral biometric authentication Overviews the behavioral biometric traits used to develop active
Y P
[17] 2017 Behavioural L.
on smartphones authentication systems for smartphones.
[18] 2022 Gait Gait recognition based on deep learning: A survey i;;}r;irﬁzs gzlitrr:f;lgi?elzﬁr;e‘;m;ﬁg i(zrzlillsaf)rl‘le?;gslsfs ming
Electrocardiogram signals-based user authentication Presents a taxonomy of ECG-based authentication, its ke
[19] 2021 ECG g & y y
systems using soft computing techniques. contributions, applied algorithms, and possible drawbacks.
[20] 2021 EEG User authentication and cryptography using brain Examines the need for a bio-cryptographic system for user
signals—A systematic review authentication and data security through brainwave signals.
R 209 EEG ASurvey on brain biometrics e T o tn oo ue and sclentii
122] 2020 Eye gaze The role of eye gaze in security and privacy applications: ~ Presents a holistic view on gaze-based security applications and
Survey and future HCI research directions discusses the opportunities and challenges of eye tracking.
Eye movement analysis for human authentication: A Reviews gaze analysis methods for biometric identification when
[23] 2016 Eye gaze 0 . A .
critical survey behavioral, and dynamic biometrics are warranted.
q — Investigates keystroke dynamics authentication systems, their
y A survey paper on keystroke dynamics authentication P ] -
[24] 2019 Keystroke A applications, and benchmarking datasets for current applications
e e to improve security in online learning environment
. Facial liveness detection in biometrics: A multivocal Examines the importance, advantages, and limitations of liveness
[25] 2022 Facial
literature review facial detection using a multivocal literature review.
[26] 2020 Facial Face recognition: Past, present, and future i?;:ﬁ(iztfsj lf?sgf é;’;ii%g?;;iﬁg;?gg:giid face recognition
271 2019 Iris A comprehensive review on iris image-based biometric Reviews iris biometric systems and their segments, features,
system approaches, and techniques.
[28] 2022 Palmprint Contactless palmprint recognition system: A survey S/‘;f::,rt?\:fl;r;i:&Zﬂﬁ;?czoggﬁglegzrl:i)talllﬁlsarmt LEgy e
129] 2018 Palmprint The fundamentals of unimodal palmprint authentication — Investigates palmprint biometric systems and technology with
based on a biometric system: A review existing recognition approaches and datasets.
[30] 2015 Finger vein {;ﬁl srl;r;;yc of mathematical techniques in finger vein Elr%see;l‘t/se ?nstl;xi?ri}ét(;if C1srr1portant mathematical techniques used in
[31] 2022 Audiovisual Multimodal authentication system based on Examines recent advancements in multimodal identification
) audio-visual data: A review systems based on auditory and visual input.
132] 2021 Graphical A taxonomy of multimedia-based graphical user Summarizes existing approaches of graphical password
passwords authentication for green internet of things authentication to highlight Green IoT challenges.
133] 2019 Fingerprint A survey of biometric approaches of authentication Presents fingerprint and password biometric authentication
Password approaches.

Various: Includes several biometric methods.
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With the popularity of the metaverse, various publications have reviewed studies
focusing on many facets of the metaverse. An overview of recent surveys that looked at
several security and privacy vulnerabilities within the metaverse as well as authentication
of XR systems (AR, VR, and MR) is provided in this section. An outline of recent surveys
on authentication, security, and privacy in the metaverse and XR is presented in Table 2.

From Table 2, it can be seen that not many [34—41] existing surveys discussed authen-
tication methods in both AR and VR environments. In recent work by [34-37], authors
focused on surveying miscellaneous methods of authentication. Stephenson et al. [34]
systematized authentication methods in both AR and VR based on properties concluded
from user experience studies and interviews [42]. In [35], Duezguen et al. focused solely on
reviewing knowledge-based authentication methods in AR and VR worlds. In [36], Jones
et al. gave a simple overview of VR-based authentication schemes and then highlighted
trends and research gaps. In [37], Kurtunluoglu et al. compared the main authentication
methods used in VR worlds in terms of security. On the other hand, [38-41] presented
surveys about only biometric authentication in AR and VR. In their work, Heruatmadja
et al. [38] conducted a VR-based biometric authentication review and pointed out the
literature gaps. In [39], Liu et al. classified biometric authentication methods for wearable
devices based on their processing techniques and classification methods. In [40], Olade
et al. reviewed state-of-the-art camera-based multimodal facial biometric authentication re-
search for mobile devices and examined its potential to be implemented on Head-mounted
Displays (HMDs). In [41], Liebers et al. reviewed gaze-based authentication research in VR.

Table 2. Summary of recent surveys on authentication, security, and privacy in the Metaverse and XR.

Ref. Year Contribution/Title
Authentication
[34] 2022 SoK: Authentication in augmented and virtual reality
[35] 2022 SoK: A Systematic Literature Review of Knowledge-Based Authentication on Augmented Reality Head-Mounted Displays
[36] 2022 A literature review on virtual reality authentication
[37] 2022 Security of Virtual Reality Authentication Methods in Metaverse: An Overview
[38] 2023 Biometric as Secure Authentication for Virtual Reality Environment: A Systematic Literature Review
[39] 2021 Recent advances in biometrics-based user authentication for wearable devices: A contemporary survey
[40] 2018 A Review of multimodal facial biometric authentication methods in mobile devices and their application in Head mounted displays
[41] 2020 Gaze-based authentication in virtual reality
Security & Privacy
[43] 2023 A Survey on metaverse: fundamentals, security, and privacy
[44] 2023 Security and privacy in metaverse: A comprehensive survey
[45] 2023 Identity Threats in the Metaverse and Future Research Opportunities
[46] 2022 Visualization and cybersecurity in the metaverse: A Survey
[47] 2022 Cybersecurity in the Al-based metaverse: A Survey
[48] 2022 Metaverse security and privacy: An overview
[49] 2021 Metaverse: Security and privacy issues
[50] 2022 Vision: Usable privacy for XR in the era of the metaverse
[51] 2022 Implications of XR on privacy, security, and behaviour: Insights from experts
[52] 2019 Security and privacy approaches in mixed reality: A literature survey
[53] 2023 Security and Privacy Evaluation of Popular Augmented and Virtual Reality Technologies
[54] 2022 A systematic literature review on Virtual Reality and Augmented Reality in terms of privacy, authorization, and data-leaks
[55] 2022 Overview of vulnerabilities of decision support interfaces based on virtual and augmented reality technologies
[56] 2023 SoK, Data Privacy in Virtual Reality
[57] 2022 Security and privacy in virtual reality—A literature survey
[58] 2022 Security and privacy in virtual reality: A literature review
[59] 2022 Virtually secure: A taxonomic assessment of cybersecurity challenges in virtual reality environments
[60] 2022 Digital body, identity, and privacy in social virtual reality: A systematic review
[61] 2014 Security and privacy for augmented reality systems
Technology
[62] 2022 Artificial intelligence for the metaverse: A survey
[63] 2022 The Eye in Extended Reality: A Survey on Gaze Interaction and Eye Tracking in Head-worn Extended Reality
[64] 2022 Eye tracking in virtual reality: A broad review of applications and challenges
[65] 2017 Hand posture and gesture recognition techniques for virtual reality applications: a survey
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Moreover, several recent surveys focused on the different security and privacy con-
cerns that the metaverse faces and their solutions. For example, in [43—49], the authors
presented the architecture, technologies, and characteristics of the metaverse and discussed
its different security challenges and their associated countermeasures. Other related works
focused on only the security and privacy of sub-fields of the metaverse, like XR [50,51],
MR [52], VR/AR [53-55], VR [56-60], and AR [61].

In addition, there are few surveys that concentrate on the numerous technologies
embodied in the metaverse and its sub-fields. For instance, Huynh-The et al. [62] explored
the role of Al its branches, and its primary areas of application in the establishment and
advancement of the metaverse. The work conducted by [63,64] focused on eye-tracking
research. Plopski et al. [63] reviewed eye gaze and eye-tracking techniques and their uses
in XR, while Adhanom et al. [64] investigated eye-tracking fields of application in detail.
Other surveys [65] also studied hand posture and gesture recognition techniques and
provided a comparative study of the different Machine Learning (ML) models used for
motion classification.

Based on the summary of relevant literature provided above, it appears that current
surveys do not specifically address authentication within the framework of XR. In order
to bridge this gap, this study will look into authentication methods and security issues
faced by immersive technologies. To date, there has not been much focus on XR security.
Therefore, as the metaverse’s development progresses, it is anticipated that authentication
systems protecting immersive technologies against attacks will become more crucial. This
paper’s motivation stems from this.

4. Authentication Methods in XR

User authentication is the process of confirming a user’s identity and legitimacy to use
secure resources prior to giving him access. There are three types of authentication meth-
ods: naming, Knowledge-based Authentication (KBA), Biometric-based Authentication
(BBA), and Object-based Authentication (OBA). Only a very few authentication methods
were specifically designed for usage in XR, and traditional authentication methods have
been implemented for XR applications. Figure 2 represents a taxonomy of the different
authentication methods.
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Figure 2. Taxonomy of user authentication techniques.
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4.1. Knowledge-Based Authentication

Knowledge-based authentication is among the dominant types of user authentication
in XR. It is based on a knowledge factor—something the user knows and recalls, such
as textual passwords, graphical passwords, personal identification numbers (PIN codes),
patterns, etc. Knowledge-based authentication can be classified into three categories:
recall-based, cue-based, and recognition-based authentication.

Many researchers proposed knowledge-based methods for XR, adopting already
existing techniques. After studying 30 knowledge-based approaches naming PINs and
textual and graphical passwords, we generally conclude that seminal authentication meth-
ods in this category, such as PINS and patterns, offer secure solutions for authentica-
tion in XR. However, the main disadvantage of such methods is physical observation
by attackers (shoulder surfing). In contrast, subsequent methods proposed shoulder-
surfing-resistant methods that were based on the concept of immersiveness, which offers
a safe space between the users and the system. This space is a hidden channel from real-
world attackers, which makes it perfect for password cues that only users can observe. In
addition, several proposed knowledge-based methods that implement traditional tech-
niques retained all deployment benefits. They can be considered platform-agnostic and
appealing to developers. This is crucial to developers adapting existing applications to
an XR context, except for certain 3D-based passwords built differently than traditional
PINs. Furthermore, techniques based on eye gaze, speech recognition, and head and
hand gestures as input modalities are high-power-consuming but seem effortless and
usable, which is not the case for other techniques where usability is greatly affected
by the inconvenient nature of entering passwords on virtual keyboards or PIN pads.
Thus, some methods are either considered visually accessible or hearing accessible be-
cause they work for one input modality but not the other. Finally, the unfamiliarity and
complicated concepts of these new XR authentication techniques make them difficult to
learn [34].

Several knowledge-based systems in XR systems have been explored. We categorized
the password schemes into four groups: Alphanumeric, graphical, haptic pattern, and se-
mantic. Alphanumeric passwords can include elements like digits, characters, and symbols.

In [66], Abdelrahman et al. studied the use and effect of cue-based authentication
input modalities on security and usability in VR environments. They explored the impact
of laserpointer, trackpad, and motion controller input modes on authentication time using
a two-way ANOVA test. Their results showed that the trackpad modality outperforms
the motion controller option; however, they are both slower than the laserpointer baseline
modality, which matches traditional PIN-input methods, meaning that cue-based modalities
improve security at the expense of usability. Their study also showed that the trackpad
and motion controller methods are resilient to shoulder-surfing by design because they rely
on visual cues delivered to the user through the headset, unlike the laserpointer modality,
which is vulnerable to observations by bystanders. They recommended the use of cue-
based modalities only when there is a high risk of observation attack due to their long
authentication times; otherwise, using laserpointers would be a better option in terms of
usability—security balance.

In [67,68], Mathis et al. presented RubikAuth, an authentication method for VR us-
ing a manipulable 5-faced 3D cube (the back face is omitted due to unreachability; the
other faces have 1 color each and 9 digits per face, translating to 45" password possibili-
ties). To authenticate themselves, users wear a Head-mounted Display (HMD) and hold
a Hand-held Controllers (HHC) to manipulate the 3D cube. They use eye gaze, head
pose, or tapping with the right-hand controller to select n digits for their password and
use the left controller for confirmation. The authors compared pointing using eye gaze,
head pose, and controller tapping and assessed RubikAuth’s usability, memorability, and
observation resistance against threat models. The observers in their user studies used
(1) written annotations, (2) a 3D copy of the cube, and (3) recordings as means to mimic
the password. They found that (a) for usability, a 4-symbol RubikAuth password us-
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ing controller tapping is highly faster than head pose and eye gaze; (b) a memorability
study indicated that passwords are as memorable as previous work; (c) observation re-
sistance showed that passwords are highly resilient to observations: 98.52% of attacks
were unsuccessful, and gaze input outperformed head pose and controller tapping. Ru-
bikAuth is promising against shoulder-surfing attacks due to the possibility of applying
fake face switches and changing the cube angle without rotating it to trick observers.
Gaze-based interaction for RubikAuth scored highly among participants based on usability
and security.

Most eavesdropping password entry schemes used in AR smart glasses require addi-
tional devices connected to them. In [69,70], Li et al. addressed the non-practicability of
entry schemes on Smart Glasses (SG) such as the Google Glass (GG). They designed and
implemented gTapper, gRotator, and gTalker, three authentication schemes based on touch
pad, gyroscope, and speech recognition input modalities, respectively. For interaction,
users enter a 6-digit PIN by performing gestures on the touchpad, rotating the head, and
speech by reading the hidden information on the GG display. They concluded that their
schemes are resilient to password leakage and are very cost-effective because they require
no extra hardware beyond what is available on GG.

In [71], Khamis et al. extensively studied the use of smooth pursuits in VR. After an
in-depth analysis to derive the different guidelines for pursuit selection design considering
trajectory size, target size, and distance to target, they designed an Automated Teller
Machine (ATM) sample application for authentication in VR and conducted usability
interviews and questionnaires. Their authentication scheme considers a 4-digit PIN and
eyes’ smooth pursuits as an input modality, and it reached 79% accuracy. They concluded
that larger trajectory sizes result in better accuracy and faster selections, but target size and
distance have little to no effect on the overall performance. They highlighted their plan to
investigate pursuits with other modalities and scenarios.

In [72], Zhang et al. proposed AugAuth, a gesture-based AR authentication frame-
work resistant to shoulder surfing attacks. AugAuth users securely authenticate them-
selves while bystanders are present by randomly entering a PIN on the device’s display
coupled with finger movements’ detection using a MYO armband (MYO). For regis-
tration, users wearing a MYO perform 20 taps for each finger on the display to build
a finger movements’ profile, then set up a PIN that they use later for authentication.
They collected EMG (Electromyography) signals from 8 volunteers and used Support
Vector Machine (SVM) classifier for finger movement classification. AugAuth accuracy
reached 86%.

Similarly, in order to address the shoulder surfing issue in PIN-based authentication
methods in AR, Seo et al. [73] introduced two PIN-entry methods for GG by exploiting
the hidden overlay screen in GG to display secret values. They proposed two masked-PIN
schemes that make use of voice and touch. Users choose a 4-digit PIN for enrollment, and
then to authenticate, they must put the randomized PIN given by the server in order by
speech or touchpad. Once the PIN is correct, they may confirm. Their voice-based method
is effective when users cannot use their hands, and the touch-based method is more useful
in loud environments or where users are at risk of eavesdropping from bystanders. The
authors implemented and evaluated the prototypes, and their results reached a very high
accuracy rate with a very short entry time.

George et al. [74] proposed the integration of well-established concepts (PIN, Android
unlock patterns) into VR. Through both a pilot study and a lab study, they showed that
the current real-world authentication methods are transferable into VR. Particularly, they
showed that the usability of both PIN and swipe patterns in VR matched the usability in
the physical world. Furthermore, they illustrated that the hidden channel offered by VR
makes such authentication mechanisms harder to attack and hack.

In [75], Gheorghe et al. proposed a new input approach aiming to overcome the lack
of available touch surface in modern SG by using a thermal camera embedded in the front
of the SG. Users enter a 4-digit-based PIN on a touchpad that faces the virtual pad while the
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thermal camera captures the residual heat from the fingertip on the touchpad. They used
the Simple Blob Detector (SBD) algorithm to detect the blob pixels left by finger touch. They
pointed out the technical issues of their approach, such as the SBD algorithm’s effectiveness
in detecting other touch gestures in non-laboratory situations.

In their original work, Yu et al. [76] implemented well-developed authentication
methods such as pattern swiping and PINs within a VR environment while attempting to
build a 3D password for VR. The authors conducted usability and security experiments
to provide some insight into the strength of the three techniques against observation
attacks. In the experiment, participants using the three authentication techniques were
recorded, watched other participants’ recordings, and then asked to guess the passwords.
The results suggested that the 3D password system was considerably harder to guess and
had a higher security level than 2D swipes and PINs, likely as a result of introducing a
complex third dimension. Two-dimensional swipes and PIN systems were perceived as
more usable.

With the same purpose as previously mentioned PIN-based schemes, Yadav et al. [77]
addressed the shoulder surfing and eavesdropping issues of PIN-based authentication
schemes in AR. They implemented two PIN-based authentication schemes for GG and
compared their effectiveness with the built-in option available on GG. The schemes employ
voice and touch input modalities. For registration, a 4-digit PIN is assigned to the user
by the server. For the voice-based scheme, the user is shown a plain pad with random
colored digits, and the user speaks the digits that match the registered PIN. GG captures the
spoken digits, matches the digit with the corresponding real PIN, and grants access. For the
touch-based scheme, the user is assigned a randomly assigned PIN pad that changes with
each instance, and the user must navigate to the correct digit by swiping and selecting the
digit by tapping. The system grants access when the PIN matches the stored one. Through a
usability study with 30 subjects, they concluded that users perceived the proposed schemes
as faster and more secure than the built-in schemes. They also recommended the use of
different authentication schemes on the same device because users tend to use them in
different contexts.

