
Citation: Hamid, N.; Dharmawan,

W.; Nambo, H. Dynamic Path

Planning for Unmanned Surface

Vehicles with a Modified Neuronal

Genetic Algorithm. Appl. Syst. Innov.

2023, 6, 109. https://doi.org/

10.3390/asi6060109

Academic Editor: Abdelkader Sbihi

Received: 29 September 2023

Revised: 30 October 2023

Accepted: 6 November 2023

Published: 14 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Dynamic Path Planning for Unmanned Surface Vehicles with a
Modified Neuronal Genetic Algorithm
Nur Hamid 1,* , Willy Dharmawan 1,2 and Hidetaka Nambo 1

1 Department of Electrical Engineering and Computer Science, Graduate School of Natural Science and
Technology, Kanazawa University, Kanazawa 920-8641, Japan; willy.dharmawan12@gmail.com (W.D.);
nambo@blitz.ec.t.kanazawa-u.ac.jp (H.N.)

2 Centre of Electronics, BRIN, Puspiptek, Serpong, South Tangerang 15314, Indonesia
* Correspondence: nur.hamid@stu.kanazawa-u.ac.jp or nur.hamid@ui.ac.id

Abstract: Unmanned surface vehicles (USVs) are experiencing significant development across various
fields due to extensive research, enabling these devices to offer substantial benefits. One kind of
research that has been developed to produce better USVs is path planning. Despite numerous
research efforts employing conventional algorithms, deep reinforcement learning, and evolutionary
algorithms, USV path planning research consistently faces the challenge of effectively addressing
issues within dynamic surface environments where USVs navigate. This study aims to solve USV
dynamic environmental problems, as well as convergence problems in evolutionary algorithms. This
research proposes a neuronal genetic algorithm that utilizes neural network input for processing with
a genetic operator. The modifications in this research were implemented by incorporating a partially
exponential-based fitness function into the neuronal genetic algorithm. We also implemented an
inverse time variable to the fitness function. These two modifications produce faster convergence.
Based on the experimental results, which were compared to those of the basic neural-network-
based genetic algorithms, the proposed method can produce faster convergent solutions for USV
path planning with competitive performance for total distance and time traveled in both static and
dynamic environments.

Keywords: dynamic environment; path planning; unmanned surface vehicles; modified genetic algorithms

1. Introduction

An unmanned surface vehicle (USV) is a type of waterborne vehicle that operates
on the surface of a body of water with autonomous navigation and self-reliant planning
capability [1]. USVs can be remotely controlled or can operate autonomously, relying on
various sensors, navigation systems, and communication technologies. These vehicles are
widely used for a variety of purposes, ranging from scientific research [2], environmental
monitoring [3], and disaster robotics [4] to maritime security and military applications [5,6].
USVs have played an essential role in oceanographic research, security and surveillance,
defense and military applications, network monitoring cooperating with aerial and ground
vehicles, search and rescue, and autonomous transportation [2]. More USV implementa-
tions are in the pipeline, with an increasing amount of automation research being conducted
on these devices.

Automation plays a crucial role in the development and operation of USVs. There are
various critical aspects of automation in unmanned surface vehicles including navigation
and path planning, obstacle avoidance and detection, remote operation and supervision,
data collection, mission execution, communication and data transmission, energy man-
agement, redundancy, and fail-safe mechanisms. These aspects of automation are crucial
for USVs, especially when operated in dynamic and uncertain environments, such as
open water, rivers, or busy harbors. Handling dynamic obstacles, changing currents, and

Appl. Syst. Innov. 2023, 6, 109. https://doi.org/10.3390/asi6060109 https://www.mdpi.com/journal/asi

https://doi.org/10.3390/asi6060109
https://doi.org/10.3390/asi6060109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/asi
https://www.mdpi.com
https://orcid.org/0000-0001-8854-1060
https://orcid.org/0000-0003-3420-5306
https://doi.org/10.3390/asi6060109
https://www.mdpi.com/journal/asi
https://www.mdpi.com/article/10.3390/asi6060109?type=check_update&version=1

Appl. Syst. Innov. 2023, 6, 109 2 of 19

unpredictable weather conditions can be challenging. From these many aspects of USV
automation, path planning stands out as a critical technology guaranteeing safe navigation
by creating trajectories that avoid collisions [7].

The subject of this research is a USV that performs a path planning task in a dynamic
environment. We also conducted experiments in a static environment as a comparison.
Figure 1 illustrates the simple USV path planning process in a dynamic environment. USV
dynamic path planning becomes essential because this process can bridge the automation
stage at the previous level that has been achieved (manual control and static environment)
with more advanced research (autonomous navigation and cognitive planning in a complex
environment) [2]. This is what motivated us to research USV path planning in both dynamic
and static environments using the proposed genetic algorithm modification method.

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 2 of 18

as open water, rivers, or busy harbors. Handling dynamic obstacles, changing currents,
and unpredictable weather conditions can be challenging. From these many aspects of
USV automation, path planning stands out as a critical technology guaranteeing safe nav-
igation by creating trajectories that avoid collisions [7].

The subject of this research is a USV that performs a path planning task in a dynamic
environment. We also conducted experiments in a static environment as a comparison. Fig-
ure 1 illustrates the simple USV path planning process in a dynamic environment. USV dy-
namic path planning becomes essential because this process can bridge the automation stage
at the previous level that has been achieved (manual control and static environment) with
more advanced research (autonomous navigation and cognitive planning in a complex en-
vironment) [2]. This is what motivated us to research USV path planning in both dynamic
and static environments using the proposed genetic algorithm modification method.

Figure 1. Illustration of how a USV performs path planning in a dynamic environment.

2. Related Work
Given the wide range of applications for USVs across different domains, numerous

studies have explored path planning using various approaches. In this literature review,
we classify the related algorithms into three types: conventional algorithms, deep rein-
forcement learning, and evolutionary algorithms. The conventional algorithm is used be-
cause it is relatively simple and produces quite good results. For the conventional or sim-
ple algorithm, some researchers modify A* algorithms. The constrained A* method [8] is
an approach used in optimal path planning for USVs in a maritime environment. Another
A* modification is the smoothed A* algorithm [9], applied with a new path-smoothing
process. The improved D* Lite algorithm [10] was implemented for the path planning of
unmanned surface vessels in an unknown environment, and a greedy algorithm [11] with
an adaptively rotatable distance sensor was developed to equip an autonomous evacua-
tion boat designed for dynamic flood situations.

Apart from researching modified simple algorithms, researchers also conduct studies
using deep reinforcement learning (RL) and its modifications. In contrast to traditional
algorithms, deep RL-based path planning algorithms offer a novel approach, incorporat-
ing advanced artificial intelligence at a high level [7]. RL demonstrates the capability to
acquire high performance when operating in unfamiliar environments by learning
through interactions and experiences gained from training environments, all without
prior information or knowledge [12]. RL research into complete-coverage path planning
[13] was conducted to solve the slow convergence speed problem. Other RL studies on
cooperative path planning [7] aimed to solve compliance with vehicle motion constraints
implemented in computer-based simulations and real-world maritime settings. Then, RL
for an intelligent controller [14] was proposed, involving the utilization of an intelligent
adaptive PID controller, which was improved through the integration of proximal policy
optimization (PPO). This enhancement was made with the aim of attaining a high level of
automation for USVs. Then, distributional RL was used in robust USV navigation [12] and
learned to capture the uncertainty of action outcomes. A RL method with ANOA was also
implemented for autonomous navigation and obstacle avoidance [15]. While RL has
demonstrated promising results in USV path planning tasks, it is not without its

Figure 1. Illustration of how a USV performs path planning in a dynamic environment.

2. Related Work

Given the wide range of applications for USVs across different domains, numerous
studies have explored path planning using various approaches. In this literature review,
we classify the related algorithms into three types: conventional algorithms, deep reinforce-
ment learning, and evolutionary algorithms. The conventional algorithm is used because
it is relatively simple and produces quite good results. For the conventional or simple
algorithm, some researchers modify A* algorithms. The constrained A* method [8] is an
approach used in optimal path planning for USVs in a maritime environment. Another
A* modification is the smoothed A* algorithm [9], applied with a new path-smoothing
process. The improved D* Lite algorithm [10] was implemented for the path planning of
unmanned surface vessels in an unknown environment, and a greedy algorithm [11] with
an adaptively rotatable distance sensor was developed to equip an autonomous evacuation
boat designed for dynamic flood situations.