In [78], Winkler et al. presented Glass Unlock, a novel PIN-based framework that
used GG to authenticate smartphones. By outsourcing the near-eye display, they intro-
duced a randomized secret digit layout that shows on the near-eye display while the
user enters the PIN on an empty layout on the smartphone screen. Through a usability
study with 18 participants, their concept was tested with three input methods (10-key
PIN, 6-key PIN, and swipe), and it proved robust against all visual attacks. The 6-key
modality scored lowest in authentication time, and the swipe modality was favored by
participants, and they recommend reducing it to 6 keys instead of 10 keys for lower
input times.

In [79], Bailey et al. discussed speech-based solutions to the eavesdropping issue in
AR authentication schemes. They recommended both PIN-based, textual passwords, and
graphical solutions. For the PIN-based solutions, (1) users calculate the sum of the PIN
digit and a random number displayed on the GG private display, then speak the result
mod 10 for each digit and (2) users pronounce a letter associated with each PIN digit that
is displayed on the GG private display. For the graphical-based solution, the users select
grids of pictures that are assigned random labels by speaking out the label using head
movements, blinks, or a touchpad.

In addition, Olade et al. [80] extensively studied the portability of popular SWIPE lock
mobile device authentication systems to VR. They compared the speed and usability of
the SWIPE authentication system in both mobile and VR environments through a 3-phase
study: (1) a web experiment to gather and examine possible SWIPE password patterns; (2) a
mobile device experiment; and (3) a VR experiment. The VR experiment entailed creating a
VR replica of the mobile SWIPE authentication mechanism. The VR authentication system
interaction was in terms of using an HHC, an HMD, a Leap Motion (LM) hand-tracking
sensor, and an aGlass eye-tracking device (aGlass). Since shoulder-surfing is recognized
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as a vulnerability on mobile devices, they also looked at how effective it was in a VR
context. The study findings showed that, whereas mobile swipe authentication was the
quickest and easiest to use, the HHC and LM versions were similarly quick and easy to use.
According to the shoulder-surfing evaluation, attackers have a considerably lower success
rate, and SWIPE in VR has a significantly high resistance to shoulder-surfing attacks. This
makes this technique extremely safe to use in public settings where there may be a number
of bystanders.

In [81], Dlizgilin et al. applied “Things”, an authentication scheme proposed by [82] to
protect against shoulder surfing attacks for the Microsoft Hololens (MH) headset. Their
scheme is a gesture recognition-based graphical scheme where users select randomly
displayed images on the private display of the HMD. They conducted usability studies
to investigate usability and security aspects such as efficiency, satisfaction, and perceived
security. They concluded that the scheme showed a high effectiveness due to easiness of
memorizing graphical passwords; however, the long authentication duration needs to be
improved by replacing gesture input with speech or eye gaze.

In [83], Hadjidemetriou et al. designed HoloPass, an MR gesture-based authentication
prototype that requires users to mark patterns on a hologram image. Users register their
passwords by drawing three patterns on the hologram image using gestures. Then, to
authenticate, they must enter the same patterns by using elements on the image as a cue or
reference. They designed an in-lab study to investigate the aspects of their MR prototype
in terms of likeability, task execution, and guessing attacks and compared their results
with the results of the desktop version to check if their prototype is platform-agnostic or
not. The result of the study revealed a non-significant difference between both prototype
versions in terms of password creation time and the number of password guesses needed
to crack the password. The result also showed that users had a positive preference for the
MR version of the prototype.

Funk et al. [84] proposed LookUnlock, a graphical authentication technique based
on head-gaze tracking and spatial awareness. LookUnlock authorizes authentication on
HMDs without requiring any extra devices by using spatially and virtually built passwords,
namely, spatial passwords, virtual passwords, and hybrid passwords. Users select spatial
targets in the environment by dragging the HMD's cursor over an object and pressing
the enter key to set a spatial password. To unlock the procedure, users insert the spa-
tial password by focusing their head gaze over the designated spatial targets. Binding
spatial passwords to the environment adds a layer of security against observers. Unlike
spatial passwords, virtual passwords’ positions might be randomized because they are
not aligned with any physical object. The process of setting and unlocking a password is
identical to that for spatial passwords; however, virtual targets in the form of 3D models
of objects are necessary. The virtual targets spawn at different locations within the 3D
world each time a virtual password is entered. This adds an extra layer of security against
bystanders but makes the task of finding the right virtual unlock target more challeng-
ing. Hybrid passwords permit users to merge spatial and virtual targets and only work
in environments where passwords are defined because they depend on the position of
previously defined spatial targets. The authors implemented a prototype and carried out
a user study to evaluate LookUnlock. They demonstrated that this mechanism can be
efficiently used by people and that the three password types are resistant to observation
attacks. Out of 135 attempts, virtual passwords were resilient to guessing, whereas spatial
passwords were the most susceptible. Compared to other graphical and textual authentica-
tion techniques, LookUnlock passwords may be prone to users’ favoritism for some targets
over others.

In [85], Turkmen et al. proposed VoxAuth, a graphical authentication mechanism
for VR, with the aim of minimizing observation threats. During authentication, users’
avatars wear sunglasses as an eye-gaze obscuration technique and to warn bystanders of
the ongoing activity. Users pick their voxel-based pattern from a previously chosen image
transformed into a 3D voxel image. The target voxels get selected using a multimodal input
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method that involves eye gaze pointing and HHC selection. The authors suggested future
usability studies to investigate the learnability and memorability of the voxel pattern as
well as testing a unimodal eye gaze input method for both pointing and selection instead
of a multimodal input method.

In [86], Han et al. designed Ninja Locker, a hand-gesture-enabled knowledge-based
authentication system for VR. Ninja Locker uses the difference between the virtual envi-
ronment view and the bystander perspective view to create confusion in detecting the
gesture password. For registration, a user selects a hand gesture from a list of gestures
as his password; the same gesture will be displayed, spawning in a different direction
each time the user enters the virtual environment. To authenticate, the user uses one hand
to copy the gesture displayed in the virtual view, and they use the remaining hand to
make a confounding gesture. The confounding gesture adds a layer of security to the
gesture password.

In [87], Bologna et al. implemented SPHinX, a pattern-based authentication scheme
for XR environments that enables users to authenticate by pattern tracing on a 3D object
(pyramid or cube). Each object’s face is divided into grid positions (9 for cubes and 6 for
pyramids), and users can choose a continuous pattern or a group of sub-patterns that get
concatenated at the end in a sole pattern. Their usability study with 16 volunteers indicated
that the highest security level against shoulder surfing attacks was reached when patterns
were composed from the four sides of the objects. In terms of login speed and error rates,
the cube design scored better than the pyramid design. They pointed out their interest in
studying the robustness of their scheme against other types of attacks and in experimenting
with other 3D shapes.

In order to demonstrate the potential of existing authentication mechanisms in terms
of usability and security, George et al. [88] carried on their work in [86] and investigated the
effect of pointing and selection choices on usability and security for 3D passwords in VR.
They presented GazeRoomLock, an authentication mechanism similar to RoomLock [86]
that leverages other interaction modalities instead of only using HHC. GazeRoomLock
utilizes eye gaze and head pose for pointing, dwell time, and HHC tactile input for selection.
Their usability study regarding entry time, error rate, and memorability revealed that
the interaction modality does not have a significant effect on memorability. However,
multimodal mechanisms (eye gaze or head pose with tactile input) are notably quicker and
less error-prone than unimodal ones (eye gaze or head pose with dwelling). Additionally,
the results of their security study in terms of robustness against both real-world and offline
observations showed that multimodal mechanisms (eye gaze or head pose with tactile
input) are resilient against real-world observations, while only the multimodal mechanism
(eye gaze with tactile input) is robust against offline observations.

In [89], George et al. presented RoomLock, an authentication mechanism that lever-
ages the 3D virtual space. Users authenticate by selecting 3D objects from their virtual
environment. The usability studies of RoomLock indicated that it is usable and memorable,
and security studies showed that RoomLock is highly secure against shoulder surfing
attacks. Results also showed that despite longer authentication times in the virtual environ-
ment in comparison with the real world, users’ perceptions of the workload are the same in
both environments, meaning RoomLock is transferable. They indicated that with slight
changes to the interaction modality, they are certain about the applicability of RoomLock
to MR and AR devices, as well as its robustness against shoulder surfing attacks in those
environments due to their closeness to the real world.

In [90], Gurary et al. defined both the physical and physiological advantages of
3D authentication and introduced 3Dpass, a 3D authentication scheme. Users generate
a password by navigating the virtual environment and performing a set of actions and
interactions with the objects present in the scene. To authenticate, they must perform the
same actions and navigations with a level of tolerance toward distances and angles. In
a controlled laboratory setting with 20 participants, their longitudinal usability study to
test the memorability and usability of 3Dpass in comparison with a monitor version of an
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alphanumeric password showed that 3Dpass scored higher in memorability and preference
but lower for entry times and hotspots.

In [91], Yu et al. proposed a 3D-cube-based authentication system for virtual envi-
ronments as a solution against shoulder surfing attacks. The user’s hand gets detected
by the LM and visually displayed in the virtual environment to facilitate interaction and
navigation. Then, the user virtually touches a cube in a sequential way. Each time a cube
is touched, it displays a number on it. The system registers the sequence of the cubes’
numbers and generates a unique password. The authors suggested adding more interactive
elements to their system’s 3D environment to enhance interactivity, increase the theoretical
password space, and thus increase security.

In [92], Wazir et al. developed an AR recognition-based authentication scheme for
mashing up a doodle password with the AR environment. Users draw a doodle password
five times to create the password, and they recreate the same password for authentica-
tion. The system then matches the recreated password with the five registered passwords
according to size, coordinates, and content. Users get granted access only if the coor-
dinates and size of the passwords match. The authors evaluated their authentication
scheme, considering usability, security, and usefulness measures. The results of their
evaluation demonstrated the ease and effectiveness of the scheme and that doodle-based
passwords are highly secure due to the wide variety of possibilities that make them hard
to crack.

Current PIN-based and password-based authentication techniques are considered
unsuitable for wearable SG due to their limited input space. In [93], Islam et al. designed
GlassPass, a tapping gesture-based user authentication scheme, to address that problem.
They designed a set of ten symbol-based tapping gestures that get captured by a custom-
made touchpad attached to the side of the Epson Moverio (EM) SG and that can differentiate
between gesture types. They evaluated two versions of their scheme: a standard version
that displays a black highlight on the private display and a disclosed version that displays
the input symbols of the password. Their evaluations’ results showed that tapping gestures
boosts the accuracy and rapidity of the scheme and reported that the disclosed version
helps with password memorization. They suggested further work to obfuscate observable
physical inputs on GlassPass to improve resistance against observation attacks.

In [94], Hutchins et al. developed Beat-PIN, a touch-based authentication scheme
for wearable devices. The scheme’s rhythm-based password is a set of beats marked by
their timing. Users enter the beat-PIN via taps on a touchpad several times for training
and enter the same password to authenticate. They get authorized if the tapped password
matches the training sample. Through experimental evaluations with 124 participants, they
collected data and extracted tapping time instances, tapping intervals, and relative interval
features. Then, they proposed a classification algorithm, Vector Comparison Algorithm
(VCA), and compared the results with those of an SVM classifier. Their scheme achieved a
7.2% Equal Error Rate (EER) with a low input time and outperformed the SVM classifier.

In [95], Duezguen et al. proposed a shoulder-surfing-resistant authentication scheme
for AR and VR devices. They based their proposed scheme on their previous work, the
Zero-Trust Authentication Protocol explained in [96]. For registration, the users receive
a secret assigned to them by the server through a private channel. Then, to authenticate,
users answer a series of semantic challenges related to the registration phase secret without
disclosing the secret by using speech, touchpad, or head movements as input modalities.
The server then checks the accuracy of the answers and grants access. The authors did not
evaluate the usability of their proposal.

In [97], Li et al. studied users” perceptions toward the usability and security of
authentication interaction modalities in VR. They designed four authentication technology
probes (PIN, virtual card, and signature) for a VR environment and embedded them in
an archery VR game for evaluation. They evaluated the probes in terms of interaction
experience, security and privacy perception, and meeting user expectations. Among their
prominent findings, users face usability challenges such as motion control and space



Appl. Syst. Innov. 2024, 7, 45

14 of 51

awareness while performing authentication; the gamified VR context affects users’ sense
of security and privacy; improving interaction factors such as designing flexible and
engaging interfaces.

The suggested knowledge-based methods are generally satisfactory but do not always
seem to be the ideal option for XR devices. It is possible that other approaches could yield
greater advantages than knowledge-based approaches. Table 3 shows an overview of the
selected papers with each scheme type, technical equipment, and conducted usability and
security studies.

Table 3. Summary of knowledge-based authentication mechanisms and schemes in XR.

Concept Ref. Year Scheme Name Input Method/Equip. Equip. uUs SS A% (EER)
Password type: Alpha-numerical password
Lasepointer
EB [66] 2022 CueVR Trackpad HTC-V 20
Motion controller
. Eye gaze
[67] 2021 RubikAuth
= [68] 2020  RubikAuth Head pose LU w9
ZRRILS
gTapper Touch pad 98.3
{%% %8%(; gRotator Touch pad, gyroscope GG 57 98.2
gTalker Speech recognition 98.2
ER [71] 2017 VRPursuits Eye smooth pursuits I_{;{(;LV 26 79
B3 [72] 2017 AugAuth Gesture recognition armband MYO 8 86
MaskedVoice * Speech recognition 100
= (73] 2 MaskedTouch * Touch pad — e 100
Pointers
= [74] 2017 PinVR * Tapping HTC-V 30* 30
VR Stylus
B [75] 2016 ThermalTouch * Thermal touch front camera
. Touch pad ~ #
B3 [76] 2016 PinSystem * Hand tracking,/Leap Motion OR-DK2 15 15
VoicePIN * (VBP) Speech recognition o 83
= 771 A TouchPIN * (TBP) Touch pad g 30 e 87
ER [78] 2015 Glass Unlock Tapping & swiping on an empty button lock screen GG 18
SecretRandomPIN *
EB [79] 2014 HiddenRandomPIN * Speech recognition GG
HiddenTextPWD *
Password type: Graphical password
Hand-Held-Controller
“@2 5 Head-Mounted-Display 4
(™ [80] 2020 SwipeVR * Hand tracking/Leap Motion HTC-V 15 15
Eye tracking/aGlass
" Pointers
[74] 2017 PatternVR * Tapping HTC-V 30# 30
VR Stylus
W [76] 2016 PatternLock * sl pezel OR-DK2 5% 15
Hand tracking/Leap Motion
[81] 2022 PictureAR * Gesture recognition MH 16* 16
[83] 2019 HoloPass Gesture tracking MH 151 15
[84] 2019 LookUnlock Head gaze tracking MH 15
Speech recognition
[79] 2014 HiddenPictureAR * Etibiia g/l sl GG
Gesture recognition/tapping
Head movements recognition
5 [85] 2023 VoxAuth Gaze pointing/Controller trigger MQ-P
39 [86] 2023 Ninja Locker Hand gesture recognition MQ-2
3P [87] 2023 SPHinX Controller’s trigger button SG 16
Gaze pointing & dwelling
- Gaze pointing & controller’s trigger .
3@ [88] 2021 GazeRoomLock Head pose pointing & dwelling HTC-V 48 26
Head pose pointing & controller’s trigger
D [89] 2019 RoomLock Laser pointing & HHC’ trackpad and trigger press HTC-V 48 75
3B Xbox 360 controller
[90] 2017 3DPass Hoad traciing OR 20
<> Touch pad #
&) [76] 2016 3DPassword * Hand tracking/Leap Motion HTC-V 30 30
Q‘a [91] 2016 3DCubePWD * Hand tracking/Leap Motion
W [92] 2020 DoodleAR * Smartphone touch gesture recognition 20# 20
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Concept Ref. Year Scheme Name Input Method/Equip. Equip. UsS SS A% (EER)
Password type: Haptic pattern password
_ Standard Glass pass . . 93-96
I [93] 2018 Disclosed Glass pass Tapping on a special touch pad EM 33 12 %
g [94] 2018 Beat-PIN Touch pad 124 49 (7.2)
U_@I} [77] 2015 Built-In-Mechanism Touch pad GG 30 30
Password type: Semantic password
Touch pad GG
k‘_ﬂ‘ [95] 2020 Zeta Speech recognition OR
yroscope
= 8 8" [97] 2023 ProbeVR* RO Tl 0Q ut

Head-Mounted-Display

Ref.: Reference, Equip.: Equipment, US: Usability Study sample size, SS: Security Study sample size, A%: Accuracy,
EER: EqualError Rate, * Scheme name not given by the author but given depending on the method used, # The study in-
cludes a security study, GG: Google Glass, SG: Smart Glasses, HTC-V: HTC Vive, OQ: Oculus Quest, OR: Oculus Rift,
OR-DK2: Oculus Rift DK2, MQ-P/2: Meta Quest Pro/2, MH: Microsoft Hololens, EM: Epson Moverio, PLab: Pupil Lab Eye

o _ < (rw]
Tracker, MYO: Myo Armband. E& = PIN, b = Swipe, = Graphical, =3D, D - 4D, Y- Doodle, & Touch,
P

v K]
&= = Protocol, a =Token, »* = Signature.