Apart from researching modified simple algorithms, researchers also conduct studies
using deep reinforcement learning (RL) and its modifications. In contrast to traditional
algorithms, deep RL-based path planning algorithms offer a novel approach, incorporating
advanced artificial intelligence at a high level [7]. RL demonstrates the capability to acquire
high performance when operating in unfamiliar environments by learning through interac-
tions and experiences gained from training environments, all without prior information or
knowledge [12]. RL research into complete-coverage path planning [13] was conducted
to solve the slow convergence speed problem. Other RL studies on cooperative path
planning [7] aimed to solve compliance with vehicle motion constraints implemented in
computer-based simulations and real-world maritime settings. Then, RL for an intelligent
controller [14] was proposed, involving the utilization of an intelligent adaptive PID con-
troller, which was improved through the integration of proximal policy optimization (PPO).
This enhancement was made with the aim of attaining a high level of automation for USVs.
Then, distributional RL was used in robust USV navigation [12] and learned to capture the
uncertainty of action outcomes. A RL method with ANOA was also implemented for au-
tonomous navigation and obstacle avoidance [15]. While RL has demonstrated promising

Appl. Syst. Innov. 2023, 6, 109 3 of 19

results in USV path planning tasks, it is not without its limitations. RL typically demands
substantial volumes of training data to acquire effective policies, and as the dataset grows,
it necessitates more significant computational resources to process and train effectively [16].

To overcome the shortcomings of the RL approach, nature-based algorithms offer some
advantages. Nature-based algorithms can work with limited data and may not require
extensive training. These algorithms are easier to implement and require fewer computa-
tional resources. In addition, nature-based algorithms can also provide better performance
than conventional approaches because nature algorithms involve the learning and opti-
mization scenario. Some studies have been conducted that use nature-based algorithms
for USV path planning, such as the improved biological-inspired neural network [17],
trajectory-cell-based algorithm [18], bacterial foraging optimization algorithm [19], im-
proved shark-inspired algorithm [20], and plant growth algorithms [21]. Physics-based
algorithms also provide methods like the artificial potential field approach [22]. Among the
numerous nature-based algorithms available, our choice is to adapt the genetic algorithm
(GA). This algorithm is versatile and capable of handling a wide array of optimization
scenarios whether the fitness function exhibits continuity or discontinuity, linearity or
nonlinearity, or stationarity or nonstationary (changing over time), even when influenced
by random noise [23]. The GA also exhibits superior robustness and inherently maintains a
diverse population when compared to those of other evolutionary algorithms [24].

Some GA research tries to modify the population to achieve better performance. An
improved genetic algorithm [25] tried to solve the population prematurity and slow conver-
gence speed problem in USV path planning by managing the number of offspring. Other
research focusing on an improved genetic algorithm [26] was carried out for cooperative
collision avoidance. Through building fitness and iteratively optimizing the adjustment
of velocity and heading, the researchers were able to use the algorithm to safely operate
multiple USVs. Then, the improved genetic algorithm [1] was used to try to solve the
convergence speed problem by maximizing the cumulative detection probability (CDP).
Combining the GA with other algorithms provides better performance. Thus, the genetic
algorithm was combined with the simulated annealing algorithm (improved hybrid GA)
for path planning [27] in order to solve its lack of searching ability and the large amount
of calculation required. Other research combined the GA with the artificial potential field
(APF) algorithm [28] for multi-objective, multi-robot path planning in a continuous envi-
ronment. A modified genetic algorithm [29] for a USV under environmental loads was
proposed by integrating the three objective functions (minimizing travel time, reaching
a target point, and avoiding obstacles). All GA modification research was carried out to
produce better algorithm performance.

In this research, we examine a neuronal GA—a combination of a genetic algorithm
and a neural network—using neural network variable values as input to the genetic
operator of the GA. The modification is carried out by implementing a partially exponential-
based fitness function to produce a faster convergent solution (details of the proposed
methodology are presented in Section 4). The proposed method aims to solve the same
convergence problem as does other GA research, as well as other unresolved problems in
the GA in the form of implementation in a dynamic environment.

3. Problem Formulation and Contribution

Unmanned surface vehicle (USV) path planning refers to the procedure of establishing
the most advantageous or efficient course for an autonomous surface vehicle to traverse a
water body, which could be a lake, river, or ocean. This process aims to guide a USV from
its current position to a predetermined destination. The central objective of path planning
is to facilitate the USV’s successful arrival at its target by steering clear of obstacles, accom-
modating dynamic environmental changes, and adhering to specific constraints. When the
USV is in the environment, its task is to analyze the environment and determine where it is
moving to and at what acceleration. Figure 2 shows the types of forces acting on the USV
and the determination of movement decisions based on environmental detection [11].

Appl. Syst. Innov. 2023, 6, 109 4 of 19

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 4 of 18

forces acting on the USV and the determination of movement decisions based on environ-
mental detection [11].

Figure 2. Types of forces acting on the USV (a) and the determination of movement decisions based
on environmental detection (b).

In this research, the target or goal of a USV (or an evolutionary algorithm, hereinafter
referred to as an agent) is to achieve the expected fitness value. The fitness value can be
achieved if the agent can move across a predetermined route and avoid obstacles or
boundary walls. To carry out these tasks, the agent performs two maneuvers: moving
straight and turning (right or left). Figure 3 shows a simple map of the experimental en-
vironment and the expected path (the black dotted line). The experiment is initiated from
the bottom-left corner, as opposed to other starting locations. This choice is made because,
from this starting point, the agent encounters an equal number of right and left turns in
the first four movements. Starting from a different point with an uneven distribution of
turns would make it easier for the agent to detect a specific turn, but it would lead to
failure when the agent must navigate in a different direction.

Figure 3. Simple map of the experimental environment and the expected path (the black dotted line).

Figure 2. Types of forces acting on the USV (a) and the determination of movement decisions based
on environmental detection (b).

In this research, the target or goal of a USV (or an evolutionary algorithm, hereinafter
referred to as an agent) is to achieve the expected fitness value. The fitness value can
be achieved if the agent can move across a predetermined route and avoid obstacles or
boundary walls. To carry out these tasks, the agent performs two maneuvers: moving
straight and turning (right or left). Figure 3 shows a simple map of the experimental
environment and the expected path (the black dotted line). The experiment is initiated from
the bottom-left corner, as opposed to other starting locations. This choice is made because,
from this starting point, the agent encounters an equal number of right and left turns in the
first four movements. Starting from a different point with an uneven distribution of turns
would make it easier for the agent to detect a specific turn, but it would lead to failure
when the agent must navigate in a different direction.

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 4 of 18

forces acting on the USV and the determination of movement decisions based on environ-
mental detection [11].

Figure 2. Types of forces acting on the USV (a) and the determination of movement decisions based
on environmental detection (b).

In this research, the target or goal of a USV (or an evolutionary algorithm, hereinafter
referred to as an agent) is to achieve the expected fitness value. The fitness value can be
achieved if the agent can move across a predetermined route and avoid obstacles or
boundary walls. To carry out these tasks, the agent performs two maneuvers: moving
straight and turning (right or left). Figure 3 shows a simple map of the experimental en-
vironment and the expected path (the black dotted line). The experiment is initiated from
the bottom-left corner, as opposed to other starting locations. This choice is made because,
from this starting point, the agent encounters an equal number of right and left turns in
the first four movements. Starting from a different point with an uneven distribution of
turns would make it easier for the agent to detect a specific turn, but it would lead to
failure when the agent must navigate in a different direction.

Figure 3. Simple map of the experimental environment and the expected path (the black dotted line). Figure 3. Simple map of the experimental environment and the expected path (the black dotted line).

Appl. Syst. Innov. 2023, 6, 109 5 of 19

The best and most concise path does not collide with obstacles or boundaries and has
a convergent path (i.e., it can be reused for the next iteration or round). We consider it
to be used in the next round or iteration because in the case of a dynamic environment,
the USV may not necessarily use the same path in the next round. These different paths
are the result of adapting the USV to dynamic environments such as water surface waves.
For the USV to generate the optimal path, it is essential to start from the initial position
on x0 , y0, and z0, and then transition to the trajectory using two maneuvers involving
forward motion with an acceleration value represented as α, and a turning action (either to
the right or left) with an angle value denoted as θ. These two maneuvers are produced by
the neural network using the weight and bias parameters. The optimal weight and bias
values obtained from the network play a pivotal role in determining the most effective
maneuver for the USV. These values are instrumental in evaluating the USV’s acceleration
and the angle at which it turns during its movement. We optimize the weight and bias
parameters using modified genetic algorithms.

Through this research, we contribute to implementing the neuronal genetic algorithm
(combining neural network parameters—weights and biases—as the input for the GA).
For GA modification, we introduce a partially exponential-based fitness function to the
neuronal genetic algorithm. We also add an inverse time variable to the fitness function.
These two modifications aim to produce faster convergence. We implement the proposed
methodology for both static and dynamic environments.

4. Method
4.1. Experimental Setup

Our experiments take place within the mapped environment displayed in Figure 3.
We customized this environment using insights from prior research [11]. We implemented
a dynamic water environment capable of being adjusted to accommodate various wave
conditions, encompassing parameters such as height, speed, and scale. The dynamic water
environment is described as a floating surface containing multiple waves, and its attributes
are established based on Equation (1):

yx,z = Acos
(

ωt +
(xt, zt

K
2π
))

, (1)

where yx,z denotes the magnitude of the height value for each point in a Cartesian co-
ordinate system, A is the amplitude or maximum of height, and ω is the wave speed
value. Additionally, t is the time, xt and zt are the x and z positions, and K is the wave
unit. This formula enables the agent to remain buoyant on the water surface. To create a
dynamic environment, we input specific values into the equation, allowing us to configure
the environment to have varying wave effects. Conversely, we rendered the environment
static by inputting a value of 0 for ‘A,’ thereby eliminating the influence of waves. The
experiments in this study used the input values vx 2, vy 3, scale x 4, scale y 6, and height 1.2.
Using a larger value makes the dynamic environment more challenging to solve.

4.2. Proposed Methodology

In this research, we combine basic neural network algorithm methods and genetic
algorithms. The neural network is the basis for generating USV motion parameter values,
acceleration, and turning angle. The input for the network is the value obtained from the
number of n sensors. The sensor used in this research platform is a ray cast. This sensor’s
real-world implementation is the same as that of a ray sensor that detects distance values
(radar or lidar). Figure 4 shows the configuration of the sensor embedded in the agent.
The three-sensor configuration has direction angles of 45◦, 0◦, and −45◦. The five-sensor
configuration has direction angles of 45◦, 22.5◦, 0◦, −22.5◦, and −45◦. The seven-sensor
configuration has direction angles of 67.5◦, 45◦, 22.5◦, 0◦, −22.5◦, −45◦, and −67.5◦. The
angle 0◦ is in the same direction as the USV’s rectilinear motion direction.

Appl. Syst. Innov. 2023, 6, 109 6 of 19Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 6 of 18

(a) (b) (c)

Figure 4. Ray cast sensor configuration on the USV (agent) implemented in a 3D simulation envi-
ronment: (a) three sensors, (b) five sensors, and (c) seven sensors.

A neural network consists of three main layers, including the input layer, hidden
layer (single or multiple), and output layer [1]. The inputs from the sensor embedded in
USVs are fed to the network with n neurons and m number of layers. During the learning
process, the network is optimized based on the parameter of weights and biases. The ini-
tial values for weight and bias are randomly generated. In this configuration, the activa-
tion function for acceleration is sigmoid, while the steering angle uses the TanH function.
The output values range from 0 to 1 for acceleration and from −1 to 1 for the steering angle.
Figure 5 provides a visual representation of the neural network utilized in this study.

Figure 5. Fundamental framework for neural network with 𝑛 input (from the distance-based ray
cast sensor) and two outputs (acceleration, α [0,1], and the steering angle, θ [−1,1]).

In each individual process, the neural network generates a weight value represented
as 𝑤 and a bias value represented as 𝑏. The agent, such as an unmanned surface vehicle
(USV), associated with a particular neural network model constitutes an individual ge-
nome within the population of the genetic input algorithm. In a broader view, the genetic
algorithm process is illustrated in Figure 6 [27].

Figure 4. Ray cast sensor configuration on the USV (agent) implemented in a 3D simulation environ-
ment: (a) three sensors, (b) five sensors, and (c) seven sensors.

A neural network consists of three main layers, including the input layer, hidden layer
(single or multiple), and output layer [1]. The inputs from the sensor embedded in USVs
are fed to the network with n neurons and m number of layers. During the learning process,
the network is optimized based on the parameter of weights and biases. The initial values
for weight and bias are randomly generated. In this configuration, the activation function
for acceleration is sigmoid, while the steering angle uses the TanH function. The output
values range from 0 to 1 for acceleration and from −1 to 1 for the steering angle. Figure 5
provides a visual representation of the neural network utilized in this study.

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 6 of 18

(a) (b) (c)

Figure 4. Ray cast sensor configuration on the USV (agent) implemented in a 3D simulation envi-
ronment: (a) three sensors, (b) five sensors, and (c) seven sensors.

A neural network consists of three main layers, including the input layer, hidden
layer (single or multiple), and output layer [1]. The inputs from the sensor embedded in
USVs are fed to the network with n neurons and m number of layers. During the learning
process, the network is optimized based on the parameter of weights and biases. The ini-
tial values for weight and bias are randomly generated. In this configuration, the activa-
tion function for acceleration is sigmoid, while the steering angle uses the TanH function.
The output values range from 0 to 1 for acceleration and from −1 to 1 for the steering angle.
Figure 5 provides a visual representation of the neural network utilized in this study.

Figure 5. Fundamental framework for neural network with 𝑛 input (from the distance-based ray
cast sensor) and two outputs (acceleration, α [0,1], and the steering angle, θ [−1,1]).

In each individual process, the neural network generates a weight value represented
as 𝑤 and a bias value represented as 𝑏. The agent, such as an unmanned surface vehicle
(USV), associated with a particular neural network model constitutes an individual ge-
nome within the population of the genetic input algorithm. In a broader view, the genetic
algorithm process is illustrated in Figure 6 [27].

Figure 5. Fundamental framework for neural network with n input (from the distance-based ray cast
sensor) and two outputs (acceleration, α [0,1], and the steering angle, θ [−1,1]).

In each individual process, the neural network generates a weight value represented as
w and a bias value represented as b. The agent, such as an unmanned surface vehicle (USV),
associated with a particular neural network model constitutes an individual genome within
the population of the genetic input algorithm. In a broader view, the genetic algorithm
process is illustrated in Figure 6 [27].

Appl. Syst. Innov. 2023, 6, 109 7 of 19Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 7 of 18

Figure 6. General framework for genetic algorithm in the path finding task.

a. Generate Initial Population
As shown in Figure 6, the genetic algorithm begins with the process of generating an

initial population. In this context, “population” refers to neural networks characterized
by random weight and bias parameters. Each genome, representing either an agent or a
USV, is depicted using its dedicated neural network model. Each model will be expected
as our solution for the path planning task. In our experiment, we continued to create the
initial population until we reached the maximum number of genomes within a single gen-
eration, which was set at 40 agents. Once this maximum value was reached for a genera-
tion, we either reset the process to the current genome or assigned the first genome from
the existing population to the new generation’s USV.

The main novelty in this research is related to the fitness function modification. To as-
sess the performance of the pathfinding model generated by the network, we employed a
fitness function. A higher fitness value for a generated path or solution indicates a more
accurate representation of the path, while a lower fitness value suggests the opposite [30].
The fitness function is related to the variables of speed, distance, and sensors. The common
fitness function for a USV with three input sensors follows Equation (2): 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ሺ𝑣 ഥ ൈ𝑚௩ ഥ ሻ + ൫𝐷் ൈ 𝑚஽೅൯ + ൬𝑎௦௘௡௦ + 𝑏௦௘௡௦ + 𝑐௦௘௡௦3 ൈ𝑚௦൰, (2)

where (𝑣 ഥ) = 𝐷்/ሺ∑𝑡ሻ denotes the average speed; 𝑚௩ത is the average speed multiplier; 𝐷்
denotes the total distance traveled; 𝑚஽೅ is the distance multiplier; 𝑎௦௘௡௦, 𝑏௦௘௡௦, and 𝑐௦௘௡௦
are the values of sensor a, sensor b, and sensor c; and 𝑚௦ is the sensor multiplier.