4.2. Inherence-Based (Biometric) Authentication

Inherence authentication is based on factors referring to something you ARE or some-
thing YOU DO, such as DNA or gestures (gait). Primarily, biometric data of any kind is an
example of an inherence factor.

4.2.1. Physical Biometrics

Physical biometrics refers to physiological traits in the human body, such as a finger-
print or iris. Authentication using physical biometrics has been researched in miscellaneous
applications long before XR took hold. For the scope of this paper, we focus only on
physical biometric authentication research conducted in the XR field.

Iris is considered a gold standard biometric modality. Boutros et al. [98-102] ex-
tensively studied the possibility of using iris and periocular images captured by HMD-
integrated cameras for biometric authentication while taking into consideration the low
computation of such devices. Using the open-source dataset (OpenEDS, captured using
HMDs) and several deep-learning recognition approaches, they concluded that iris and
periocular images captured during HMD device use might be utilized for biometric authen-
tication. In [98,102], the authors suggested a lightweight and precise segmentation solution
for the ocular region images taken by HMDs and benchmarked many well-studied iris and
periocular region verification approaches in terms of sample size effect on accuracy. In
particular, deep learning approaches resulted in encouraging results, with a high EER of
6.35% for iris verification and 5.86% for periocular verification.

They made note of the necessity of more investigations tested in real-world use-case
scenarios due to the suboptimal results achieved by both the segmentation and authentica-
tion models. To further investigate and improve their findings, Boutros et al. [99] presented
a novel multi-modal fusion model that combines iris and periocular modalities using many
deep learning models. The fusion model achieved the highest performance, reaching an
EER of 6.47%. In [100], the authors focused on continuous iris authentication under the
same settings as in their previous works while using different deep-learning recognition
models. Their results show that a 5% EER performance can be achieved. In addition,
and under the same settings, Boutros et al. [101] re-studied authentication employing the
periocular region using different deep learning models. They observed that the variation
in periocular images due to the uncontrolled way of capturing images leads to inaccurate
authentication, and they proposed new sample selection and normalization methods to
address the issue. However, they showed that the deep learning models used in their
experiments can still learn from the randomly taken, non-ideal periocular images. Their
work resulted in a 9.84% EER.
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Sehee et al. [103] proposed a periocular region method as a biometric for personal
authentication in HMDs. Unlike iris recognition, their method did not use high-frequency
features of the image; thus, it offered fast and efficient recognition with minimal effect on
image quality. It showed excellent performance, with an EER of 6.83%.

Varkarakis et al. [104,105] presented a proof-of-concept to target the segmentation of
off-axis iris images taken by frontal embedded cameras in HMDs. Particularly, they used
advanced data augmentation techniques on publicly available iris datasets and designed
a novel Convolutional Neural Network (CNN) architecture with minimal complexity for
embedded devices’ deployment. The segmentation results of their method were compared
with advanced segmentation models and showed great performance for both frontal and
off-axis iris regions, despite the lightweight nature of the suggested model. Thus, itis a
suitable choice for deployment on HMDs.

In [106,107], John et al. addressed the issue of anonymizing iris images during eye
tracking in HMDs. The authors suggested a hardware-based optical defocus solution to
conceal the iris biometric from the stream of eye-tracking images. Both their pilot study
with 5 participants and the study with 15 participants, respectively, produced an average
Correct Recognition Rate (CRR) of 0% and 7% compared to 91% and 79% before defocus
was applied.

Li et al. [108] were among the first researchers who tried to solve the problem of user
authentication in wearable smart glasses. They designed an innovative iris recognition
mechanism and proposed an efficient and accurate iris segmentation algorithm to be
used on smart glasses. The accuracy of their iris recognition system on smart glasses
reached 100%.

Many researchers have investigated other physical biometrics besides the iris. Zhu
et al. [109] proposed SoundLock, an innovative biometric user authentication system for
VR systems based on auditory-pupillary responses. SoundLock authenticates users by
using carefully crafted features extracted from variations in pupil size captured by an
integrated eye tracker in response to auditory stimuli presented via the VR headset. The
response is compared to the template created at the enrollment stage to verify the user’s
legitimacy. The solution offers an essential direction for choosing efficient auditory stimuli
and establishing their appropriate durations. Through comprehensive in-field studies,
the authors demonstrated that their proof-of-concept accuracy surpasses the performance
of cutting-edge biometric systems with an EER as low as 1.5% and is well-liked by the
study participants. Similar work based on the core idea of using pupil light reflex (PLR)
for biometric authentication by Yan et al. [110] confirmed the feasibility of the PLR signal
for authentication through experiments. Their authentication experiments were designed
based on three different authentication light intensities. The results of their authentication
system turned out promising and achieved quick and effective authentication with 99%
accuracy, showing that the system can be integrated into a more secure biometric authenti-
cation system. To the best of our knowledge, this work on PLR for smart helmet device
authentication is original.

Gao et al. [111] proposed EarEcho, a novel acoustic biometric authentication scheme
that takes advantage of the unique characteristics of in-ear sound. They validated that user
authentication on wearable devices can be achieved using acoustic features extracted from
audio emitted from an integrated earbud speaker combined with the reflected echoes of
those audios recorded by a microphone. Their implemented and tested proof-of-concept on
20 participants attained a 97.57% precision rate for continuous authentication. EarEcho also
showed that it is stable and resilient enough to handle ambiguities related to background
noise, body movements, and sound pressure levels.

Lin et al. [112,113] explored the potential practicality of neurofeedback-based bio-
metrics for head wearables. For all we know, their work is the first to investigate using
cancelable Event Related Potential (ERP) biometrics for secure user authentication. They
addressed the issue of generating consistent brain reactions from complex visual stim-
uli and how to change those brain biometrics when the used credentials get divulged.
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They demonstrated the feasibility of their solution through a pilot study with an EER
of 2.503%, thus validating the feasibility of using visual stimuli to generate brainwave
responses for user authentication on smart headwear devices. They additionally performed
longitudinal and cancelability studies to demonstrate the success and practicality of the
suggested approach.

Schneegass et al. [114] presented SkullConduct, a biometric mechanism that uses the
user’s skull to conduct sound waves in order to authenticate users of SG. They reported
on a user study with 10 subjects showing that the frequency resulting from the user’s
cranium is person-specific and stable despite moving the eyewear, which makes it a robust
biometric. Their method brings to light biometric user authentication for SG with bone
conduction technology, and it authenticates users with an accuracy of 97.0% and an EER of
6.9% without requiring explicit user input.

Zhang et al. [115,116] introduced a facial recognition authentication solution for a
remote student proctoring virtual laboratory system. In their system, a Kinect camera
scans student faces and captures their facial expressions and head movements to determine
questionable behaviors. If suspicious behaviors are detected, the system records and
analyzes more videos for further investigation. The authors concluded that the virtual
proctor system could provide high accuracy in detecting sketchy behavior and identifying
and tracking users’ faces. They also revealed that their future work on virtual lab proctoring
would expand to not only facial recognition but also speech and gesture recognition.

Tran et al. [117] introduced a finger-vein-based recognition mechanism for VR HMDs.
They argued that finger veins are hard to duplicate, which makes them a more secure
physical authentication solution than other hand-based characteristics. They developed a
model using CNNs and Anti-Aliasing Technique (AAT) and evaluated the model using
three publicly available finger vein datasets. The results of their experiments surpassed
those of well-established methods, with a high accuracy reaching 99.94% on the SDUMLA
dataset (Shan-Dong University finger vein public dataset), making their model a reliable
choice for authentication on VR headsets.

Bader et al. [118] addressed the issue of virtual worlds’ platforms being equipped with
only password-based authentication mechanisms by proposing a methodology to design a
virtual world platform to implement a biometrical authentication mechanism. They used
a 3D toolkit to build a complete virtual space and opted for a client-server configuration.
In their proposal, the user provides their fingerprint at the client stage for enrollment and
authentication purposes. Then, at the server stage, the user’s identity is identified and
confirmed to be genuine or not.

Chen et al. [119] explored the use of Electric Muscle Simulation (EMS) for biometric
authentication due to its inter-subject variability. They engineered ElectricAuth, a mech-
anism that conducts users’ involuntary finger movements by stimulating their forearm
with electrical impulses. They showed that ElectricAuth is robust against impersonation
attacks, replay attacks, and data breaches since it uses new challenges in each instance
of authentication. ElectricAuth’s longitudinal study results showed its stability under
different humidity and muscle conditions. The authors stated that ElectricAuth would
offer practical authentication for devices that use motion tracking, like VR headsets, and
for users with motor impairments.

Given that the propagation of vibration signals through the human head results in
unique patterns between individuals, Li et al. [120] suggested VibHead, a vibration-based
authentication technique for HMDs. Extracted features from the vibration signals were
used to classify registered legitimate users and also distinguish between legitimate and
illegitimate users using CNN-based classification and authentication schemes. Their results
from their experiments revealed a 92% accuracy for login user authentication.

Similar to the work conducted in [111,114,117,119,120] focusing on hard-to-imitate
biometrics, Bianco et al. [121] investigated multimodal physiological biometric recognition
by combining Heart Rate (HR), Breathing Rate (BR), Palm Electrodermal Activity (P-EDA),
and Perinasal Perspiration (PER-EDA) signals. These multimodal signals acquired from
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open-source datasets were stacked and used as input for a mono-dimensional CNN, and ex-
periments on a driving simulator show an accuracy close to 99.69%. The authors suggested
that an increase in the data sample size, the types of physiological signals used, and the
exploitation of deeper architectures would contribute to more robust biometric recognition.

In [122], Liebers et al. introduced a novel class of biometric authentication systems
called “functional biometrics” with the intention of disproving some of the drawbacks of
traditional physiological and behavioral biometrics. In their proposal, they regarded the
body as a robust function that transforms any stimuli applied to it into a secret reflection that
cannot be stolen, lost, or leaked. Their approach overcomes both the lack of changeability
seen in physiological traits and the loss or leak of the secret reflection since it can easily be
regenerated. Their proposal was inspired by the work conducted in [114].

Table 4 presents a summary of the selected papers addressing physiological biometric
mechanisms and schemes in XR.

Table 4. Summary of physiological biometric mechanisms and schemes in XR.

Concept Ref. Year Scheme Name Classifier Features Equip. Sample A% (EER)
DenseNet-201-Iris (6.35)
DenseNetBC-100-Iris (7.25)
DCT-SHD-Iris (31.13)
LG-SHD-Iris (31.78)
CSBCA-Iris (34.34)
DCT-HD-Iris (36.44)
S [98] 2020  LGHDris CNNs Handcrafted and DL features HMD 123 (EL50)
DenseNet-201-Peri (5.86)
DenseNetBC-100-Peri (12.33)
BSIF-Peri (34.77)
LBP-Peri (35.58)
TreeLBP-Peri (31.27)
HOG-Peri (28.51)
DeeplrisNet-Iris (17.42)
MobileNetV3-Iris (16.18)
e & [99] 2020 MobileNetV3-Peri CNNs Handcrafted and DL features HMD 123 (9.40)
ResNet-Peri (12.79)
Fusion (6.98)
DeeplrisNet (12.48)
DenseNet (5.80)
MobileNet (13.32)
ResNet (7.74)
o [100] 2020 DCT-SHD CNNs Handcrafted and DL features HMD 123 (31.66)
LG-SHD (31.32)
CSBCA (34.58)
DCT-HD (34.97)
LG-HD (33.47)
VGG19 (9.18)
VGG19-SS (7.06)
MobileNetV3 (10.44)
MobileNetV3-SS (9.84)
o [101] 2020 BSIE CNNs Handcrafted and DL features HMD 123 23800
BSIE-SS (22.25)
Tree.LBP (27.38)
Tree.LBP-SS (24.97)
. Eye-MM 256 f T 92.75
e pn 2l Ezfe-MMSSO (SR 3 fenmes” HMD 152 90.68
L1
*® [103] 2018 Peri-BIO * LBP HMD (6.83)
SIFT
CASIA Thousand 1000 99.13
‘e Hg‘% 2020 Bath800 CNNs Iris patterns HMD 800 99.50
UBIRIS-v2 261 98.92
Iris-Focus * GK Iris patterns 79 (CRR)
= [106] 2020 i LG Glint PLab 15
L4 Iris-Defocus * HD Pupil edge MH-2 7 (CRR)
EyeVEIL-Focus GK Iris patterns 91 (CRR)
= [107] 2019 LG Glint PLab R
s EyeVEIL-Defocus HD Pupil edge HMD 0 (CRR)
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Table 4. Cont.
Concept Ref. Year Scheme Name Classifier Features Equip. Sample A% (EER)
RB-HD-Collect 98.54 (4.6)
GMM-HD-Collect 98.54(3.2)
.. PGM-Collect RB-HD 98.54 (1.5)
et [108] 2017~ RB-HD-MICHE GMM-HD Haar features SG-D 2 T ay
GMM-HD-MICHE PGM (19)
PGM-MICHE (14.5)
k-NN b (0.84,1.5)
60 features reduced to 20: b
SVMs Morphological f At (3.4,4.3)
phological features (dilation ~
® [109] 2023 SoundLock GLIEI{B rates, peak & 2nd valley magnitude), HTC-V 76 ?;!gj
RF Statistical features (pupil size) (3.6)
Pupil contraction
® [110] 2020 LightLock * (PLR) SVMs f“f"l recovery SM-VR 20 99 (3.43)
nverse magnitude
Mean, variance, Standard Deviation
SVMs
k-NN :
@ [111] 2019 EarFcho DT Ear acoustics data features (output BSS 20 9757
NB sound, echo)
MLP
[112] 2019 Brain password SVMs 840 features HMD 177 95.46 (2.503)
[113] 2018 p EEG
@ [114] 2016 SkullConduct 1-NN (MFCC) data features GG 10 97 (6.9)
[115] 2016 VirtualLAB* Haar-C i 108
© [116] 2016 VirtualLAB * NN Haar features (6000 features) Kinect 30 91
DenseNET-FVUSM * 123 97.66 (2.03)
o 117 2022 DenseNET-SDUMLA * CNNs Vein patterns data features HTC-V 106 99.94 (0.24)
12
DenseNET-THUFV2 * 610 88.19 (12.61)
T’@ [118] 2017 3DVR-Fingerprint * Proposal
EMS
- . CNNs Finger’s inertial movements data 9-IMU
L (119] 2021 ElectricAuth VAE features (acceleration, rotation) %%5 g NI
CNNs MH-2 92-100
@Y [120] 2023 VibHead SVMs {Mgcdca)t(ai;f:*f‘;ﬁres MU 20 <80
RF PICO-3 <80
1D-CNN 90.54-99.69
4 k-NN . 78.97-94.80
a4 [121] 2019  MultiSignal * ANN 21 statistica features from HR, BR, DS 37 82.90-98.24
M SVMs 4 82.74-97.02
STACK 85.50-98.17
i" [122] 2020 BodyReflect * Proposal

Ref.: Reference, HMD: Head-mounted Display, Equip.: Equipment, Sample: User/Usability/Security Study sample size,
A%: Accuracy, EER: Equal Error Rate, * Scheme name not given by the author but given depending on the method
used, ~ The study includes a usability and/or a security study, GG: Google Glass, HTC-V: HTC Vive, OQ: Oculus Quest,
MH-2: Microsoft Hololens 2, SG: Smart Glasses, SM-VR: Storm Mirror Smart VR Glasses, PICO-3: PICO Neo3, PLab: Pupil
Lab Eye Tracker, D435: Intel RealSense Depth Camera D435, 9-IMU: 9 Inertial Measurement Units, IMU: Inertial Measure-
ment Unit, BSS: Bose SoundSport in-ear headphone, DS: Driving Simulator, Kinect: Kinect Camera, SG-D: Designed Smart
Glasses, ANN: Artificial Neural Network, RF: Random Forest, DT: Decision Tree, NB: Naive Bayes, GNB: Gaussian Naive
Bayes, MLP: Multi-Layer Perceptron, SVMs: Support Vector Machines, k-NN: Nearest Neighbour, CNNs: Convolutional
Neural Networks, DenseNet-201, DenseNet-BC-100, DeeplIrisNet, MobileNetV3, ResNet, VGG19: CNNs feature models,
ResNet: Residual Network, EMS: Electric Muscle Stimulator, EEG: Electroencephalogram, VAE: Variational Auto-Encoder,
HR: Heart Rate, BR: Breathing Rate, P-EDA: Palm Electrodermal Activity, PER-EDA: Perinasal Perspiration, MFCC: Mel Fre-
quency Cepstral Coefficient, LG: Log-Gabor Features, DCT: Discrete Cosine Transform Coefficients, HD: Hamming Distance,
SHD: Shifted Hamming Distance, CSBCA: Cumulative-Sum-based Change Analysis, LBP: Local Binary Pattern, BSIF: Binarized
Statistical Independent Features, TreeLBP: Tree Local Binary Patterns, HOG: Histogram of Oriented Gradients, GK: Gaus-
sian Kernel, L1: L1 distance, LBP: Local Binary Pattern, SIFT: Scale Invariant Feature Transform, GMM: Gaussian Mixture
Models, PGM: Probabilistic Graphical Model, Haar-C: Haar Cascade, RB: Rule Based Haar Features, STACK: Stack Algorithm.

ret J
®® - Periocular, ¢ = Iris, @ - Pupil, @ = Ear, @ = Brain, @ = Skull, @ =face, = = Finger veins, @ = Fingerprint,
% =EMS, ‘e _ Head vibrations, Q& = Heart rate, @ = Breathing rate, [{m’ = Palm electrodermal activity, ? = Perinasal

perspiration, i’” = Body signal.