If the combination of these three variables shows different values, then the difference
will be very small if it is in linear space (illustrated in Figure 7). If we apply the fitness func-
tion in exponential space, the slightly different output fitness values will be more visible
because there is the influence of the power values 𝑝, 𝑞, and 𝑟. We also add an inverse of the
time parameter so that agents that move in a short time obtain a greater fitness value. There-
fore, the form of the proposed fitness function formulation will be as in Equation (3): 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ቈሺ𝑣 ഥ ൈ𝑚௩ ഥ ሻ௣ + ൫𝐷் ൈ 𝑚஽೅൯௤ + ሺ∑ 𝑆𝑒𝑛𝑠𝑜𝑟௜௡௜ୀଵ 𝑛 ൈ 𝑚௦ሻ௥቉ ൈ 1ሺ𝑇 ൈ 𝑚்ሻ, (3)

where 𝑛 denotes the number of sensor inputs, T is the execution time, and 𝑚் is the time
multiplier with a constant number. This proposed fitness function modification is ex-
pected to produce a GA that can reach a convergent solution more quickly with a shorter
USV travel time.

Figure 6. General framework for genetic algorithm in the path finding task.

a. Generate Initial Population

As shown in Figure 6, the genetic algorithm begins with the process of generating an
initial population. In this context, “population” refers to neural networks characterized by
random weight and bias parameters. Each genome, representing either an agent or a USV,
is depicted using its dedicated neural network model. Each model will be expected as our
solution for the path planning task. In our experiment, we continued to create the initial
population until we reached the maximum number of genomes within a single generation,
which was set at 40 agents. Once this maximum value was reached for a generation, we
either reset the process to the current genome or assigned the first genome from the existing
population to the new generation’s USV.

The main novelty in this research is related to the fitness function modification. To
assess the performance of the pathfinding model generated by the network, we employed
a fitness function. A higher fitness value for a generated path or solution indicates a more
accurate representation of the path, while a lower fitness value suggests the opposite [30].
The fitness function is related to the variables of speed, distance, and sensors. The common
fitness function for a USV with three input sensors follows Equation (2):

Fitness = (v×mv) +
(

DT ×mDT

)
+

(
asens + bsens + csens

3
×ms

)
, (2)

where (v) = DT/(∑ t) denotes the average speed; mv is the average speed multiplier; DT
denotes the total distance traveled; mDT is the distance multiplier; asens, bsens, and csens are
the values of sensor a, sensor b, and sensor c; and ms is the sensor multiplier.

If the combination of these three variables shows different values, then the difference
will be very small if it is in linear space (illustrated in Figure 7). If we apply the fitness
function in exponential space, the slightly different output fitness values will be more
visible because there is the influence of the power values p, q, and r. We also add an inverse
of the time parameter so that agents that move in a short time obtain a greater fitness value.
Therefore, the form of the proposed fitness function formulation will be as in Equation (3):

Modi f ied Fitness =
[
(v×mv)

p +
(

DT ×mDT

)q
+

(
∑n

i=1 Sensori

n
×ms

)r]
× 1

(T ×mT)
, (3)

where n denotes the number of sensor inputs, T is the execution time, and mT is the time
multiplier with a constant number. This proposed fitness function modification is expected
to produce a GA that can reach a convergent solution more quickly with a shorter USV
travel time.

Appl. Syst. Innov. 2023, 6, 109 8 of 19Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 8 of 18

Figure 7. Illustration of the difference in fitness values in linear and exponential space.

b. Repopulation (Generate New Population)
As explained in the GA flowchart in Figure 6, if one of the networks in the initial

population produces a solution that converges or fits the end function, then the learning
process will stop. However, very rarely does the initial population produce convergent
solutions. If this happens, then the next process is repopulation or generating a new pop-
ulation. The randomly generated population is evaluated or optimized with genetic oper-
ators including selection, crossover, and mutation. Following the application of these
three operators, the updated population is assessed to determine whether or not the sys-
tem has generated a convergent solution. If a convergent solution has not yet been
achieved, the population will undergo further processing using the genetic operator to
produce a convergent solution.
1. Selection

The selection operator operates by choosing individual agents from the population,
and this selection can be random or based on their fitness values [28]. In this stage, we
organize and rank the population according to their modified fitness values using Equa-
tion (2). The top-performing individuals are chosen as parents to undergo further pro-
cessing with the next genetic operator. In this study, we identify the best ten agents and
the worst four agents for this purpose. Figure 8 illustrates the selection process of a USV
as an agent based on the fitness value.

Figure 8. USV selection process based on the fitness value (ranked from the best to the worst fitness
value).

Figure 7. Illustration of the difference in fitness values in linear and exponential space.

b. Repopulation (Generate New Population)

As explained in the GA flowchart in Figure 6, if one of the networks in the initial
population produces a solution that converges or fits the end function, then the learning
process will stop. However, very rarely does the initial population produce convergent
solutions. If this happens, then the next process is repopulation or generating a new
population. The randomly generated population is evaluated or optimized with genetic
operators including selection, crossover, and mutation. Following the application of these
three operators, the updated population is assessed to determine whether or not the system
has generated a convergent solution. If a convergent solution has not yet been achieved,
the population will undergo further processing using the genetic operator to produce a
convergent solution.

1. Selection

The selection operator operates by choosing individual agents from the population,
and this selection can be random or based on their fitness values [28]. In this stage,
we organize and rank the population according to their modified fitness values using
Equation (2). The top-performing individuals are chosen as parents to undergo further
processing with the next genetic operator. In this study, we identify the best ten agents and
the worst four agents for this purpose. Figure 8 illustrates the selection process of a USV as
an agent based on the fitness value.

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 8 of 18

Figure 7. Illustration of the difference in fitness values in linear and exponential space.

b. Repopulation (Generate New Population)
As explained in the GA flowchart in Figure 6, if one of the networks in the initial

population produces a solution that converges or fits the end function, then the learning
process will stop. However, very rarely does the initial population produce convergent
solutions. If this happens, then the next process is repopulation or generating a new pop-
ulation. The randomly generated population is evaluated or optimized with genetic oper-
ators including selection, crossover, and mutation. Following the application of these
three operators, the updated population is assessed to determine whether or not the sys-
tem has generated a convergent solution. If a convergent solution has not yet been
achieved, the population will undergo further processing using the genetic operator to
produce a convergent solution.
1. Selection

The selection operator operates by choosing individual agents from the population,
and this selection can be random or based on their fitness values [28]. In this stage, we
organize and rank the population according to their modified fitness values using Equa-
tion (2). The top-performing individuals are chosen as parents to undergo further pro-
cessing with the next genetic operator. In this study, we identify the best ten agents and
the worst four agents for this purpose. Figure 8 illustrates the selection process of a USV
as an agent based on the fitness value.

Figure 8. USV selection process based on the fitness value (ranked from the best to the worst fitness
value).
Figure 8. USV selection process based on the fitness value (ranked from the best to the worst
fitness value).

Appl. Syst. Innov. 2023, 6, 109 9 of 19

2. Crossover

In the crossover operator, a higher probability denoted as pc is implemented compared
to that of other genetic operators. This operator involves exchanging one array or segment
of one chromosome with the corresponding segment from another chromosome, and this
exchange occurs at a random location. The main purpose of this operator is to facilitate
the merging or combination of convergent characteristics in a subspace and to generate
expected solutions [23]. In the context of the USVs, this operator combines all of the network
arrays and swaps the entire set of weights and biases between two parent chromosomes to
create two offspring chromosomes. This step can be referred to as an exploration process
within genetic algorithms [31]. Figure 9 shows how the USV performs the crossover process.

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 9 of 18

2. Crossover
In the crossover operator, a higher probability denoted as 𝑝௖ is implemented com-

pared to that of other genetic operators. This operator involves exchanging one array or
segment of one chromosome with the corresponding segment from another chromosome,
and this exchange occurs at a random location. The main purpose of this operator is to
facilitate the merging or combination of convergent characteristics in a subspace and to
generate expected solutions [23]. In the context of the USVs, this operator combines all of
the network arrays and swaps the entire set of weights and biases between two parent
chromosomes to create two offspring chromosomes. This step can be referred to as an
exploration process within genetic algorithms [31]. Figure 9 shows how the USV performs
the crossover process.

Figure 9. USV performing the crossover process to produce new children. USVs with red color are
the original ones, and the blue color indicates the USV children after crossover process.

3. Mutation
The mutation operator operates by randomly flipping selected bits, and the mutation

probability, 𝑝௠ , is typically set to be smaller than that of other operators. This operator
serves to enrich the diversity within the population [29] and offers a means to break free
from local optima [23]. In the context of the USVs, this operator introduces randomization
by altering both the row and column of the weight matrix. It then adjusts the values by
adding a random rank value ranging from −1 to 1. This step can be thought of as an exploi-
tation task within the genetic algorithm. Figure 10 shows the mutation process of the USV.

Figure 10. USV performing the mutation process to reproduce mutated children. The red USVs are
the original ones, the blue USVs are the children after crossover process, and the green color indi-
cates USV children after mutation (mutated children).

Figure 9. USV performing the crossover process to produce new children. USVs with red color are
the original ones, and the blue color indicates the USV children after crossover process.

3. Mutation

The mutation operator operates by randomly flipping selected bits, and the mutation
probability, pm, is typically set to be smaller than that of other operators. This operator
serves to enrich the diversity within the population [29] and offers a means to break free
from local optima [23]. In the context of the USVs, this operator introduces randomization
by altering both the row and column of the weight matrix. It then adjusts the values by
adding a random rank value ranging from −1 to 1. This step can be thought of as an
exploitation task within the genetic algorithm. Figure 10 shows the mutation process of
the USV.

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 9 of 18

2. Crossover
In the crossover operator, a higher probability denoted as 𝑝௖ is implemented com-

pared to that of other genetic operators. This operator involves exchanging one array or
segment of one chromosome with the corresponding segment from another chromosome,
and this exchange occurs at a random location. The main purpose of this operator is to
facilitate the merging or combination of convergent characteristics in a subspace and to
generate expected solutions [23]. In the context of the USVs, this operator combines all of
the network arrays and swaps the entire set of weights and biases between two parent
chromosomes to create two offspring chromosomes. This step can be referred to as an
exploration process within genetic algorithms [31]. Figure 9 shows how the USV performs
the crossover process.

Figure 9. USV performing the crossover process to produce new children. USVs with red color are
the original ones, and the blue color indicates the USV children after crossover process.

3. Mutation
The mutation operator operates by randomly flipping selected bits, and the mutation

probability, 𝑝௠ , is typically set to be smaller than that of other operators. This operator
serves to enrich the diversity within the population [29] and offers a means to break free
from local optima [23]. In the context of the USVs, this operator introduces randomization
by altering both the row and column of the weight matrix. It then adjusts the values by
adding a random rank value ranging from −1 to 1. This step can be thought of as an exploi-
tation task within the genetic algorithm. Figure 10 shows the mutation process of the USV.

Figure 10. USV performing the mutation process to reproduce mutated children. The red USVs are
the original ones, the blue USVs are the children after crossover process, and the green color indi-
cates USV children after mutation (mutated children).

Figure 10. USV performing the mutation process to reproduce mutated children. The red USVs are
the original ones, the blue USVs are the children after crossover process, and the green color indicates
USV children after mutation (mutated children).

Appl. Syst. Innov. 2023, 6, 109 10 of 19

c. End function

The “end” function serves to conclude the iteration process or initiate a new iteration
when the USV encounters difficulties in executing the pathfinding task. Specifically, we
halt and restart the learning process under the following conditions:

1. If the USV collides with obstacles or barriers in the environment;
2. When the agent produces a suboptimal or too-weak solution (determined by both the

achieved fitness value and the time iteration);
3. If the USV submerges below the water’s surface.

Ultimately, the process concludes when the USV successfully reaches the target, com-
pleting more than one full round without colliding with any obstacles.

4.3. Performance Evaluation

In this study, we use three parameters to evaluate the performance of the proposed
method (the modified neuronal GA) compared to that of the baseline method (the neural
network-based GA). These three parameters include convergence speed, travel distance,
and travel time. The speed of convergence is determined according to the total number of
genomes required by the model to be able to produce. The fewer total genomes needed,
the faster a model will produce a convergent solution or path (the USV does not hit an
obstacle). In our research, we used 40 genomes for one generation, so the total number of
genomes follows Equation (4):

Total Genome = 40 ∗∑ generation + ∑ current genome. (4)

The distance evaluation parameter is determined by the total distance traveled by the
USV to make one full rotation on the track (from one point back to the starting point). The
total displacement path is described as follows (Equation (5)) [11]:

D = ∑n−1
i=0

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2, (5)

where xi, yi, and zi denote the X, Y, and Z coordinate axis values of node i. For the travel
time parameter, this is determined based on the time required for the USV to complete
one full circle from one place back to the same place. Travel time values are obtained from
the simulator platform that we use.

To measure the significance of the performance of the proposed algorithm compared
with that of the baseline method, we used the t-test. This test is commonly employed
when we have two sets of data and want to assess whether or not any observed differences
between them are statistically significant. Therefore, the t statistic for a paired t-test
is as follows [32]:

t =
X1 − X2

sd/
√

n
, (6)

where X1 − X2 denotes the mean of the differences between paired observations, sd is
the standard deviation of the differences, and n is the number of pairs (or the sample
size). This t Stat value will be compared with the t Critical value to determine whether the
performance of the proposed method produces a significant increase or not. If t Stat > t
Critical, or p-Value < alpha, then we can conclude that the increase in the performance of
the proposed method is significant, and vice versa.

5. Results and Analysis

We tested our proposed methodology using a three-dimensional simulator platform.
This simulation was useful to determine the performance of the proposed method before
being applied directly in the real world. We used 40 genomes for one generation, and
we selected the ten best agents and four worst agents. The term genome represents the
agent or USV unit that is generated to produce a solution. We conducted the experiment in

Appl. Syst. Innov. 2023, 6, 109 11 of 19

two different environments: static and dynamic. For the experiments in each environment,
we varied the number of sensor inputs and the mutation rate value. We used three different
types of sensors input according to the configuration in Figure 4. Variations in the mutation
rate values started from 0.025, 0.055, 0.105, 0.155, and 0.205 to 0.225. We conducted
experiments with these variations using a baseline method (the neural network-based
genetic algorithm or NNGA) and compared it to our proposed methodology (the modified
neuronal GA).

5.1. Sample Experiment

Based on the experimental results, we successfully simulated a USV in static and
dynamic environments using both the baseline method and the proposed method.
Figures 11 and 12 show examples of the experimental results in the static and dynamic
environments for the baseline method and the proposed method, respectively.

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 11 of 18

types of sensors input according to the configuration in Figure 4. Variations in the muta-
tion rate values started from 0.025, 0.055, 0.105, 0.155, and 0.205 to 0.225. We conducted
experiments with these variations using a baseline method (the neural network-based ge-
netic algorithm or NNGA) and compared it to our proposed methodology (the modified
neuronal GA).

5.1. Sample Experiment
Based on the experimental results, we successfully simulated a USV in static and dy-

namic environments using both the baseline method and the proposed method. Figures
11 and 12 show examples of the experimental results in the static and dynamic environ-
ments for the baseline method and the proposed method, respectively.

Figure 11 shows how paths in a static environment are formed. The experimental
image was produced using a USV with three sensor inputs and a mutation rate value of
0.025. The experimental results show how the proposed method can produce paths that
converge faster than those of the baseline method. The proposed method only requires a
total of 120 genomes to be able to converge, but the baseline method requires a total of up
to 369 genomes. Although, for one full round, the proposed method produces a longer
path, the proposed method produces a faster travel time with 41.60-time units (around
two times faster) compared to that of the baseline method, which is 80.82-time units.