4.2.2. Behavioral Biometrics
Eye Tracking Sensors

For decades, eye tracking technology has been available on desktop displays and
smartphones. Several technologies that enable eye tracking on XR HMDs have been re-
cently created. Hence, work on eye tracking in HMDs has increased and expanded. Many
researchers have investigated the use of eye-tracking technologies for authentication pur-
poses on HMDs. Lohr et al. [123-127] are among those who did extensive work in this
area. Firstly, in [127], they implemented an eye movement VR authentication framework
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using a previously proposed framework for an ocular biometric system. For optimization
purposes, they used focused rendering techniques in the stimuli to collect the eye-tracking
data, and only low-frequency signals were considered. Many statistical methods were
used for feature extraction and matching. They pointed out many difficulties in terms of
calibration issues, the required number of stimuli, and 3D eye movement data classification.
They demonstrated their future intent to test their framework on a larger pool of data
using complex 3D eye movement features and to compare different ML classifiers in terms
of authentication results. Next, they realized their intent, elaborated on their previous
work in [126], and introduced a novel 2D and 3D eye movement dataset. The dataset
was collected in a VR environment with over 400 participants. They used both statistical
and ML models to evaluate the suitability of the dataset for authentication. Their results
were compared with results from an open-source dataset and showed worse performance.
The authors argued that the poor performance might be linked to the way features were
extracted and classified. They showed their interest in collecting more dataset recordings,
using more features, and performing a longitudinal study in their future research. Further-
more, in [124,125], the authors proposed a lightweight and easy-to-train DenseNet-based
architecture for end-to-end eye movement authentication. They trained and evaluated their
model using the open-source eye movement dataset (GazeBase) collected from 322 subjects
using the EyeLink 1000 eye tracker (EL1000) over a 37-month period. Data recordings from
only 59 participants were used to verify and test the model across several eye-tracking tasks.
The authentication results achieved a 3.66% EER. They also attempted to reach the level of
spatial precision that exists in current VR HMDs such as the HTC Vive Pro (HTC-VP) by
using artificial degradation techniques; however, their technique’s performance dropped
significantly. Thus, they left the issue for future studies on eye tracking to design proper
methods for artificially degrading high-quality signals to imitate low-quality signals. Their
technique was compared with other state-of-the-art techniques using different eye move-
ment tasks for training and validation and other open-source datasets such as JuDo 1000
(which contains recordings of 150 subjects captured using similar equipment to GazeBase).
To the best of our knowledge, their technique is the first to reach a level of authentication
performance suitable for practical applications. Finally, in [123], the authors employed
the previously proposed Deep Learning (DL) CNN architecture [124] and evaluated the
performance of their model through a user study by collecting data from 5 participants
using the HTC-VP VR headset. Their verification results from the user study revealed an
EER of 0.2%. To achieve better outcomes, they suggested the use of larger VR datasets in
future work.

Zhang et al. [128] proposed and evaluated a continuous authentication system to deal
with impersonation attacks from insider threats who have physical access to HMD devices.
They based the system on Sparse Representation Classification (SRC) using eye movement
data. First, they developed a prototype of SG that allows them to apply both implicit and
explicit stimuli to the user and collect eye movement data from the user at the same time.
Their longitudinal verification study supported the stability of the system and showed that a
user can be identified with an EER of 6.9 for a one-day dataset vs. an EER of 9.7% for a two-
week dataset. Furthermore, their comparative study results revealed that the SRC classifier
outperformed SVMs and Nearest Neighbour (k-NN) classifiers. In addition, they carried
out impersonation attack experiments where the attackers learned to imitate the users’ eye
movements. The results of the impersonation experiments show that a successful attack can
be reached after an average of 5.67 attempts, and they argue that successful attempts can be
prevented by using complex scenes. Lastly, they finalized their studies by evaluating the
acceptance of the implicit stimuli among 50 participants through a questionnaire survey. A
minimum of 60% of participants expressed satisfaction with the used stimuli.

Asish et al. [129] presented a system that uses minimal eye-gaze-based features to
authenticate users. They designed an educational power production VR environment
for the purpose of data collection and gathered eye gaze data from 34 subjects without
applying any stimuli. A recursive feature elimination algorithm was used to minimize
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the number of needed features in order to reduce computation costs. They tested and
compared many ML and deep DL, such as Random Forest (RF), k-NN, Long Short-Term
Memory (LSTM), and CNNs, using different sets of features (12 and 6 feature sets); all
models reached 98% accuracy. They additionally ran the same models using different data
features and sessions; the overall results did not show a significant difference, meaning that
using the smallest set of features (6 feature sets) would be an optimal cost-effective solution.
At the end, participants in the study were surveyed about the usability of the VR tutorial.

In [130], Fristrom et al. investigated gaze-trajectory-based passwords as a replacement
for fixation-gaze-based passwords. After enrolling, users authenticate by using the same
free-form-gaze password saved during enrollment, which is then compared to the password
they have previously saved, leading to a binary authentication decision. The gaze direction
captured by the eye-facing cameras placed on the SG is obtained from pupil movements
instead of gaze points; this represents a gaze password in the shape of a horizontal and
vertical eye movement time series. They used Dynamic Time Wrapping (DTW) to match
time series samples, and their authentication results reached an EER of 16. An interesting
finding of the collected dataset with 19 participants was that most passwords can be
partially described as well-known geometrical shapes instead of free-form passwords, but
knowing the shape of the password is not sufficient information to reconstruct a password,
and more details are needed, such as the end and start points of the password. Their
spoofing attack evaluation resulted in a total failure to crack the password, and the user
study results indicated that users believe it would be challenging for hackers to speculate
on the password without seeing it at the enrollment stage.

Peng et al. [131] focused on incorporating linguistic features into eye movement-based
authentication. They used an eye movement dataset collected from participants performing
poem reading tasks in the Gazebase database used in [124,125]. After extracting fixation
features and filtering short ones, they associated each eye movement fixation with its
underlying token and added word features for each token from the open-source CELEX
database. For a total of eight metrics (first-order metrics vs. linguistics metrics), they trained
and tested nine known ML classifiers to obtain authentication accuracy rates. Their best
results were from the AdaBoost classifier (AdaBoost) with a 76.6% F1 score accuracy for
linguistics metrics and the RF classifier with a 61% F1 score.

Iskander et al. [132] suggested a VR biometric model based on eye movements and
extraocular muscle activations. They developed a simple open-horizon VR scene with a
cube acting as a target. During the experiment, data from one eye was collected using
the Tobii eye tracker (Tobii) integrated into an HTC-V headset. The data was processed
using biomechanical analysis and used to investigate three distance metrics using a k-NN
algorithm for classification. The classification resulted in almost a 90% accuracy rate. They
concluded that the k-NN classifier presents a feasible and non-invasive user verification
solution to be integrated into VR devices. They also pointed out their interest in using DL
methods and datasets collected from both eyes in their future work.

Ahuja et al. [133] described EyeSpyVR, an inexpensive software-only eye-sensing
implementation. They developed a prototype using a VR Box headset and an iPhone to
test four different sensing modalities. They started by detecting if a headset is worn or
not using a linear-kernel SVM classifier to detect if an eye image is present in the sensing
field. After image detection and segmentation, eye gaze features were extracted and
computed using CNN classifiers. A well-established CNN model (MicheNet, used for
periocular-based smartphone authentication and trained using two open-source databases
(VISOB and MICHE)) was used as a foundation model to build custom CNN models. The
custom CNN classifiers were custom trained as a binary classifier, a multiclass classifier,
and both a classifier and regressor for blink detection, user verification and identification,
and gaze estimation, respectively. Usability and accuracy evaluation experiments to test
the different-four sensing modalities were run using 70 participants; their verification and
identification results, conducted including 60 participants, show an EER of 20.9% and
an 81.4% accuracy, respectively. Finally, they concluded that despite the low cost and
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promising accuracy of EyeSpyVR, the verification and identification accuracy is still far
from levels seen in conventional eye-sensing systems, meaning that inexpensive options
come with a low-performance cost.

Table 5 sums up the schemes that uses eye tracking techniques to authenticate users.

Table 5. Summary of Eye tracking mechanisms and schemes in XR.

Concept Ref. Year Scheme Name Classifier Features HMD S A% (EER)
[123] 2022 Eye Know You Too DenseNet-CNN Horizontal and vertical velocities HTC-VP 5 (20)
H%i% 2022  Eye Know You Too DenseNet-CNN  Horizontal and vertical velocities }]%é(g?/OP 472 (3.66)

STAT-VREM-R1 CD + SWT Over 1000 features (fixations, saccades, 356 (9.98)
STAT-SBA-ST i oscillations) dimensionally reduced using PCA 208 (2.04)
[126] 2020 HTC-VP —
RBEN-VREM-R1 RBF 12 features from each fixation and 46 features 356 (14.37)
RBFN-SBA-ST from each saccade 208 (5.12)
Fixation features (start time, duration, centroid),
Ve . saccades features (start time, duration,
[127] 2018 EyeMoveBio CVM +SWM amplitude, mean velocity, max velocity) FOVE
12 CEM-B features in all.
VisualStimuli-SRC SRC 8 fixation features (pupil diameter and (6.7-9.7)
[128] 2017 VisualStimuli-SVMs SVMs pairwise velocity), saccades (horizontal and VM100 30 (11.1-14.1)
VisualStimuli-k-NN k-NN vertical velocities) (15.8-18.8)
M%n%malGaze-CNN CNNs 12 features ((Left-eye diameter, Right-eye 98.57
MinimalGaze-LSTM LSTM diameter, Left-eye openness, Right-eye 98.58
MinimalGaze-RF RF openness, Left-eye wideness, Right-eye 98.96
- MinimalGaze-k-NN k-NN wideness) + 6 features below). 99.62
K (1297 2022 “NfinimalGaze-CNN  CNNs HTC-VP 34 98.29
MinimalGaze-LSTM LSTM 6 features (Left-eye gaze origin(X,Y,Z), Right-eye 98.34
MinimalGaze-RF RF gaze origin(X,Y,Z)) 98.41
MinimalGaze-k-NN k-NN 98.46
[«8 [130] 2019 SmartGlass * DTW Gaze direction and pupil movements timeseries. P%Ca;b 25 (16)
k-NN 8 eye movement features, duration metrics ~60, ~55
~ Linear-SVMs (single fixation duration, first fixation duration, ~58, ~75
EEI;)F'SVMS total time, gaze duration), probability features fgg fgg
©, [131] 2022  LinguisticsEyeAuth* DT (fixation probability, probability of making EL1000 322 AS5,AB5
RE exactly one fixation, probability of making two 61, ~75
NN or more fixations, probability of skipping), z6(’), ~70
AdaBoost Linguistics features (reading rate, word length, =55, 76.4
NB and word frequency) ~60, ~75
ED-K.NN ]131 lfeat;ures (3 joint angles of the eye + 9 features 89.4 (9.79)
o WED-k-NN 20N 89.3 (9.78)
© [132] 2019 EyeBiomechanics * CD-k-NN 9 features (Cube ID, Cube Depth, (lateral rectus, HTC-V 26 89(9.977)
ED-k-NN medial rectus, superior rectus, inferior rectus, 76.9 (9.79)
@ WED-k-NN superior oblique, and inferior oblique muscle 78 (9.78)
CD-k-NN activations)) 77.2(9.97)
© EyeSpyVR-Identify 81.4
asal [133] 2018 . CNNs Gaze angles features VR-BH 60 20.9
(((.))) EyeSpyVR-Verify iPhone? 3%

Ref.: Reference, HMD: Head-mounted Display, S: User/Usability /Security Study sample size, A%: Accuracy, EER: Equal Error
Rate, * Scheme name not given by the author but given depending on the method used, HTC-V: HTC Vive, HTC-VP: HTC
Vive Pro, SG: Smart Glasses, PLab: Pupil Lab Eye Tracker, PLab-IC: Pupil Lab Infrared Cameras, FOVE: FOVE Head-mounted
Display, EL1000: EyeLink 1000 Eye Tracker, VR-BH: VR Box Headset, VM100: Vuzix M100 Smart Glasses, iPhone7: iPhone7,
NN: Neural Network, RF: Random Forest, DT: Decision Tree, NB: Naive Bayes, SVMs: Support Vector Machines, LSTM: Long
Short-term Memory, DTW: Dynamic Time Wraping, k-NN: Nearest Neighbour, SNN: Siamese Neural Network, RBF: Radial Basis
Function, CNNs: Convolutional Neural Networks, DenseNet: CNNs feature models, SRC: Sparse Representation Classification,
CVM: Cramér—Von Mises, SWM: Simple Weighted Mean, SWT: Shapiro-Wilk Test, CD: Cosine Distance, ED: Euclidean Distance,

Ve )
WED: Weighted Euclidean Distance, AdaBoost: AdaBoost Classifier. = Eye movement, & = Eye gaze, @ = Linguistics,

@ = Eye muscle, >~ = Blinking, (((.))) = Sensing.

Biomechanics

Researchers always find it challenging to transport well-established authentication
mechanisms to XR environments because of both the complexity of the XR environment and
the complexity of the data collection process. The majority of biomechanical authentication
research in XR focuses on the head movement trait due to the easy data collection process
since most HMDs are equipped with Inertial Measurement Units (IMUs) devices. Hand
and eye gaze movements come in second place for similar reasons. However, there is a lack
of contribution to the gait authentication category because of data unavailability.
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Mai et al. [134] suggested a head-tilt-based user authentication approach. They estab-
lished their study, selected their task, and chose features from previous findings [135,136].
Both works in [135,136] concluded that head movements are among the most accurate features
to distinguish users” movements during walking tasks. Mai et al. designed a within-subject
study and collected data from 10 recruited participants by directing them to move freely in
a VR space for 5 min. They used four ML classifiers for training; SVMs and k-NN models’
accuracy results were poor due to insufficient sample size. However, RF and Decision Tree
(DT) classifiers resulted in high identity authentication accuracy, reaching above 95%.

Sivasamy et al. [137] implemented VRCAuth, a novel continuous authentication
scheme for VR HMDs using head movements’ information. In their experimental setup,
they studied two tasks for a VR driving simulator and a VR video-watching open-source
datasets. The head movement information in both datasets was used to extract unique user
signatures. Five binary ML classifiers were used for classification, and a comparative study
was performed. The authentication accuracy results were promising and reached 99% with
all ML classifiers when using the VR video-watching dataset. Similar results were achieved
using the Logistic Model Tree (LMT) classifier for the VR driving simulator. They indicated
their future interest in implementing a lightweight online version of their continuous
authentication mechanism using a Capsule Neural Network (CapsNet) classifier.

Mustafa et al. [138] experimented with using head movement data for user authen-
tication in VR. They built a VR application where users have to collect 25 balls from one
target point to another and used it for data collection from 23 subjects. ML algorithms
were used for authentication, and the Logistic regression (LR) model manifested a 7% EER
outperforming the SVM model. Their approach used only head movement data without
incorporating hand movement data, which represents realistic interactions. Hence, using
a full range of body movement data in future works would more likely provide a closer
representation of real-world interactions. They highlighted that their authentication ap-
proach is app-specific due to head movement data changes from one setting to another and
pointed out their current efforts to design alternative frameworks based on DL techniques.

Most of today’s authentication mechanisms lack usability and are cumbersome due to
the need for 2F authentication through smartphone use. Li et al. [139] designed Headbanger,
a lightweight authentication system for head-worn devices, with the aim of providing
a more usable and efficient alternative to the current authentication solutions. Head-
banger monitors the distinctive patterns in head movement data after exposure to an outer
phonographic stimulus. The authors collected head movement data from 28 participants
performing head nodding activity in response to a short audio music cue. They custom-
built a distance-based classifier and evaluated the accuracy and robustness of Headbanger
through a series of usability and security evaluations. The results showed that Headbanger
authenticates users with a 4.43% EER and is robust against imitation attacks.

Liebers et al. [140] investigated both AR and VR user identification using user uni-
manual and bimanual hand-tracking data. The authors collected data from 16 volunteers
interacting in AR and VR environments using eight different interaction modalities: button,
slider, slate, context menu, reposition, rescale, unimanual keyboard, and bimanual key-
board. They used an RF classifier to implement their approach. Their best identification
accuracy results reached 95% vs. 88% for the bi-manual keyboard AR and VR prototypes,
respectively. They finally used the System Usability Scale (SUS) questionnaire and the
NASA Raw Task Load Index (NASA Raw-TLX) questionnaire to assess the usability of
their prototypes. From the participants’ feedback, the VR prototype scored higher in terms
of usability and interaction preference.

Chauhan et al. [141] implemented a touch-based continuous authentication system
for smart wearables. Considering the accuracy and computational load of wearable de-
vices, their work assesses the portability of touch-based authentication mechanisms, from
smartphones to GG. They modeled the touch gestures in a novel way and extracted new
touch features. The authors utilized an SVM classifier with a Gaussian Kernel-Radial Basis
Function (GK-RBF) and designed a custom-built Chebyshev classifier (Chebyshev) based
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on Chebyshev concentration inequality to perform classification. Their motivation to use a
new Chebyshev classifier is to support prior works’ findings on touch-based smartphone
authentication, indicating that using a block of successive touch gestures is more effective
than a single gesture. The Chebyshev showed a 99% classification accuracy, nearly com-
parable to SVM results. They suggested continuously adjusting and training the classifier
with recent data to alleviate the effects of data drift on the classifier’s accuracy.