Figure 12 shows the results of path planning in a dynamic environment. The experi-
mental image was produced using a USV with five sensor inputs and a mutation rate
value of 0.255. These experiments show how the proposed method can produce paths that
converge more quickly with 162 genomes (around 3.2 times faster) when compared to
those of the baseline method with 522 total genomes. In this figure, it can also be seen that
for experiments conducted in a dynamic environment, it is possible for a USV to create or
generate different paths between the first round and the next round. For the baseline
method, the USV produces different paths when turning to the left and right twice in a
row (in the area to the left of the center). However, the experimental results with the pro-
posed method produce a significantly different path with every right turn. This does not
happen in a static environment (where there is no water wave factor), where the path is
almost the same for the first and subsequent rounds.

Figure 11. Examples of experimental results in static environments for the baseline method (left)
and the proposed method (right) with three sensor inputs and a mutation rate value of 0.025 (this
figure is based on Tables A1 and A2 in Appendix A).

Figure 11. Examples of experimental results in static environments for the baseline method (left) and
the proposed method (right) with three sensor inputs and a mutation rate value of 0.025 (this figure
is based on Tables A1 and A2 in Appendix A).

Figure 11 shows how paths in a static environment are formed. The experimental
image was produced using a USV with three sensor inputs and a mutation rate value of
0.025. The experimental results show how the proposed method can produce paths that
converge faster than those of the baseline method. The proposed method only requires a
total of 120 genomes to be able to converge, but the baseline method requires a total of up
to 369 genomes. Although, for one full round, the proposed method produces a longer
path, the proposed method produces a faster travel time with 41.60-time units (around
two times faster) compared to that of the baseline method, which is 80.82-time units.

Figure 12 shows the results of path planning in a dynamic environment. The exper-
imental image was produced using a USV with five sensor inputs and a mutation rate
value of 0.255. These experiments show how the proposed method can produce paths
that converge more quickly with 162 genomes (around 3.2 times faster) when compared
to those of the baseline method with 522 total genomes. In this figure, it can also be seen
that for experiments conducted in a dynamic environment, it is possible for a USV to create
or generate different paths between the first round and the next round. For the baseline

Appl. Syst. Innov. 2023, 6, 109 12 of 19

method, the USV produces different paths when turning to the left and right twice in a row
(in the area to the left of the center). However, the experimental results with the proposed
method produce a significantly different path with every right turn. This does not happen
in a static environment (where there is no water wave factor), where the path is almost the
same for the first and subsequent rounds.

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 12 of 18

Figure 12. Examples of experimental results in dynamic environments for the baseline method (left)
and the proposed method (right) with five sensor inputs and a mutation rate value of 0.255 (this
figure is based on Tables A3 and A4 in Appendix A).

5.2. Overall Analysis
Table 1 shows a summary of the experimental results from a static environment for

the baseline and proposed methods. Table 2 shows the result for the dynamic environ-
ment. The total genome, distance traveled, and time traveled are average values for all
experiments with varying mutation rate values. Distance is expressed in distance units
and time is expressed in time units in the simulator. Detailed experimental results for each
mutation rate, total generation, and current genome value are provided in Appendix A.

Table 1. Summary of experimental results from a static environment for the baseline and proposed
methods.

Input Number
Baseline (NNGA) Proposed (Modified Neuronal GA)

Total Genome Distance Time Total Genome Distance Time
3 Input 354.83 259.68 64.29 239.33 262.77 54.11
5 Input 301.67 255.98 46.68 291.83 257.53 50.86
7 Input 307.50 271.50 55.79 187.50 266.74 69.27
Mean 321.33 262.39 55.58 239.56 262.35 58.08

Table 2. Summary of experimental results from a dynamic environment for the baseline and pro-
posed methods.

Input Number
Baseline (NNGA) Proposed (Modified Neuronal GA)

Total Genome Distance Time Total Genome Distance Time
3 Input 416.00 260.86 59.82 358.67 264.84 47.58
5 Input 558.50 258.28 53.06 440.67 263.36 42.36
7 Input 765.00 268.30 58.61 459.67 271.46 45.86
Mean 579.83 262.48 57.16 419.67 266.55 45.27

From Table 1, we can see that, in general, the proposed method can produce conver-
gent solutions more quickly (requiring fewer total genomes) than the baseline method

Figure 12. Examples of experimental results in dynamic environments for the baseline method (left)
and the proposed method (right) with five sensor inputs and a mutation rate value of 0.255 (this
figure is based on Tables A3 and A4 in Appendix A).

5.2. Overall Analysis

Table 1 shows a summary of the experimental results from a static environment for the
baseline and proposed methods. Table 2 shows the result for the dynamic environment. The
total genome, distance traveled, and time traveled are average values for all experiments
with varying mutation rate values. Distance is expressed in distance units and time is
expressed in time units in the simulator. Detailed experimental results for each mutation
rate, total generation, and current genome value are provided in Appendix A.

Table 1. Summary of experimental results from a static environment for the baseline and
proposed methods.

Input
Number

Baseline (NNGA) Proposed (Modified Neuronal GA)

Total
Genome Distance Time Total

Genome Distance Time

3 Input 354.83 259.68 64.29 239.33 262.77 54.11
5 Input 301.67 255.98 46.68 291.83 257.53 50.86
7 Input 307.50 271.50 55.79 187.50 266.74 69.27
Mean 321.33 262.39 55.58 239.56 262.35 58.08

From Table 1, we can see that, in general, the proposed method can produce convergent
solutions more quickly (requiring fewer total genomes) than the baseline method can. These
positive results were achieved for experiments with three, five, and seven inputs. The
USV with seven sensor inputs shows the most significant difference (1.64 times faster). For

Appl. Syst. Innov. 2023, 6, 109 13 of 19

the travel distance parameters, overall, the proposed method is slightly better (produces
shorter paths) compared to those of the baseline method. Because seven sensor inputs have
a significant increase compared to three and five inputs, the average travel distance is better
using the proposed method. The detailed results in the table in Appendix A also show that
the proposed method is superior for travel distance in many experiments. Nevertheless,
for travel time parameters, the proposed method does not show better results. Only at
input sensor three does the proposed method show a faster travel time. However, the
decline in performance was declared not significant, as proven by the significance test
in Section 5.3. Therefore, we can indicate that in this static case, the proposed method
can still compete because it is superior in terms of travel distance parameters. Moreover,
this study has limitations for not considering other USV performance parameters such as
stability and smoothness. USVs with advantages in the distance aspect are suitable for
implementing victim evacuation schemes, such as those in flood disasters, accidents at sea,
and many more.

Table 2. Summary of experimental results from a dynamic environment for the baseline and
proposed methods.

Input
Number

Baseline (NNGA) Proposed (Modified Neuronal GA)

Total
Genome Distance Time Total

Genome Distance Time

3 Input 416.00 260.86 59.82 358.67 264.84 47.58
5 Input 558.50 258.28 53.06 440.67 263.36 42.36
7 Input 765.00 268.30 58.61 459.67 271.46 45.86
Mean 579.83 262.48 57.16 419.67 266.55 45.27

When compared with experiments conducted in a static environment, those conducted
with the proposed method show better performance in a dynamic environment. For all
input number sensor values, the proposed method can produce a convergent solution
around 1.38 times faster (and requires less total genome) compared to that with the baseline
method. Moreover, for all input number values, the proposed method is also around
1.26 times faster in terms of travel time compared to that under the baseline method.
However, for all input numbers, the proposed method produces a longer travel distance.
This longer distance is covered more quickly, indicating that in the proposed method, the
USV moves with a higher acceleration value compared to that under the baseline method.
Therefore, the proposed method produces faster solutions than does the baseline method.

5.3. Significance Test

In this study, we used the t-test to test the significance of the results of the experiment.
We used a paired-samples t-test by assuming equal variances. Each pair of data points
(result comparison between the baseline and proposed method in Appendix A) is treated
as a single observation, and the degrees of freedom are calculated based on the number of
pairs. Therefore, the degrees of freedom (d f) = (n – 1) = (18 – 1) = 17. t Critical is obtained
using Equation (6). This equation was used to calculate the value of t Critical, t Statistics,
and p-Value for the data point. In this t-test, we used the alpha or significance level (α) of
0.05. The Critical t value, t Statistics, and p-Value for the experimental results in a static
environment are presented in Table 3 below.

Table 3. t Critical, t Statistics, and p-Value for experimental results in a static environment.

Result Comparison of Baseline and Proposed Method t Critical t Stat p-Value

Total genome (convergence speed) 1.69 1.74 0.045
Travel distance 1.69 0.015 0.493
Travel time 1.69 −0.410 0.342

Appl. Syst. Innov. 2023, 6, 109 14 of 19

Table 3 shows that the total genome (convergence speed) in a static environment
produces a t Critical value of 1.69, a t Stat value of 1.74, and a p-Value of 0.045. Because
t Stat > t Critical, and p-Value < alpha, we can conclude that the increase in convergence
speed in static environment experiments with the proposed method is significant. From
this table, even though the overall distance traveled under the proposed method is slightly
better than that under the baseline method, the increase cannot be said to be significant.
This is because, for travel distance, t Statistics < t Critical, and p-Value > alpha. Then, as
seen in Table 1, the proposed method cannot produce better performance for the travel
time parameter, although based on Table 3, the decrease in performance is not significant
because t Statistics < t Critical, and p-Value > alpha, so the performance of the proposed
method can still compete with the performance of the baseline method for this parameter.

Table 4 shows the t Critical, t Statistics, and p-Value for the experimental results in
a static environment. Table 4 shows a t Critical value of 1.69, a t Stat value of 1.71, and a
p-Value of 0.049. Because t Stat > t Critical, or p-Value < alpha, we can conclude that the
increase in the convergence speed in dynamic environment experiments with the proposed
method is significant. Then, for the travel time parameter, we obtain a t Critical value of
1.69, t Stat value of 2.14, and p-Value of 0.019. Because t Stat > t Critical, or p-Value < alpha,
we can conclude that the increase in the USV travel speed for one rotation in the dynamic
environment experiment using the proposed method is significant. For the travel distance
parameter, although the proposed method does not produce better performance, based
on Table 4, we know that the decrease is not significant. This is because even though
p-Value < alpha, t Stat < t Critical.

Table 4. t Critical, t Statistics, and p-Value for experimental results in a dynamic environment.

Result Comparison of Baseline and Proposed Method t Critical t Stat p-Value

Total genome (convergence speed) 1.69 1.71 0.049
Travel distance 1.69 −1.95 0.029
Travel time 1.69 2.14 0.019

Based on the experimental results, the proposed method produces better performance
for convergence speed in both static and dynamic environments. This performance increase
is significant based on the statistical tests. For the travel distance parameter, the proposed
method is superior in static environments, but not in dynamic environments. However, for
both environments, the increase and decrease in the performance of the proposed method
is not significant based on statistical tests. For the travel time parameter, the proposed
method does not produce better performance for static environments, but it manages to
show significantly better performance in dynamic environments (also proven via statistical
tests). Based on the experimental results, compared to that on under the baseline method,
the proposed method can produce a faster convergent solution for USV path planning with
competitive performance for total distance and time traveled in both static and dynamic
environments. This is because we applied a partially exponential fitness function, as
explained in the Section 4.2. This proves that if we apply the fitness function in exponential
space, the slightly different output fitness values will be more visible because there is
the influence of the power values p, q, and r. In addition to this, an inverse of the time
parameter allows the agent to move in a shorter time to obtain a greater fitness value. Thus,
this form of modification can be applied in other genetic algorithm research to produce
higher convergence speeds.

6. Conclusions

This research was conducted to solve unmanned surface vehicle (USV) dynamic
environmental problems as well as convergence problems in evolutionary algorithms. This
research proposes a neuronal genetic algorithm that utilizes neural network inputs for
processing with a genetic operator. The modifications in this research were carried out by
applying a partially exponential-based fitness function to the neuronal genetic algorithm.

Appl. Syst. Innov. 2023, 6, 109 15 of 19

We also implemented an inverse time variable to the fitness function. Both modifications
aim to produce faster convergence. Based on the experimental results and compared to
basic neural-network-based genetic algorithms, the proposed method can produce faster
convergent solutions and requires a smaller total genome. This improvement was declared
significant using statistical test methods. Then, for the travel distance parameter, the
proposed method provides better performance in static environments. For travel time, the
proposed method provides significantly better performance in dynamic environments. This
proves that, in exponential space, slightly different output fitness values will be more visible
because there is the influence of power values. In addition, an inverse of the time parameter
allows the USV to move in a shorter time to obtain a greater fitness value. Therefore, this
form of modification can be applied in other genetic algorithm research to produce better
convergence speeds.

There are many kinds of improvements that can be implemented in the future. The
challenge associated with travel distance may be resolved by considering the radius value
between the center of the map and the position of the USV when moving, although this is
not necessarily relevant to real-world cases. Other research on unaddressed USV problems,
such as autonomous navigation and cognitive planning in a complex environment, can be
carried out using other GA modifications.

Author Contributions: Conceptualization, N.H., W.D. and H.N.; methodology, N.H.; software, N.H.;
validation, N.H., W.D. and H.N.; formal analysis, N.H.; investigation, N.H.; resources, N.H.; data
curation, N.H.; writing—original draft preparation, N.H.; writing—review and editing, N.H. and
W.D.; visualization, N.H.; supervision, H.N.; project administration, H.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be
found here: https://github.com/nurhamid26/ModifiedNeuronalGA (accessed on 5 November 2023).

Acknowledgments: The first author would like to express the gratitude to Ministry of Education,
Culture, Sports, Science and Technology (MEXT) Japan and Japan International Cooperation Agency
(JICA) for providing the scholarship during the study at Kanazawa University, Japan.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix displays detailed results for all experiments carried out in static and
dynamic environments, using the baseline and proposed methods. The experimental
results displayed are detailed based on each mutation rate value, the summary or average
of which is shown in the Section 5.

Table A1. Detailed results from static environment experiment using baseline method (NNGA).

Input Number Mutation Rate Generation Genome Total Genome Distance Time

3 inputs

0.025 9 36 396 255.17 80.82

0.055 7 5 285 263.95 50.09

0.105 10 4 404 256.08 39.24

0.155 4 1 161 260.21 82.62

0.205 12 29 509 265.74 49.63

0.255 9 14 374 256.92 83.34

Average 354.83 259.68 64.29

https://github.com/nurhamid26/ModifiedNeuronalGA

Appl. Syst. Innov. 2023, 6, 109 16 of 19

Table A1. Cont.

Input Number Mutation Rate Generation Genome Total Genome Distance Time

5 inputs

0.025 3 6 126 253.98 81.64

0.055 16 0 640 255.72 41.22

0.105 11 0 440 255.29 31.30

0.155 4 2 162 261.14 31.91

0.205 4 2 162 255.64 53.60

0.255 7 0 280 254.09 40.38

Average 301.67 255.98 46.68

7 inputs

0.025 3 1 121 278.39 35.50

0.055 11 2 442 268.97 85.07

0.105 7 2 282 259.50 43.01

0.155 9 0 360 272.56 34.60

0.205 4 0 160 270.07 61.81

0.255 12 0 480 279.52 74.74

Average 307.50 271.50 55.79

Table A2. Detailed results from static environment experiment using proposed method (modified
neuronal GA).

Input Number Mutation Rate Generation Genome Total Genome Distance Time

3 inputs

0.025 3 0 120 263.11 41.60

0.055 5 25 225 262.46 53.25

0.105 6 0 240 259.23 54.12

0.155 5 2 202 259.90 82.82

0.205 5 7 207 268.57 33.03

0.255 11 2 442 263.36 59.85

Average 239.33 262.77 54.11

5 inputs

0.025 4 3 163 255.79 70.86

0.055 13 24 544 256.00 47.68

0.105 9 0 360 266.94 32.38

0.155 2 1 81 258.46 64.35

0.205 7 2 282 254.00 54.00

0.255 8 1 321 254.00 35.91

Average 291.83 257.53 50.86

7 inputs

0.025 3 1 121 262.41 70.95

0.055 5 27 227 262.43 71.06

0.105 1 0 40 269.13 75.92

0.155 5 19 219 271.37 49.21

0.205 3 32 152 268.11 70.25

0.255 9 6 366 267.00 78.23

Average 187.50 266.74 69.27

Appl. Syst. Innov. 2023, 6, 109 17 of 19

Table A3. Detailed results from dynamic environment experiment using baseline method (NNGA).