Lu et al. [142] suggested FMHash, a user identification prototype using deep hashing
of in-air handwriting. The framework generates a compressed binary hash code from in-air
written ID strings that facilitates users” database indexing and searching. They first carried
out a data collection experiment with 100 subjects who wrote an ID string and implemented
their framework using CNN classifiers. The evaluation of the FMHash showed a precision
of >99.5, making it a robust in-air handwriting identification solution for wearable devices.
They juxtaposed their framework with another deep hashing framework used for image
retrieval and highlighted that their framework is better optimized. The authors pointed
out their future interest in investigating the prototype’s long-term performance through a
longitudinal study.

Lu et al. [143] presented an eye-free interaction approach seeking to address the non-
secure process of simultaneously performing authentication and task execution. They
proposed a hand-motion VR authentication system without eye motion involved to shift
attention from concentrating on authentication to performing other tasks. They collected
data from 10 participants who were asked to draw a 3D trajectory using their dominant
hand’s HHC. Their work-in-progress accomplished the data collection pilot study and the
feature extraction phase, and the authors pointed out their future plans to implement the
SVM classifier to validate their approach.

Peng et al. [144] examined the effectiveness of voice commands and touch gestures for
continuous user authentication on wearable devices, utilizing the GG case. They proposed
GlassGuard, a non-invasive authentication mechanism that uses seven simple interaction
modalities (touch gestures (single-tap, swipe forward, swipe backward, swipe down, two-
finger swipe forward, and two-finger swipe backward) and voice commands). GlassGuard
is composed of five modules (event monitor, feature extraction, classifiers, aggregator,
and power control). The event monitor monitors the type of event (touch or voice) and
extracts the data, then forwards the data to the feature extraction module. The classifiers
module contains 7 classifiers for each interaction modality, and the classifier corresponding
to the event makes an independent decision if the event features belong to the owner. The
aggregator is custom-built based on Threshold Random Walking (TRW), a spam detection
algorithm, and it combines the classifier results to improve authentication accuracy. The
power control module communicates between the aggregator and the event monitor, and in
the event of a negative classification decision by the aggregator, it pauses feature extraction
and classification until the security risk is low. Data collection during the evaluation involved
32 college students, and their mechanism accuracy reached 99% using SVM classifiers. The
authors also compared their accuracy results with the work in [141] and concluded that
their mechanism achieved better performance. They mentioned their future plan to deploy
GlassGuard on GG and evaluate long-term performance using other daily tasks.

Wang et al. [145] developed Nod to Auth, a nodding-based authentication technique,
to address the issue of current cumbersome AR and VR input modalities. In a study with
10 participants using GC, the authors extracted bio-features using the embedded IMU device
in a Huawei smartphone. Using an RF classifier, their authentication accuracy indicated an
average accuracy of 97.01%, supporting the robustness of the model. They showed their
interest in (1) deploying Nod to Auth for long-term evaluations, (2) considering the neck’s
elasticity features, and (3) using cameras for multi-model sensing in their future work.

Miller et al. [146,147] focused on user identifiability through motion data in VR.
In [146], they specifically investigated privacy risks in social VR and the effect of dura-
tion and delay on identifiability by using a social interactions dataset of 232 subjects, ML
methods, and a comparative study with different methods that resulted in high accuracy
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rates. They concluded that both the number and durability of recorded interaction sessions
increase identifiability. However, lengthy delays between training and testing sessions
decrease identifiability. In their subsequent work [147], they aimed at testing users’ identifi-
ability under typical VR conditions, unlike previous work where body motion was tested
under custom-designed circumstances. Their system reached a 95% accuracy rate when
trained and tested with a pool of 511 participants. They concluded that the limitation of
their work is the loss of features due to dimensionality reduction and their non-generality to
more complicated tasks. Thus, they recommended including other previously successfully
used features like velocity, rotation, and acceleration to improve their work.

Bhalla et al. [148] proposed, investigated, and evaluated the potential of head movement-
based continuous authentication in AR. Data collection involved only 5 participants to
collect holographic head gaze data of AR users interacting with their environment, and
ML algorithms were used to extract unique signatures from these AR users. They used
ML models that are time series-based or feature-based and experimented with many
feature extraction techniques. They evaluated their prototype, and the best accuracy results
were achieved with the RF classifiers, with 92.675% accuracy and an 11% EER. They
highlighted their interest in deploying their prototype and considering other holographic
spatial interaction tasks.

Based on work conducted by Miller [147], Nair et al. [149] demonstrated the extent to
which head and hand motion data can uniquely identify a large number of users in VR.
First, they used telemetry data from BeatLeader, an open-source dataset of over 50,000 users,
for both motion and context feature extraction. Using a hybrid featurization technique
that combines both motion and context features, several ML and DL classifiers were tested
for pre-identification, and the best classifier was selected. The Light Gradient Boosting
Machine (LightGBM) classifier outperformed other classifiers and reached 100% accuracy
with a full hybrid featurization approach on 500 users. Due to the infeasibility of training
LightGBM for very large datasets such as BeatLeader, the authors constructed a multi-layer
hierarchal classifier for the purposes of training facilitation, scalability, and practicality. The
hierarchal architecture boosted the identification accuracy to 94.3% from 90.1% with only
one layer. They additionally performed analysis about the impact of the metadata, such as
country and type of device used when playing the game, etc. present in the BeatLeader
dataset on the accuracy results. Also, an effect analysis of the telemetry data (static, motion,
and context) on the system’s entropy was performed. They finally expressed their future
hope to use DL models to address similar issues.

Many researchers investigated VR user authentication using full HMD data (headsets
and controllers). Various works used ball throwing as their experimental task, where an
imposter tries to mimic a genuine user. Initially, Kupin et al. [150] argued the uniqueness
of biomechanical movement from one user to another and used the 3D trajectories of
the dominant hand controller for user authentication in VR. In their study, users threw
a ball at a target, and their hand trajectories data was compared to the dataset of other
users. Using the Symmetric Nearest Neighbor (S-NN) algorithm, their system was proven
efficient, as its accuracy reached 92.86%. They pointed out their intention to include
head trajectory data and to create more tasks in their future works, such as physically
swinging a golf club or cognitively solving a puzzle. Using a similar case study and
task as Kupin et al. [150], Ajit et al. [151] improved their authentication results by using
pairwise relationships between 3D trajectories data from not only the dominant hand but
also the recessive one and the head. They also used a 33-participant dataset, exceeding
similar previous biometric works. Their mechanism was based on Perceptron Neural
Networks (PNN) and reached 93.03% accuracy. They believed similar results could be
achieved using other VR headsets, such as Oculus Rift (OR) and Samsung Gear VR (SGVR).
Additionally, Miller et al. [152] provided a real-time version of the [151] case study, and the
difference lies in distinguishing between imposters within and outside the training set using
a threshold-based method. The new number of trajectories used to train and test the model
was N = 330 pairs. Moreover, Miller et al. [153] made several contributions to prior work.
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They noted that VR users do not always use the same type of HMD and that changing the
headset comes with high time consumption in terms of training to perform authentication.
They were the pioneers of task-driven biometrics using different VR headsets (Oculus
Quest (OQ), HTC Vive (HTC-V), and HTC Vive Cosmos (HTC-VC)) and the first to perform
cross-system authentication. They collected a multi-system dataset using the previously
mentioned headsets with 46 users, a number higher than prior studies by [150-152] (14 and
33 users, respectively). They also introduced linear and angular velocity features to prior
work [150-152] and analyzed a significantly higher number of features compared to [151].
They restated the findings in [151] about the feasibility and impact of feature diversification
on user authentication. Using the same study settings and dataset used in [153], and in
order to improve their earlier work, Miller et al. [154] suggested using a Siamese Neural
Network (SNN) to perform across-systems authentication. For the purpose of avoiding
user enrollment each time a user changes the VR device, they used an SNN to learn the
distance metric between the headset/controller trajectories of the VR enrollment device and
the trajectories of the new VR device. Their system performs identification by providing the
user with a minimal distance and authentication by comparing the distance to a threshold.
Their authentication findings indicate a 1.39% EER when OQ is used for enrollment and
HTC-V for new use, with an average range of 1.38-3.86%. The identification accuracy
results reached 98.53%. As per DL training requirements, Miller et al. [146,155] addressed
the issue of using small datasets to perform authentication and identification using DL
models. Normalization, spatial, and smoothing techniques were used to preprocess input
data. Similar study settings as [154,156] and DL algorithm architecture were used in their
first model to perform matching, while an N-class Fully Convolutional Networks (FCN)
architecture similar to the work in [157,158] was used in their second model to perform
classification. Both models take position, orientation, and displacement vector features from
input and enrollment trajectories and return a match distance between both trajectories.
The lowest distance represents an identification match, and a positive match between the
trajectories distance and a threshold represents successful authentication. They compared
their method to different baseline methods, and their results reached a 2.08% improvement.
Their identification results showed success for 36 users out of 42. They showed their
interest in creating and investigating VR applications that represent daily activities such as
office visits, doctor visits, etc. In addition, Miller et al. [159] performed a temporal effect
study on behavioral authentication. They used the same model used in [154] and data
from [152-154] to study the relationship between enrollment and input trajectories over
short, medium, and long timescales. Their results suggested that both short and medium
timescales have an insignificant impact on VR behavior for day-to-day tasks. However,
data collected during a period of 8 to 17 months showed that long timescales result in
varying user behaviors. Their best results’ performance in the long timescales category was
achieved by using long timescales data to train the model since it contains both the baseline
behavior and the changed behavioral data.

To amend the issue of data security in XR systems, Shen et al. [135] proposed Gaitlock,
an AR gait authentication mechanism based on users’ gait signatures. The study was
founded on the tasks of short indoor walks and arbitrary outdoor walks while wearing
GG. The gait data was collected from 20 subjects using the IMU device embedded in the
HMD, and the noisy head movements data was filtered. The authors custom-built a model
using DTW and Sparse Representation Classification (SRC) techniques for authentication
and compared their evaluation results with the best alternative techniques. A total of
98% accuracy was achieved, and it outperformed its rivals. They additionally evaluated
the performance of Gaitlock on zero-effort and mimicry attacks; the prototype scored
0.021 vs. 0.029 for zero-effort and mimicry attacks, respectively. Thus, we conclude that
mimicking the user’s gait pattern increases the risk of the attacker being authenticated.
Despite evaluating Gait Lock using only GG, they noted the possibility of transporting it to
a VR environment. They highlighted their future interest in considering multimodal gait
tasks, such as running, since they are ruled by more complicated constraints.
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Liu et al. [160] looked into body interaction usability in VR. They established their work
on the importance of skeleton-tracking technology in motion recognition and proposed a
hybrid approach using skeleton-tracking techniques and depth cameras as a new interaction
modality in VR to replace HHC. They pointed out their future plans to incorporate speech
recognition techniques into their future work. Implementing novel interaction methods
lays the foundation for practical authentication solutions.

Wierzbowski et al. [161] explored user identification in VR using gaze and head
movement dynamics instead of body size, proportions, and position of users. In an
experiment with 43 volunteers watching a 360° video, the authors collected gaze and head
movement datasets. A statistical-based classifier and a DL-based classifier were used to
test the performance of their approach. Accuracy results revealed 74.4% with the Gaussian
Mixture Models (GMM) classifier and 80.1% with a CNN classifier. They pointed out
that they excluded the contribution of physical characteristics for the purpose of avoiding
classification confusion between users with similar physical measurements within the class
sample. They also highlighted that, for the purposes of ecological validity and identification
robustness, using multi-session videos recorded days apart instead of one video session
would have been more suitable.

Based on the uniqueness of eye gaze movements as a biometric trait, Liebers et al. [156]
proposed a user identification system by using fixations, smooth pursuit, saccadic move-
ment, and head orientation as dependent reactions to visual stimuli. Following the VR
design presented in [127], the authors built a VR stimulus scene represented by a counter-
clockwise moving sphere on an elliptical path and collected eye gaze and head rotation
data from a small pool of 11 individuals using an HTC-V HMD modified with additional
infrared cameras. They used a 1-NN ML model and eight mainly CNN-based DL models
to classify the users. The highest identification accuracy results in both classifier categories
reached 75% vs. 100% for the ML and DL models, respectively.

In [162], Rogers et al. introduced an approach for user identification from among
a set of HMD users using blinking and head movement data. They used a series of
images as stimuli to collect data from 20 subjects, utilizing infrared, accelerometer, and
gyroscope sensors integrated into the HMD. They extracted 162 features; blinking features
were classified into five classes (IR peaks, rising IR, falling IR, IR peak interval, and IR
floor); head-movement features were classified into three categories (Gyroscope peaks,
accelerometer peaks, and movement time); then the features were reduced to 96 features.
These features were used to examine many ML classifiers, and an RF classifier with 100 trees
was selected and achieved 94% user identification accuracy.

Work by Pfeuffer et al. [136] looked into the application of behavioral biometrics and
body motion to user identification in VR. They implemented their study based on tasks
such as typing, walking, grabbing, and pointing by utilizing head and hands data collected
using an HTC-V HMD equipped with a Pupil Lab Eye Tracker (PLab). They used RF
and SVM classifiers and high-level features like max, min, mean, and standard deviation
derived from low-level features, namely distance, motion, rotation, and motion. Their
most accurate results achieved only 44.44% within the task of typing and the feature set of
distance. The head motion feature set scored second best among feature sets overall, while
the head movement feature set was more suitable for the task of walking. For the hand
movement feature set, the pointing task scored better than the grabbing task. Their low
score results warrant the need for further research and investigation.

Olade et al. [163] presented BioMove, a VR user identification study of 15 participants
performing controlled tasks such as grabbing, rotating, and dropping tasks. They par-
ticularly extracted eye gaze, head, and hand positional (elevating, strafing, surging) and
rotational (rolling, pitching, yawing) movement data patterns and dimensionally reduced
the features for efficiency purposes. Using ML classification techniques, mainly k-NN, both
user identification and authentication were investigated. Two identification models were
implemented, one for task identification and another for participant identification. They
concluded that the k-NN model had the best user identification accuracy of 98.6% out of
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all classifiers. The authentication results showed a 0.0032% false positive rate and a 1.3%
false negative rate, making the system biased toward rejecting valid users instead of giving
invalid users access to the system. The authors argued that the authentication results can
be improved, although it is out of the scope of their research. They further investigated
BioMove’s vulnerabilities through a security evaluation against malicious attacks using the
Whitebox Penetration Testing (WPT) framework. The impersonation results indicated a 50%
accuracy value, insufficient for positive user identification outcomes. They also highlighted
that attackers with similar heights and genders to valid users score higher than other imper-
sonators. They expressed interest in evaluating the robustness of BioMove across multiple
subject groups while considering the effect of age on users’ kinesiological movements.

Following the approach used in [154], Schell et al. [164] proposed an embedding-based
approach for user identification in XR using motion data. Their approach overcomes
the limited applicability of previously proposed distance-based approaches [135,139,150]
and the costly deployability of classification-based approaches [158,159]. They studied
the use of Deep Metric Learning (DML) models known to produce continuous vector
representations called embeddings. The DML models used are not limited to the user
motion data they were trained on but can also generate unique embeddings from the
motion data newly fed to the model. Their models learn to represent known users as close
to their motion data, while they compare new users with existent motion data and retrieve
the best similarities. The authors used the public database “Who is Alyx?”—a motion data
dataset collected from 63 users while playing a VR game on an HTC-VP. They selected a
Gated Recurrent Units (GRU) architecture for the DML model and trained it to embed the
motion data. Evaluations of their model and comparisons with classification-based models
were performed. The embedding-based approach performed better in situations where
there was less enrollment data, while the classification-based model outperformed the
embedding-based method in situations where there existed at least 20 min of enrollment
data. Given that many use cases of prior works mainly allow for only a few seconds or
minutes to enroll, the embedding-based approach became a compelling substitute.

Moore et al. [165] looked into the limitations of user identification work conducted
by [147], such as stationary data collected over a single period of time, by exploring some
of the improvements identified in the approach proposed in [136], which considers feature
data generated over time and identification obtained by aggregated data from several
sessions. To address that, they built their case study using a training task for operating
room assists in a VR environment, where assists are involved in a series of motion tasks over
a multiple-day span. The task is uncontrolled, as opposed to work in [147], resulting in non-
stationary motion datasets. The data consists of a training session dataset and a retention
session dataset. Using k-NN, RF, and Gradient Boosting Machine (GBM) classifiers, the
authors investigated identification in two settings (within and between) sessions using
positional features of the motion data. The highest user identification results for the within-
setting showed a 95.50% accuracy rate with the RF classifier, while the between-settings
results showed a 42.33% accuracy rate with the same classifier. They attributed the decline
in results to the different circumstances of data collection between the training and retention
sessions, such as psychological changes and a change in the VR device position. Moreover,
they attempted a user anonymization study by interpolating the positional motion data
used in the previous study with velocity data. Their velocity-based obfuscation study
results showed worse accuracy than the prior study, with 35.17% vs. 13.83% for within and
between settings, respectively. They assumed that the decrease in identification accuracy
results was caused by the classifiers not being able to embed anatomical data such as
user height and arm length. They highlighted that between-session identification is more
difficult to implement than within-session identification and their future intentions to
conduct similar research using different classifiers considering different data parameters.
They recommended analyzing their approach in the context of authentication.

Liebers et al. [157] conducted a lab study to investigate body normalization effects on
task-driven biometric user identification in VR environments. Using archery and bowling as
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their chosen VR tasks, they compared different scenarios where body height normalization
and arm length normalization were applied vs. no normalization. They achieved 90%
user identification results with height normalization using DL algorithms. They pointed
out the non-necessity of including physical features while performing behavioral user
identification, despite their overall importance. They also argued that physical features
enlarge the noise window when using DL models; thus, it is feasible to exclude them for
a better accuracy outcome. The drawback of their normalization technique is the need
for a pre-enrollment phase to measure body and arm sizes, and this phase might affect
usability and be cumbersome for the users. Additionally, the authors conducted a NASA
Raw TLX questionnaire and semi-structured interviews about the model’s usability; most
participants did not notice the change in body measurements and expressed no opposition
to the idea of normalization.

Table 6 below systematically summarizes biomechanical-based schemes based on the
corresponding papers.

Table 6. Summary of biomechanical mechanisms and schemes in XR.

Concept Ref. Year Scheme Name Classifier Activity/Task, Features Equip. S A% (EER)
Freely move in VR space, Head Tilt
y . RF Head angular velocity, head rotation angle, 94.633
Q [134] 2023 Head-Tilt * DT headset position, head motion distance, HTC-V 10 98.023
virtual point speed
NB 1. VR driving simulator 78 99
PART 2. VR spherical video streaming 99 99
Q [137] 2020  VRCAuth LF Head movement direction, head movement HMD 40/48 80 99
MLP magnitude, movement duration (90 features 92 99
LMT reduced to 3 categories) 99 99
Freely interacting with a moving ball in a VR game
Q [138] 2018  HeadVR* LR Head movements (178 features dimensionally GC 23 (7.39)
SVMs (10)
m reduced to 70)
Q (DTW) Nodding after an audio stimulus (music cue) ~ (4.43)
it [139] 2016 Headbanger (Built) Head movement patterns GG % 95.57
FingerAR-VR *-button 63, 64
FingerAR-VR *-slider 53,57
FingerAR-VR *-slate Hand interaction with 8 interfaces: Button, slider, 72 51
- - slate, context menu, reposition, rescale, unimanual —_—
W [140] 2022 FingerAR-VR *-menu RE keyboard, bimanual keyboard MQ 16 51,69
FingerAR-VR *-reposi Rotational and positional coordinates for all MH 55, 64
© FingerAR-VR *-rescale fingers, palm, and wrists 61,66
Finger AR-VR*-uni-key TR 73,64
FingerAR-VR *-bi-key 95, 88
: S-NN Ball throwing VR game
W [150] A0k ThrowTraject * (matching) Dominant hand trajectories HTC-V 14 RS
Tap or swipe gesture on touch pad
13 Tap features (point (x,y) coordinates,
() Chebyshev downward force, duration) and swipe features
@ [141] 2016 GlassTouch * SVMs (start point (x,y) coordinates, end point (x,y) GG 30 99
coordinates, angle, downward force, planar
force, duration, and length)
In air handwriting of an ID string
T [142] 2019 FMHash CNNs 3D velocity, 3D acceleration, position, hand LM 100 >99.5
pose, and amplitude
¥ [143] 2020 HandMotion * SVMs Draw a define trajectory as a password HHC 10
- 2 features (trajectory, distance)
GlassGuard-Tap ~93 (~16)
GlassGuard-Swipe-F 1. Swipe to view the application list one by one, ~94 (~15)
- 2. Swipe to view the options in the settings menu _—
GlassGuard-Swipe-B one by one x93 (~15)
GlassGuard-Swipe-D 3. Take pictures with touch gestures ~95.5 (~12)
GlassGuard—2F-Swipe-F 4. Take pictures with voice commands T N965 (=8)
() 'P 5. Google search with voice commands A Y A
@ [(144] 2017 GlassGuard-2F-Swipe-B SVMs 6. Delete pictures one by one ) e 0 ~97(~10)
GlassGuard-Voice TRW 7. Use an app to asks the user to perform a series of ~99.8 (4.88)
((t' GlassGuard-All-Touch randomly selected touch gestures 987
. Duration, distance, speed, pressure, min, max, e —
GlassGuard-Touch-Voice median, and standard deviation 99.2
99 features for one-finger touch gestures, Average EER:
156 features for two-finger touch gestures 16.43

(81 sensor data, 75 touch data)
19 voice features for user voice commands.

(11 Feétures),
16.56

(9 Features)
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Table 6. Cont.
Concept Ref. Year Scheme Name Classifier Activity/Task, Features Equip. S A% (EER)
Nod to Auth-Nodding 1. Nodding, 2. Turning, 3. Tilting. 98
Nod to Auth-Turning Head-Neck radius, angular velocity 98
Q Nod to Auth-Tilting magmtgde, 1rrelfevant orler}tat}on changes, e BT —
[145] 2021 RE properties of trajectory projections, power MU 10 =
):’i ) spectral density of linear acceleration H-WEI
magnitude (Mean, pitch, roll, yaw, skewness,
kurtosis, and Std.Dev)
Q BodyVR *-within Virtual group discussions in VR while walking, 98.43
, creating 3D drawings and writing ~ —
W [146] 2023 BodvVR *between RF Body-space coordinates and speed, 0Q2 232 85.48
y 840 features )
1. A 360-degree video observation task
Q 2. A questionnaire-answering task
. RE Statistic (maximum, minimum, median, mean, 90.7 91.1
w [147] 2020 MotionVR * EBNI\I/}I and standard deviation), body part (head, left HTC-V 511 2?2 Zég
hand, right hand), and dimension (x, y, z, yaw, h -
pitch, and roll)
MoveAR-TimeSeries-RF 78.293
MoveAR-TimeSeries-k-NN Perf wspatial interaction task” tuping th 74.326
v o RE erform a “spatial interaction task” typing the e
Q MoveAR T{meSer%es SVMs k-NN word: “Applg ” usin%\a holographic keyboard. 76.776
[148] 2021  MoveAR-TimeSeries-BOSS SVMs Roll, yaw, and pitc MH 5 83.526,9.2
w MoveAR-Features-Ada-RF BOSS Head gaze distance and position 92.675 (11)
MoveAR-Features-Others AdaBoost Max, mean, and Std.Dev 88-93 (11-12)
MoveAR-Features-PCA 90-93
MoveAR-Features-RMI (11-12)
Single-L-GBM Beat Saber game where players slice musical beats 100
: f oA loT o blocks with a pair of sabers o943
e pvedaten L AL 22 context features ((position, orientation, 988 |
Q ) type, and color of the block), (the angle, speed, HMD
[149] 2023 LightGBM location, and accuracy of the cut), and (the HHC 55,541
w relative error of the cut in both space and
time)), 105 motion features (min, max, mean,
median, and Std.Dev)
TrajectVR *-short (5(5)0022_51 gg)
Q Ball throwing 0Q _———
[159] 2022 ; *_ i SNN Position and orientation of time trajectories HTC-V 74 91.25-100
TrajectVR *-medium ]
W from headset and controllers HTC-VC (T(”;_%
. 1.25-
TrajectVR *-long (0.06-29.25)
. qia Ball throwin, 98.05 (1.75)
Q TrajectVR *-within Normalize«f position and orientation, 0oQ 97.56 (1.3)
155 SNN o6 (LS
W [155] 2022 FCNs displacement vectors HTC-V 41 87.81 (3.38)
TrajectVR *-across 128 features HICVE 82.02 (9.68)
Q Ball throwing 0Q
) . Positions, orientations, linear & angular 87.82-98.53
(1541 2021 TrajectVR* SNN velocities, and trigger grab or release for HTCY 46 (1.38-3.86)
HTC-VC
headset and controllers
TrajectVR *-within Ball throwing 58-85
Q Positions, orientations, linear & angular 0Q
[153] 2020 . SSD velocities, and trigger grab or release for HTC-V 46
Vw TrajectVR *-across PNN headset and controllers, 5 features, HTC-VC 91-97
8192 (2'%) subsets of 13 feature matches
Q Ball throwin,
[152] 2019 ThrowVR * PNN Position and orientation of headset HTC-V 33
w and controllers
Q Ball throwing
[151] 2019 ThrowVR * PNN Position and orientation of headset and HTC-V 33 93.03
w controllers, 21 feature sets
GaitLock-DTW-SRC DTW-SRC >98
SRC-SF SRC-SF ~95
t SRC-MV SRC-MV Indoor controlled walking and outdoor ~93
- X X uncontrolled walking =
. [135] 2019 SRC-ZP SRC-ZP Unique gait patterns from walking inertial GG 20 ~93
[ DTW-k-NN DTW-NN signals ~85
TDE-TM TDE-TM ~93
k-NN k-NN ~77
’i’ [160] 2018 SkeletonVR * SVMs HOG features, joint angle features %;rrfé-c\t/
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Table 6. Cont.
Concept Ref. Year Scheme Name Classifier Activity/Task, Features Equip. S A% (EER)
Freely watch a 360° videos displayed in VR
8 Time series features (gaze angular (velocity,
Q acceleration & path curvature), duration
360 * GMM (fixation & non-fixation), intervals (fixation & . 744
© [161] 2022 Identify-360 CNNs non-fixation)). 32 Statistical features (min, HTC-VP 43 80.1
L max, mean, median, Std.Dev, kurtosis,
skewness, 9 ten-step percentiles and
16-bin histogram)
1-NN 1-NN 45 75
Time-CNN T-CNN A sphere moving counterclockwise on ~94  ~88
Encoder CNN 1. elliptical path 1, 2. elliptical path 2 ~97 100
Q FCN FCN Six lieatlfre§ t;orlsect1 .time, ?ml_:ilit‘udcel, duration, ~88 ~97
- : peak velocity, median velocity, and average HTC-VP o4 100
o [156] 2021  Inception o] velocity) for each user gaze type (fixations, PLab-IC 1 Ni%iﬁ
@ MCDCNN MCDCNN smooth pursuits, and saccades). Head =B &Y |
MLP MLP rotational coordinates (x, y, and z) from HMD. ~91 ~82
ResNet ResNet All aggregated to 21 features. ~94 100
TWIESN TWIESN ~94 100
View a sequence of rapidly changir{zjg images of
Q numbers and letters on the HMD display
[162] 2015  BlinkHeadAR * RF 70 blink features + 90 head-movement GG 20 94
et features = 162 features reduced to 95 features
overall.
PointingVR * Controlled VR tasks (pointing, grabbing, walking, 41.39
0 GrabbingVR * typing) ) . 31.25
Walking VR * RE Position, movement, and spatial relations  Ba
w [136] 2019 & . 8 : SVMs between body segments (head, hands), eye HTC-V PO R
o TypingVR gaze, ray, and target. 44.44
@, Distance, rotation, motion, velocity, and
angular velocity (6 feature categories)
Q Interacting with Balls in VR environment
Interacting with Cubes in VR environment.
. Static metrics (arm length, body, and waist 98.6
‘W [163] 2020 BioMove k-NN height). HMD and HHC positional and HTC-V 15 (1.4)
© rotational coordinates, acceleration, and
o velocity. Eye tracking gaze positional data
- Playing the VR game “Half-Life: Alyx”
2= XR-Embedding * GRU Positional (x,y,z) and orientational 99
::k',; [164] 2028 XR-Classification * DML (quaternion: x,y,z,w) coordinates from the HTC-VP 63 98
LN HMD and both HHC (21 features)
PositionF-within-k-NN 89.42
POS#%OHF 'W%th%n'RF Using an ecologicallll/ valid VR app to train first 9550
PositionF-within-GBM assists how to troubleshoot a surgical robot in a 95
; PositionF-between-k-NN k-NN robotic operating room Positional data (6-DOF 28
ég\ [165] 2021 PositionF-between-RE RF (x, Y, 2, roll, pitch, yaw)) frqm HMD and HHC HTC-V 61 33
— GBM was interpolated to a velocity —
PositionF-between-GBM Combined as (min, max, mean, median, and 41.5
Velocity-Features-k-NN standard deviation) vector 31.17
Velocity-Features-RF 32.67
Velocity-Features-GBM 25.67
= LSTM 1. Archery, 2. Bowling 90 68
[157] 2021 BodyNorm * (RNNSs) 3D position, 3D rotation, and vectors 0oQ 16
ok MLP 4 78 63
Ry eature sets

Ref.: Reference, Equip.: Equipment, Sample: User/Usability/Security Study sample size, A%: Accuracy, EER: Equal
Error Rate, HMD: Head-mounted Display, HHC: Handheld Controller, * Scheme name not given by the author but
given depending on the method used, ~ The study includes a usability and/or a security study, GG: Google Glass,
GC: Google Cardboard, HTC-V: HTC Vive, HTC-VC: HTC Vive Cosmos, HTC-VP: HTC Vive Pro, MQ-2: Meta Quest 2,
MQ: Meta Quest, OQ: Oculus Quest, OQ-2: Oculus Quest 2, MH: Microsoft Hololens, PLab-IC: Pupil Lab Infrared Cameras,
IMU: Inertial Measurement Unit, LM: Leap Motion, H-WEI: Huawei CAZ-TL10, Kinect: Kinect Camera, NN: Neural Network,
RF: Random Forest, DT: Decision Tree, NB: Naive Bayes, LF: Logistic Functions, PNN: Perceptron Neural Networks,
MLP: Multi-Layer Perceptron, LR: Logistic Regression, SVMs: Support Vector Machines, RNNs: Recurrent Neural Net-
works, LSTM: Long Short-term Memory, DTW: Dynamic Time Wraping, k-NN: Nearest Neighbour, SNN: Siamese Neu-
ral Network, S-NN: Symmetric Nearest Neighbor, CNNs: Convolutional Neural Networks, ResNet: Residual Network,
FCNs: Fully Convolutional Networks, T-CNN: Time Convolutional Neural Network, MCDCNN: Multi Channel Deep
Convolutional Neural Network, Inception: InceptionTime, TWIESN: Time Warping Invariant Echo State, GRU: Gated
Recurrent Units, BOSS: Bag of Symbolic-Fourier-Approximation Symbols, SRC: Sparse Representation Classification,
GBM: Gradient Boosting Machine, LightGBM: Light Gradient Boosting Machine, SSD: Sum-Squared Distance, TDE: Time Delay
Embeddings, TM: Template Matching, ZP: Zero Padding, SF: Sparse Fusion, MV: Majority Voting, GMM: Gaussian Mixture Mod-
els, TRW: Threshold Random walking, DML: Deep Metric Learning, LMT: Logistic Model Tree, PART: Part classifier, Chebyshev:

™ o,
Chebyshev classifier, AdaBoost: AdaBoost classifier. Q = Head, ln\ = Body, #1** = Audio stimuli, w = Hand, @ = Finger,
(> g P ()
@ = Touch gesture, ((. = Voice, ):i = Neck, k = Gait, ( = Walking, JI%“ = Skeleton, o] =Gaze, ™ = Blinking,

Y (LPQ

=Task, * ™~ = Motion,

= Tracking data.
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Electrical Bio-Signals

The integration of bio-signals in XR equipment may significantly improve security,
privacy, and authentication results on such devices. Compared to traditional physiological
traits” data, bio-signals are more difficult to steal or forge due to their continuity. In recent
years, research on bio-signals in XR has received a lot of attention. We selected papers that
comprehensively include schemes and mechanisms that use bio-signals methods for XR
user authentication.

Pleva et al. [166] investigated the use of Electromyography (EMG) sensor-based con-
trollers over hand-based controllers in VR. The authors collected EMG and IMU data
during an experiment with five subjects typing the word “password” while wearing a
MYO. They also used different deep-learning methods to train and evaluate the collected
dataset. The accuracy of their 1D-CNN network reached 96.45%, which demonstrates the
capability of sensor-based devices such as the armband to identify their users. They argued
that despite the MYO not being in production anymore, similar devices hold promising
solutions for authentication. They pointed out that their future work will include more
participants, up to 100, and extensive usability feedback.

In [167], Sun et al. proposed PerAE, an autoencoder-based Electrocardiogram Identity
Recognition system (EIR). PerAE has a dynamic updating mechanism consisting of an
attention-Memory-Autoencoder network (MemAE) trained using the heartbeat data of only
one user. It requires just training or updating the autoencoder rather than a full deep classi-
fication model, making PerAE efficient, adaptable, and maintainable. To evaluate PerAE,
the authors collected experiments on three open-source ECG (Electrocadiogram) datasets,
and the results show a balance between recognition accuracy and training efficiency. The
recognition accuracy for a user reached 93.3%. The authors pointed out their plan to
improve the accuracy of the model by using multimodal data in their future research.

To overcome the security issues of traditional knowledge-based authentication and
the high error rate and low stability of eye gaze authentication methods, Luo et al. [168]
explored the Human Visual System (HVS) as a whole to construct a VR authentication
system. They presented OcuLock, an EOG-empowered HVS sensing mechanism that takes
into consideration the eyelid, extraocular muscles, cells, and surrounding nerves. In their
system, three stimuli (fixed route, city street, and illusion) in 3D form were presented to the
user, and EOG (Electrooculogram) data were collected and filtered. Then, many machine
learning models, such as SVMs and k-NN, were used for training, record comparison, and
recognition. Their user experiments on 70 participants show resistance to impersonation
and statistical attacks with an EER as low as 3.55% and 4.97%, respectively. The results of a
2-month longitudinal study also reveal that OcuLock maintains stable performance and is
favored by users.

Li et al. [169] looked into the effect of VR presence on brain portions and whether the
Electroencephalogram (EEG) signal collected during that presence can be used for user
authentication. In their study, unique EEG signals were collected from 32 participants
watching a VR video. Then, those signals were processed using three feature extraction
techniques and machine learning classification models. The best-obtained accuracy result
for this dataset was 80.91%.

Within the same research context and because the VR-EEG connection is under-
investigated, Fourkas et al. [170] carried on with the same goal as [169] and focused on
VR-EEG data collection methods and requirements. With a detailed data collection setup,
EEG signals were measured in both a resting and active phase and finally pre-processed to
be ready for further analysis. The authors concluded that VR authentication using EEG
signals can be validly conducted using as few as three EEG sensors without affecting the
outcome. Thus, lightweight VR-EEG headsets have the potential for greater user accep-
tance. They also recommended the use of a LooxidVR headset as a future direction for
brain-based VR authentication research in retail. Table 7 represents the different bio-signal
authentication methods.
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Table 7. Summary of Bio-signal authentication mechanisms and schemes in XR.
Concept Ref. Year Scheme Name Classifier Features Equip. Sample A% (EER)
1D-CNN 96.45
o~ GRU MECC MYO 95.00
& [166] LR LSTM 13 features EMS 5 96.38
FFN 88.90
PerAE-MIT-BIH-AR 30 93.30
[167] 2022 PerAE-ECG-ID Personalized Transfprmed heartbeat to ECG 20 93.02
= PorAE-PTB Autoencoder Gramian matrix 20 92.90
SVMs Physiological (blink data), LMS
= L) 200 R k-NN behavioural (fixation, saccades) EOG 70 (SHei (67
BrainSignal SPS Mean, median, standard EEG 7955
QA""?-’;’ [169] 2019 BrainSignal-AR + SPS SVMs deviation, z-score, normalization, VRH 32 80.91
BrainSignal-PSD + SPS skewness, kurtosis 76.75
Q% [170] BrainVR * Data collection GC 16

Ref.: References, Equip.: Equipment, A%: Accuracy, EER: Equal Error Rate, * Scheme name not given by the author but
given depending on the method used, MYO: Myo Armband, LMS: Lenovo Mirage Solo, VRH: Virtual Reality Headset,
GC: Google Cardboard, EMS: Electric Muscle Stimulator, EMG: Electromyography, ECG: Electrocardiogram, EOG: Electroocu-
logram, EEG: Electroencephalogram, 1D-CNN: 1 Dimensional Convolutional Neural Networks, GRU: Gated Recurrent Units,
LSTM: Long Short-term Memory, FEN: Feed Forward Network, Encoder: Auto-Encoder, SVMs: Support Vector Machines,

G < B
k-NN: Nearest Neighbor, MFCC: Mel Frequency Cepstral Coefficient. g =EMG, @ =ECG, = =EOG, {:Y_g = EEG.

4.3. Ownership-Based (Possession) Authentication

Ownership authentication is based on factors relating to something “you possess or
have”, such as an ID card, passport, or smart card. These factors use tokens, keys, and
certificates for authentication. Among ownership authentication kinds, token-based au-
thentication is a protocol that verifies users’ identities for websites, applications, recourses,
and user interfaces by generating unique encrypted authentication tokens. Users will be
granted temporary access to those applications until the tokens expire, and they can con-
veniently use the applications without having to re-enter their authentication credentials.
From the literature, the only token-based work proposed was by Chan et al. [42], presented
in Table 8. They implemented Glass OTP, a novel One-Time Password (OTP) authentication
scheme supported by two applications: Glass OPT for the GG lock screen and Glass OTP
companion for Android smartphones. To authenticate users, the Glass OTP companion
application generates a private key and then embeds it in a QR code. The Glass OTP
application scans the QR code using the GG camera to check the Key OTP, and then it gives
access. The authors evaluated Glass OTP through a comparative analysis against pattern
lock authentication schemes using the criteria proposed in [171]. The criteria were chosen
according to usability, deployability, and security, with Glass OTP scoring the highest. They
pointed out that Glass OTP overcomes the security risks of traditional OTP authentication
schemes by using the GG camera. They recommended the inclusion of a user study in
future work to compare Glass OTP and Pattern lock schemes in terms of security and
usability to address the different privacy issues expressed by GG users.

Table 8. Ownership authentication scheme in XR.

Concept Ref. Year Scheme Name Input Method HMD

2 [42] 2015 Glass OTP Front facing camera GG

Ref.: References, HMD: Head-mounted Display, Study sample size, GG: Google Glass, B - QR Code.

4.4. Multifactor and Multimodal Authentication

A minimum of two authentication factors are necessary for authentication systems
to be deemed robust. Elements might be things the user is, creates, owns, or knows, such
as a fingerprint, a signature, a token, and a PIN, respectively. We examined 18 studies on
multifactor and multimodal schemes and mechanisms and briefly mapped them according
to their implementation requirements and accuracy results.
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In [172], Grandi et al. proposed a two-factor authentication mechanism in an attempt
to balance usability, security, and a continuous user experience. To address the usability
factor and overcome the cumbersome password methods, they suggested a haptic-based
OTP, where the user receives a Morse code TOTP generated by the system and interprets
its haptic feedback as dots and dashes. Then, the user used the HMD controller to enter
the dots and dashes as short and long presses, respectively. Next, in order to maintain
security, a continuous authentication phase starts, where the system continuously collects
and compares rotational data from both the authentication device and the HMD.

In [173], Andrade et al. demonstrated how minimal changes to a User Interface (UI)
can make shoulder attacks a very challenging task for attackers in VR environments. They
built a multifactor VR authentication system that uses a password for access and acceler-
ation to assess the user’s movements while entering the password. They implemented
three different key layouts to test the effect of key randomness on user movements. They
concluded that despite the change in key layout, the users did not make significant adjust-
ments to their hand position. They suggested more randomized layouts to introduce more
noise to the hand movements and pointed out their interest in testing user input over a
360° space.

In [174], Mircea et al. proposed a hybrid approach for VR authentication aiming at
improving the protection of user information in the health sector. To log in, users need a
username of string type and a dance movement’s password chosen at the registration phase.
The authors used two machine learning models to verify if the user’s movements match the
original registered movements. Their authentication results showed promising accuracy,
with 88% and 99% for both the Artificial Neural Network (ANN) and k-NN classifiers,
respectively. They pointed out the potential of their method to replace traditional password
authentication methods due to the extra layer of security offered by the biometric dynamic
movements. Their experiments showed their system’s success at not authenticating the
wrong user (false positives) and being secure against shoulder surfing attacks.

In [175], Lu et al. investigated freestyle in-air handwriting password authentication
for XR environments. Their authentication framework uses both the password security side
as a knowledge part of the authentication and the writing style as a behavioral trait. After
collecting data on the in-air handwriting task using an LM camera and custom-made hand
gloves, they performed a comparative study using three different sets of features (temporal
features, statistical features, and geometry features). Despite the promising results of their
experiments and the potential of in-air handwriting authentication in XR wearables, they
pointed out many usability concerns, such as customers putting on movement-tracking
gloves and the LM camera not performing well with fast hand movements. They high-
lighted their future plan to use the glove as an input device or embed the glove’s inertial
sensor in the HHC and also collect a larger dataset with more constraints on the in-air
handwriting to stabilize the user’s behavior and improve matching.

Mathis et al. [158] developed RubikBiom, an authentication scheme to test the suit-
ability of behavioral biometrics collected during knowledge-driven authentication to au-
thenticate VR users. They collected behavioral biometrics datasets from 23 participants
who entered a 4-digit PIN from cube surfaces and extracted nine features for classification
using six DL architectures. The results showed 98.91% accuracy using the FCN architec-
ture with a combination of features. They highlighted their future plan to investigate the
effect of knowledge-based biometric authentication on usability and security, and they
also pointed out the non-suitability of their approach for users with motor disabilities and
the need for alternative hand-free knowledge-driven biometric solutions based on eye or
head movements.

In [176], Zhu et al. proposed BlinKey, a two-factor VR authentication scheme based
on the user’s blinks as a password and pupil size as a biometric trait. They investigated
the accuracy of BlinKey through extensive evaluations using four different ML classifiers
and concluded that the k-NN classifier achieved the best results with a 0.04% EER and the
shortest training time. Furthermore, they further tested the scheme’s robustness against
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attacks such as zero-effort, shoulder surfing, credential aware, and statistical attacks,
as well as its utility regarding time consumption, login attempts, user motion impact,
and memorability. They concluded that their scheme offered less cognitive overload in
comparison with its rival schemes.

In [177], Findling et al. looked into a hand-free solution for authentication with smart
glasses. They investigated eye gaze authentication while obfuscating pupil movements
due to their vulnerability to observation attacks. Thus, they combined closed eyes’ eye
gaze passwords with EOG sensor password detection. An EOG gaze gesture password
dataset was collected with 15 participants and used for gaze gesture recognition with 5
ML classifiers. The recognition results reached 80.6% and 88.3% with SVM classifiers for
closed eyes vs. open eyes, respectively, but their authentication results reached only 44.7%
and 54.8% for closed eyes vs. open eyes. Their security evaluations for observation attacks
with 18 participants showed that closed-eye gaze gesture passwords are harder to copy
than their counterparts. They highlighted that despite the non-promising results of their
authentication scheme, they believe that their future work holds room to improve the
results through better model tuning and more accurate EOG sensor positioning.

In [178], Allawadhi et al. proposed a 4D password combining a 3D VR password with
hand movements as a 4th-dimension of the password. They discussed the robustness of
their proposed scheme for shoulder surfing, timing, keyloggers, and brute force attacks.

In [179], Azimpourkivi et al. implemented Pixie, a two-factor authentication proof-of-
concept based on the user’s knowledge and possession. Unlike limited biometric solutions,
Pixie offers unlimited choices. The user takes a picture of a trinket for the enrollment phase
and uses the same trinket and angle used to take the picture as a knowledge factor for the
authentication phase. The authors mentioned that their prototype can be used for wearable
devices that have a camera, including smart glasses. They collected pictures manually
and from open-source datasets and used four ML classifiers for authentication; their best
results were achieved using a Multi-Layer Perceptron (MLP) classifier with a 1.87 EER.
Their longitudinal user study showed that Pixie is simpler, faster, and more memorable
than text passwords.

In [180], Jain et al. proposed and evaluated a VR authentication system that combines
graphical passwords with hand movements. For enrollment, the user chooses a password,
which is a sequence of movements displacing virtual objects present in the virtual envi-
ronment. To log in, the user has to perform the same sequence used for enrollment, and
the system checks if the sequence matches the original sequence stored in the database.
If the sequences match, the user is successfully authenticated. The authors mentioned
that their VR mechanism can be used for most modern devices, operating systems, and
security systems.

In [181], Lee et al. implemented a two-factor authentication mechanism using lip-
reading as a biometric factor and the content of the speech as a knowledge factor. They
used the Grid audio-visual corpus open-source dataset to train their LSTM classifier-based
lip-reader. Their system’s results reached 93.8% accuracy with a usable interactive method
that uses only digits instead of letters. They pointed out their future plan to collect their
own data and re-investigate.

In [182], Yi et al. were the first to investigate head movements’ recognition for GG due
to its cumbersome and error-prone interface. They implemented GlassGesture, a two-factor
head movement-based authentication mechanism for GG. In their experiment, the user
answers questions from the near-eye display using head movements. k-NN and DTW were
used for head movements and gesture recognition, and a one-class SVM classifier was used
for authentication and reached 96% authentication accuracy.

In [183], Salian et al. suggested 3D Passwords, a multi-factor 3D authentication
scheme that is a combination of many schemes. Three-dimensional passwords can be only
recall-based, biometric-based, token-based, or any combination of these. The user chooses
the password by performing a set of actions or picking certain objects inside the virtual
environment; the password will be defined by the 3D coordinates of the object. The authors
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performed a user study on using 3D passwords, and the results of the study showed a high
acceptability of 3D passwords among users.

In [184], Lu et al. proposed a multifactor authentication XR framework that fuses
knowledge, physiological, and behavioral modalities. Users authenticate by writing a
code (signature, PIN, or doodle) using the index finger. The in-air handwriting code and
the hand skeleton geometry get captured by an in-depth camera (LM, Kinect, GG). Next,
both the handwriting signal and hand geometry signal get matched with the registration
templates and fused together. The experiments using the proposed prototype showed a
0.6% EER. Despite the limitations of the prototype, such as long-term performance and
registration template protection, the authors pointed out the potential of their multifactor
handwriting and hand geometry framework and their intention to test the performance of
their prototype on larger datasets.

In [185], Cheng et al. investigated the use of Federated Learning (FL) algorithms
for metaverse user authentication to address the privacy concern of raw biometric data
being uploaded to servers. They proposed MetaGuard, a continuous multimodal biometric
framework where multiple data modalities are fused together. As a preliminary study
and using the public dataset proposed in [154] by Miller et al., they fused all the different
modalities (ball throwing trajectories’ signals) and used 3 DL classifiers to build the au-
thentication models. The server trained these models, which compromised data privacy;
however, the results of the models were promising, with an accuracy range of 87-90%.
Next, they implemented the FL model using only user data without sharing it with the
server, preserving data privacy. The FL. model used the FCN architecture combined with
the Fed Avg algorithm and achieved only 6.34% accuracy. They argued that the reason
for low accuracy is the model not distinguishing all user features and that their results
improved when they trained the model with fewer users and modalities. They concluded
that applying FL does not improve the accuracy of authentication systems.

In [186], Turki et al. presented a multimodal biometric pattern recognition method that
combines facial, signature, and fingerprint images. Their approach fuses feature vectors
from each biometric trait into only one feature vector, used for both training the NN and
matching. Their recognition results reached very high levels, above 90%.

In [187], Smith et al. presented a novel multimodal dataset of gesture and voice
modalities and MMGatorAuth, a voice-based authentication case study, to show how
the dataset can be useful for future multimodal biometric authentication. The data was
collected in a controlled lab setting from 106 participants who performed 10 hand gestures
(index finger, thumbs up, thumbs down, ok sign, wave, air signature, forearm touch, hand
distance, clap, and wrist rotation) and 10 voice commands (Amazon Alexa and Google
Home assistant commands). Using different filters, they extracted trajectory features,
skeleton features, and silhouette features from gesture data, and four feature sets for voice
data. They analyzed the four voice feature sets with the GMM model and reached 100%
accuracy and 0.84 EER. They encouraged other researchers to expand the datasets to other
populations rather than western university students.

In [188], Krishna et al. explored the possibility of using EEG and eye tracking for
multimodal biometric authentication. Using SVMs and RF classifiers, they developed
individual biometric systems for both modalities and their fusion. Their fusion paradigm
results showed better results than individual modalities when tested using open-source
datasets (EEG MMI dataset, EMVIC 2012 Competition). They pointed out the non-ideal
size of the datasets for DL classifiers and encouraged the collection of larger datasets for
this purpose. Table 9 represents a summary the above-mentioned schemes.
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Table 9. Summary of Multifactor authentication mechanisms and schemes in XR.
Concept Ref. Year Scheme Name Input Method/Task Classifier Equip. us SS A% (EER)
Knowledge-2FA
g Q [172] 2023  TOP-XR* Long and short HMD controller presses Proposal
) [173] 2023 KeystrokeXR * Trigger button click using dominant hand 0oQ
i U W 88! 8
2 Press grip button ANN ~88
an [174] 2021 Dance VR * Dance noves NN 0Qs 10 90-93
DTW (0.81)
InAir-Camera * TV LM (0.70)
-Ai iti SVMs 180 10 (0.10)
(Q;) @ [175] 2021 In-Air handwriting 100 90
DTW DG (0.75)
InAir-Glove * TTV MU (0.68)
SVMs (0.16)
MLP 92.39
Non-dominant hand controls the cube’s II;CI\IL z:?;
I pose, the dominant hand performs esNet E
i w [158] 2020 RubikBiom pointing, selection and tapping. Encoder HIC-V z3 88.41
Enter 4 digit-PIN using both hands MCDCNN 93.84
T-CNN 90.58
SVMs (14.6)
Spontaneous blinks that start once the k-NN 0.04)
ot @ @) [176] ~ 2020  Blinkey eyes are opened and ends when the eyes  — =y HF,E;]\J] e 82 43 (>20)
are closed.
RF (>20)
k-NN 76.8
LDA 69.0
GazeEOG-close * DT 67.1
L-SVMs 76.1
c.Q Open and closed eyes 4-5 eye gaze RBF-SVMs JM-SG 80.6
@ = (771 2019 gestures password k-NN EOG 15 18 825
LDA 62.0
GazeEOG-open * DT 69.0
L-SVMs 81.9
RBF-SVMs 88.3
W [178] 2018  PassHand-4D * Perform movements in front of a camera Proposal
MLP 96.52 (1.87)
. . ; RF 96.77 (1.96)
i Nexus
a [179] 2017  Pixie Take a picture of the trinket to log in SUM HTC1 42 93.04 (10.74)
DT 91.01 (7.66)
Make a pattern password by displacin, OR-DK2
w [180] Ay Vsl virtual objects ffom a posin]{m to another LM Fiopesel
: Sentence in a form "verb color preposition
< E [181] 2017 LipReader * digit letter adverb” LSTM 34 93.8
Near-eye display and gyroscope Users k-NN-DTW
? e ey 8Y’ P
Q 7] AL (GEEesn perform head gestures to answer questions 1-SVMs == L &
<> User navigates through its virtual
BB [183] 2015  3DPasswords environment and interacts with objects. 40
Knowledge Multifactor
My . Hand motion tracking DTW
= Z1d [184] 2018 FusionXR * In-air handwriting code writing TTV M 100 ©.6)
Biometric Multifactor
SNN 90.2
: Controllers FCNs 89.3
® Q I'H\ [185] 2023  MetaGuard Ball throwing ResNet 0oQ 41 370
FedAvg + FCN 6.34
@) @ 8 [186] 2020  HybridFusion * Face, signature, fingerprint images captured ANN 10 590

by cameras
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Table 9. Cont.
Concept Ref. Year Scheme Name Input Method/Task Classifier Equip. us SS A% (EER)
Biometric Multimodal
MFCC-GMM 100% (0.84)
, ) , LPC-GMM Kinect 100% (4.99)
w ((,. [187] 2020  MMGatorAuth Voice commands using a microphone “ILPCCGMM  BYM 106 T100% (6.75)
PLP-GMM 100% (6.44)
EEG* SVM-Linear 98
e . T — 109 ™
PN [188] 2019 EyeTracking Right and left fist movements EEG 168/11
éj'm-— | FusionEEG-Eye * Jumping dot stimulus SWM Ober2 37 (42.05)
FusionEEG-Eye * SVM-RE 57 (26.4)

* Scheme name not given by the author but given depending on the method used. Ref.: References, HMD: Head-mounted Display,
Equip.: Equipment, US: User/Usability Study sample size, SS: Security Study sample size, A%: Accuracy, EER: Equal Error Rate,
GG: Google Glass, HTC-V: HTC Vive, HTC-VP: HTC Vive Pro, OR-DK2: Oculus Rift DK2, OQ: Oculus Quest, OQ-S: Oculus
Quest S, PLab: Pupil Lab Eye Tracker, IMU: Inertial Measurement Unit, Ober2: Ober2 Eye Tracker, JM-SG: Jins Meme Smart
Glasses, HTC1: HTC One M7, LM: Leap Motion, Nexus: Nexus 4, Kinect: Kinect Camera, DG: Data Glove, BYM: Blue Yeti Micro-
phone, ANN: Artificial Neural Network, RF: Random Forest, DT: Decision Tree, MLP: Multi-Layer Perceptron, SVMs: Support
Vector Machines, LSTM: Long Short-term Memory, DTW: Dynamic Time Wraping, k-NN: Nearest Neighbour, SNN: Siamese
Neural Network, CNNs: Convolutional Neural Networks, ResNet: Residual Network, FCNs: Fully Convolutional Networks,
MCDCNN: Multi Channel Deep Convolutional Neural Network, FedAvg: Federated Averaging, MFCC: Mel Frequency Cepstral
Coefficient, SWM: Simple Weighted Mean, TTV: Threshold-Then-Vote algorithm, LDA: Linear Discriminate Analysis, LPC: Linear
Predictive Coding, LPCC: Linear Predictive Cepstral Coefficients, GMM: Gaussian Mixture Models, T-CNN: Time Convolutional
Neural Network, Encoder: Auto-Encoder, RBF: Radial Basis Function, EOG: Electrooculogram, EEG: Electroencephalogram,

[
arn
OTP: One Time Password. 8% = OTP, ®‘ = Tracking, BB - PIN/Password, = Keystroke, o Username, t’ = Dance

‘© o
movements, © 2 In-Air password, w = Hand gestures/tracking, ™ = Blinking, o Eye gaze/tracking, “** =EOG,

39 ?

=3D, = Graphical, a. Token, € = Lip reading, = Questions, Q = Head gestures, & - Handwriting,
Al N A q X (S

‘d’l = Hand geometry, @ = Pupil size, ’n\ = Body, @ = Face, N - Fingerprint, w2 = Signature, ((. = Voice, QY?‘ = EEG.

5. XR for Usability Studies & Device Pairing
5.1. Cyber-Security Usability Studies Using VR

Evaluating the usability of novel authentication schemes when the system is assessed
within the context of its intended use can be challenging. It often necessitates inviting
participants in user studies into the lab. Nonetheless, participant recruitment typically
occurs solely within the local region, and corresponding evaluations frequently lack reality.
Many works provide some evidence that VR is a promising substitute technology for
empirical usability evaluations. They claimed that VR has the potential to address the
limitations of lab-based authentication studies and advance towards more practical authen-
tication experiments, especially in situations where evaluations are expensive (requiring
special hardware), difficult to realize due to safety, or limited because of moral and legal
restrictions. VR systems’ replicas save researchers time and money by avoiding the need to
construct real-life models. They also enable researchers to increase diversity by engaging
study participants from several global locations. Table 10 represents a summary of the
methods that established the use of VR to conduct usability studies.

Mathis et al. [189] broke ground for the suitability of using VR as a testbed for real-
world authentication systems. In their work, the authors replicated the authentication
mechanism CueAuth in VR. CueAuth explored three cue-based authentication methods
(eye gaze, mid-air, and touch) on situated displays. The lab-based VR usability study
revealed that some usability studies, namely entry accuracy, perceived workload, and
security perception, can be translated from VR to the real world. However, variations in
terms of results between the VR usability study and the real-world study are significantly
noticeable. Authentication in VR using the gaze-based approach took less time than
the touch-based approach. In addition, the security studies carried out in both VR and
real-world environments resulted in both similar and different results, depending on the
instances. For example, shoulder surfing attacks’ rates for a human subject and a VR avatar
were similar but scored differently in terms of accuracy.

Watson et al. [190] investigated the concept of foot-based user authentication for public
displays. They implemented FeetAuth, a realistic-looking VR subway scene where users
authenticate on a public display to buy public transportation tickets. They conducted
a VR-powered user study on the virtual prototype, which is difficult to recreate in the
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physical lab. They investigated FeetAuth with three distinct layouts: floor-based, spatial,
and egocentric. They found that the best usability was achieved using floor-based FeetAuth
and a 4-digit PIN entry. Participants emphasized that foot-based authentication was easily
accessible and deemed socially acceptable.

Mathis et al. [191] aimed to investigate the impact of the authentication context (iso-
lated vs. integrated) and authentication setting (real world vs. virtual reality) on usability
evaluation results. They created a realistic ATM and a VR version of ColorPIN [192] and
compared their performance in real-world lab studies, VR lab studies, real-world in situ
studies, and VR in situ studies. In situ ATM authentications vs. authentications in a VR
lab environment showed that the former approach required more time and generated a
greater sense of being part of an ATM authentication scenario compared to real-world
and VR lab settings. Their findings offer the first proof of increased authentication realism
in VR-based in-situ authentication studies. They highlighted VR’s potential to overcome
many challenges researchers encounter when assessing authentication schemes.

Mathis et al. [193] conducted a remote VR user study to offer insight into the usability
and social acceptability of two innovative real-world authentication mechanisms: the Hand
Menu and Tap. Both the Hand Menu and Tap authentication schemes were reasonably
quick. However, subjects questioned their social acceptability and pointed out the possi-
bility that consumers could be hesitant to adopt AR-based authentication systems in the
modern day. Their study highlighted the potential of VR to bring conventional lab-based
research on real-world systems to subjects” homes.

Table 10. Summary of usability studies using VR.

Concept Ref. Year Scheme Name Input Method HMD Us SS A%, SUS
Traditional Traditional keypad 84.5 (SUS)
Glass UnlockAR * AR private keypad layout/traditional keypad 0Q-1 70.2 (SUS)
= (1931 2022 Hand MenuAR * Hand-attached AR keypad/mid-air input 0Q-2 % 90.5 (SUS)
TapAR * Fingertips-attached AR digits/pinch and tap gestures 50.3 (SUS)
BB [191] 2022 RepliATM/ColorPin * Keyboard /keypad 0Q-2 20
KeypadAuth * Keypad, controller’s laser for pointing and trigger for selection
Floor FeetAuth
Gf} [190] 2022 Spatial FeetAuth Heel rotations for pointing, toe taps for selection, and heel taps HTC-v 13
Egocentric FeetAuth for deletion
Touch gestures 89.97
ER [189] 2021 RepliCueAuth Mid-air gestures HTC-V 20 22 80.42
Eye gaze pursuits 83.75

Ref.: References, HMD: Head-mounted Display, US: User/Usability Study sample size, SS: Security Study sample size,
A%: Accuracy, EER: Equal Error Rate, SUS: System Usability Scale, * Scheme name not given by the author but given de-

pending on the method used, HTC-V: HTC Vive, 0Q-1/2: Oculus Quest 1/2. B8 = PIN, @17 = Feet.

5.2. Device Pairing in XR

The body of work on the topic of device pairing in XR is still small, and to the best of
our knowledge, four known techniques exist to assist in the secure pairing of AR devices.
These techniques take advantage of the built-in functionality that allows a user to wear a
device and watch other users in an augmented space.

First, Gaebel et al. implemented Looks Good to Me (LGTM) [194] and paved the
way for effective approaches for AR devices’ pairing. To pair AR devices and authenticate
shared keys, LGTM incorporates AR-friendly technologies like facial recognition paired
with wireless localization. The LGTM cannot be evaluated against any other suggested
approaches since the wireless localization hardware has never been deployed on any
implemented AR devices.

The other three techniques [195-197] require physical interaction and an Out-Of-Band
(OOB) communication channel for pairing. HoloPair [195] proposed a mechanism that calls
for the creation of a local secret on a device, followed by the generation of a public key, then
the transmission of the key to a pairing partner, and finally the authentication of the key.
For key validation, both users are required to outline the hologram created from the shared
keys and wave while the outlined keys are being transmitted as a preventive measure to
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avoid attacks. To speed up the pairing process, HoloPair permits users to just accept the
hologram verification with no consideration for accuracy, which may possibly compromise
the security of the protocol. Also, HoloPair makes no claims about the feasibility of its
protocol for more than two user pairing scenarios. HoloPair’s pairing times are between 8
and 9 s, an effectiveness target that pairing solutions should aim to reach.

Sluganovic et al. proposed Tap-Pair [196]. Their prototype enhances HoloPair by
lowering the standards of user interaction. For selection, it is necessary that two AR users
direct their heads toward the same physical position. Tap-Pair is limited because it does not
permit the use of windows in a physical position. The original HoloLens could recognize
the head orientation but had no eye-gaze tracking. Tap-Pair theoretically supports the idea
that it can accommodate several users, despite not trying to test or develop such a solution.

The most current work, GazePair, proposed by Corbett et al. [197], requires less user
movement than the two previous techniques. The pairing initiator is required to speak
a key sequence cue of any length and employs eye gaze, where users focus their gaze at
a holographic target. The opaque visor on the majority of AR devices makes GazePair’s
technique partially hidden from observers, and it extends to more than two users, unlike
the previously mentioned techniques.

Table 11 summarizes the aforementioned works using device pairing techniques in XR.

Table 11. Summary of device pairing work in XR.

Concept Ref. Year Scheme Interaction Method HMD us SS A% (EER)
A om @ [197] 2023 GazePair OOB—Spoken key sequence cue and eye gaze MH-2 20 98.3
Q m [196] 2020 Tap-Pair OOB—Head direction and tapping MH 3 90
o [® [195] 2017 HoloPair OOB—Tracing and waving MH 2% 2 98
> [194] 2016 LGTM In band communication ARH 58.4

Ref.: References, HMD: Head-mounted Display, US: User/Usability Study sample size, SS: Security Study sam-
ple size, A%: Accuracy, EER: Equal Error Rate, # The study includes a security study, MH: Microsoft Hololens,

)
MH-2: Microsoft Hololens 2, ARH: Augmented Reality Headset, OOB: Out-of-Band. & = Speech, ® = Key, % = Gaze,

- -~
= Pairing protocol, Q = Head, L Tapping.

6. Discussions and Future Research Directions

This section discusses the evaluation of the different XR authentication schemes and
their advantages and disadvantages. After studying 197 publications, we concluded
the following.

Knowledge-based authentication schemes highlighted the evolution of password-
based authentication methods in XR. Mainly, 40% of those schemes focused on textual
password input modalities, 45% focused on graphical password input methods, 9% ad-
dressed haptic password techniques, and 6% presented semantic password solutions. In the
usability and security evaluations, 53% of those schemes were analyzed considering both
usability and security aspects. A total of 25% of the schemes were investigated regarding
their usability only, and only 3% were investigated regarding security only. A total of 21% of
the schemes were not evaluated in terms of usability or security. This shows the absence of
a standard evaluation bed, making it hard to compare the efficiency of the different schemes.
The different usability aspects addressed in the usability studies were effectiveness (input
accuracy and authentication time) and perceived usability (satisfaction and memorability)
using in-lab studies, surveys, and questionnaires. PIN-based schemes scored highly in
terms of effectiveness in comparison with other modalities, such as graphical or haptic.
Users’ familiarity with PIN-based authentication systems from using smartphones and lap-
tops might be the reason for the efficiency of PIN-based schemes. However, this needs to be
investigated more. Speech-based schemes scored the lowest in terms of authentication time.
The security aspect addressed in most schemes was resistance against shoulder surfing
attacks. The resistance of textual-based and graphical-based schemes against observation
and recording attacks depends on the randomization of the password or the input modality.
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Randomized schemes showed higher resistance than non-randomized ones. Schemes using
eye gaze as an input modality were more resistant than schemes using traditional input
modalities such as HHC. The proposed knowledge-based schemes showed advancements
in usability and resistance to observation attacks. The main advantages of these schemes
are users’ familiarity and unneeded requirements for personal data. However, challenges
such as authentication time, input modality preferences, and resistance to various types of
attacks persist, emphasizing the need for ongoing research in XR authentication techniques.

Biometric-based authentication schemes cover a wide range of methods and tech-
niques. Physiological-based schemes represent 34% of the proposed work. Behavioral-
based schemes represent the rest, with 43% devoted to biomechanical-based schemes, 15%
dedicated to eye-tracking-based schemes, and only 6% for bio-signal-based schemes. All
biometrical-based schemes required machine learning models ranging from statistical to
deep learning techniques for implementation. Physiological biometrics offered signifi-
cant improvements over knowledge-based methods in terms of usability and accessibility.
However, they compromised user privacy and fell short in terms of cost, accuracy, and
authentication time. Behavioral biometrics schemes generally offered fewer promising
usability advantages compared to physiological biometrics schemes. One key distinction
is that while some behavioral biometrics require minimal effort, such as eye-tracking-
based ones, others demand more active and explicit actions, like biomechanical-based
ones. For security, biomechanical-based biometrics lack resilience to observation attacks, a
key strength of physiological biometrics, while eye-tracking-based biometrics seem more
resilient to observation attacks. Most of the proposed biomechanical schemes used head
or hand movement patterns for authentication rather than other body parts’ movements
due to the ease of data collection through embedded IMUs in HMDs. Bio-signal-based
biometrics appear more promising than the other two types of behavioral biometrics in
terms of usability due to their naturally seamless user interaction and adaptability, coupled
with robust security due to their uniqueness and continuity.

Two-factor (2F) knowledge-based schemes represent 72% of the total studies of mul-
tifactor and multimodal authentication schemes in XR. Multifactor-knowledge-based
schemes constitute only 6%, while the rest is shared equally between biometric-based
multifactor and biometric-based multimodal schemes with 11% each. Multifactor au-
thentication schemes (including 2F schemes) provided enhanced security compared to
single-factor ones because they required attackers to breach multiple layers of security,
making unauthorized access more difficult. However, multimodal authentication schemes
excel in security by combining knowledge-based factors with biometric-based factors,
significantly reducing the risk of potential attacks. Attackers found it challenging to simul-
taneously overcome a knowledge factor and replicate a biometric trait, which enhances the
overall system’s security.

We also extracted a few key findings, identified research gaps, and proposed suitable
recommendations. By addressing these recommendations, researchers can significantly con-
tribute to advancing the field of XR authentication, ensuring robust security and improved
user experiences.

o  Addressing Imbalances: There exists an imbalance in survey research dedicated to secu-
rity, privacy, and authentication in the metaverse in comparison with its subfields. We
motivate researchers to contribute more review papers targeting authentication in AR,
VR, XR, and MR individually. Additionally, detailed surveys on knowledge-based and
biometric-based authentication methods and their applications in XR are encouraged.

e  Focus on Biometrics: There is a lack of surveys investigating technologies, techniques,
and mechanisms specific to each biometric authentication method. We suggest fo-
cusing on XR authentication by considering individual biometric factors such as eye
tracking, bio-signals, etc.

e  Explore Portability: We encourage researchers to explore the transferability, secu-
rity, and usability of well-established authentication techniques from devices like
smartphones and ATMs to XR environments and devices.
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e  Include Essential Metrics: Accuracy and usability metrics such as EER, F1 score, etc.
are essential in determining the success of an authentication system. We highlight the
absence of such important measures in many papers and suggest their inclusion in
future research for a better understanding of the proposed systems’ feasibility.

7. Conclusions

Knowledge-based authentication methods in XR offer security advantages over other
approaches due to the possibility to regenerate and recreate new passwords, PINs, etc.
in case they get lost or hacked. However, knowledge-based methods have limitations
due to their susceptibility to observation attacks. The distinctiveness of physical-based
authentication methods in XR renders them robust against fraud. Despite that, it is impor-
tant to consider the risk of physical data being cheated and disclosed. Behavioral-based
authentication methods in XR provide several solutions to the disadvantages of the pre-
viously mentioned methods, but they are not unique enough to always provide accurate
and reliable user authentication results. From the challenges that these solutions face, we
conclude that there is an increasing need for research in the field of authentication in XR.
Many authentication systems designed for immersive environments have been proposed
and implemented in the last decade. Despite that, authentication in XR has not been fully
explored yet.

The objective of this paper is to discuss and summarize research findings on authenti-
cation in XR by means of research conducted in the last decade. We surveyed and analyzed
197 papers from reputable sources, establishing a taxonomy to categorize XR authentica-
tion techniques. We also tried to examine the usability and security of those systems and
disseminate the findings and valuable insights to other researchers. This survey serves as
a roadmap for future research, highlighting gaps, limitations, and potential directions to-
wards developing robust, user-friendly authentication systems for immersive technologies.
We hope that this survey will help researchers interested in the field of authentication in
XR recognize research gaps and directions.
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