Input Number Mutation Rate Generation Genome Total Genome Distance Time

3 inputs

0.025 13 37 557 267.42 80.52

0.055 11 5 445 255.96 44.06

0.105 18 2 722 256.62 66.25

0.155 5 0 200 266.07 35.67

0.205 9 8 368 258.20 55.44

0.255 5 4 204 260.91 77.00

Average 416.00 260.86 59.82

5 inputs

0.025 15 6 606 261.62 38.18

0.055 19 0 760 256.11 73.35

0.105 6 0 240 263.27 60.87

0.155 17 19 699 255.57 81.94

0.205 13 4 524 254.34 30.76

0.255 13 2 522 258.79 33.27

Average 558.50 258.28 53.06

7 inputs

0.025 17 36 716 270.44 78.50

0.055 1 32 72 271.06 48.56

0.105 24 1 961 269.28 43.37

0.155 26 1 1041 268.33 64.45

0.205 24 0 960 269.12 76.15

0.255 21 0 840 261.55 40.60

Average 765.00 268.30 58.61

Table A4. Detailed results from dynamic environment experiment using proposed method (modified
neuronal GA).

Input Number Mutation Rate Generation Genome Total Genome Distance Time

3 inputs

0.025 11 29 469 268.65 34.80

0.055 4 1 161 260.77 41.11

0.105 2 16 96 262.57 35.16

0.155 4 3 163 254.76 40.28

0.205 17 32 712 273.19 87.53

0.255 13 31 551 269.12 46.58

Average 358.67 264.84 47.58

5 inputs

0.025 4 16 176 263.50 56.00

0.055 15 2 602 261.65 36.50

0.105 2 18 98 257.56 63.49

0.155 26 2 1042 275.83 32.56

0.205 14 4 564 255.98 30.98

0.255 4 2 162 265.65 34.60

Average 440.67 263.36 42.36

Appl. Syst. Innov. 2023, 6, 109 18 of 19

Table A4. Cont.

Input Number Mutation Rate Generation Genome Total Genome Distance Time

7 inputs

0.025 6 0 240 272.13 64.22

0.055 16 14 654 273.00 48.98

0.105 12 15 495 273.45 32.91

0.155 5 9 209 267.76 39.68

0.205 5 0 200 275.31 34.29

0.255 24 0 960 267.10 55.10

Average 459.67 271.46 45.86

References
1. Guo, H.; Mao, Z.; Ding, W.; Liu, P. Optimal search path planning for unmanned surface vehicle based on an improved genetic

algorithm. Comput. Electr. Eng. 2019, 79, 106467. [CrossRef]
2. Zhou, C.; Gu, S.; Wen, Y.; Du, Z.; Xiao, C.; Huang, L.; Zhu, M. The review unmanned surface vehicle path planning: Based on

multi-modality constraint. Ocean Eng. 2020, 200, 107043. [CrossRef]
3. Chang, H.-C.; Hsu, Y.-L.; Hung, S.-S.; Ou, G.-R.; Wu, J.-R.; Hsu, C. Autonomous water quality monitoring and water surface

cleaning for unmanned surface vehicle. Sensors 2021, 21, 1102. [CrossRef]
4. Jorge, V.A.M.; Granada, R.; Maidana, R.G.; Jurak, D.A.; Heck, G.; Negreiros, A.P.F.; dos Santos, D.H.; Gonçalves, L.M.G.;

Amory, A.M. A survey on unmanned surface vehicles for disaster robotics: Main challenges and directions. Sensors 2018,
19, 702. [CrossRef]

5. Akdağ, M.; Solnør, P.; Johansen, T.A. Collaborative collision avoidance for Maritime Autonomous Surface Ships: A review.
Ocean Eng. 2022, 250, 110920. [CrossRef]

6. Shao, Z.; Lyu, H.; Yin, Y.; Cheng, T.; Gao, X.; Zhang, W.; Jing, Q.; Zhao, Y.; Zhang, L. Multi-Scale Object Detection Model for
Autonomous Ship Navigation in Maritime Environment. J. Mar. Sci. Eng. 2022, 10, 1783. [CrossRef]

7. Zhou, X.; Wu, P.; Zhang, H.; Guo, W.; Liu, Y. Learn to Navigate: Cooperative Path Planning for Unmanned Surface Vehicles Using
Deep Reinforcement Learning. IEEE Access 2019, 7, 165262–165278. [CrossRef]

8. Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D.; Khan, A. A constrained A* approach towards optimal path planning for an
unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Eng. 2018,
169, 187–201. [CrossRef]

9. Song, R.; Liu, Y.; Bucknall, R. Smoothed A* algorithm for practical unmanned surface vehicle path planning. Appl. Ocean Res.
2019, 83, 9–20. [CrossRef]

10. Yu, J.; Yang, M.; Zhao, Z.; Wang, X.; Bai, Y.; Wu, J.; Xu, J. Path planning of unmanned surface vessel in an unknown environment
based on improved D*Lite algorithm. Ocean Eng. 2022, 266, 112873. [CrossRef]

11. Hamid, N.; Dharmawan, W.; Nambo, H. Autonomous Evacuation Boat in Dynamic Flood Disaster Environment. In Proceedings
of the ICACSIS 2022: 14th International Conference on Advanced Computer Science and Information Systems, Depok, Indonesia,
1–3 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 117–122. [CrossRef]

12. Lin, X.; McConnell, J.; Englot, B. Robust Unmanned Surface Vehicle Navigation with Distributional Reinforcement Learning.
arXiv 2023. Available online: http://arxiv.org/abs/2307.16240 (accessed on 30 July 2023).

13. Xing, B.; Wang, X.; Yang, L.; Liu, Z.; Wu, Q. An Algorithm of Complete Coverage Path Planning for Unmanned Surface Vehicle
Based on Reinforcement Learning. J. Mar. Sci. Eng. 2023, 11, 645. [CrossRef]

14. Lai, P.; Liu, Y.; Zhang, W.; Xu, H. Intelligent controller for unmanned surface vehicles by deep reinforcement learning. Phys. Fluids
2023, 35, 037111. [CrossRef]

15. Wu, X.; Chen, H.; Chen, C.; Zhong, M.; Xie, S.; Guo, Y.; Fujita, H. The autonomous navigation and obstacle avoidance for USVs
with ANOA deep reinforcement learning method. Knowl.-Based Syst. 2020, 196, 105201. [CrossRef]

16. Prudencio, R.F.; Maximo, M.R.O.A.; Colombini, E.L. A Survey on Offline Reinforcement Learning: Taxonomy, Review, and Open
Problems. IEEE Trans. Neural Netw. Learn. Syst. 2023, 99, 1. [CrossRef]

17. Tang, F. Coverage path planning of unmanned surface vehicle based on improved biological inspired neural network. Ocean Eng.
2023, 278, 114354. [CrossRef]

18. Du, Z.; Wen, Y.; Xiao, C.; Huang, L.; Zhou, C.; Zhang, F. Trajectory-cell based method for the unmanned surface vehicle motion
planning. Appl. Ocean Res. 2019, 86, 207–221. [CrossRef]

19. Long, Y.; Liu, S.; Qiu, D.; Li, C.; Guo, X.; Shi, B.; AbouOmar, M.S. Local Path Planning with Multiple Constraints for USV Based
on Improved Bacterial Foraging Optimization Algorithm. J. Mar. Sci. Eng. 2023, 11, 489. [CrossRef]

20. Liang, J.; Liu, L. Optimal Path Planning Method for Unmanned Surface Vehicles Based on Improved Shark-Inspired Algorithm.
J. Mar. Sci. Eng. 2023, 11, 1386. [CrossRef]

21. Bai, X.; Li, B.; Xu, X.; Xiao, Y. USV path planning algorithm based on plant growth. Ocean Eng. 2023, 273, 113965. [CrossRef]

https://doi.org/10.1016/j.compeleceng.2019.106467
https://doi.org/10.1016/j.oceaneng.2020.107043
https://doi.org/10.3390/s21041102
https://doi.org/10.3390/s19030702
https://doi.org/10.1016/j.oceaneng.2022.110920
https://doi.org/10.3390/jmse10111783
https://doi.org/10.1109/ACCESS.2019.2953326
https://doi.org/10.1016/j.oceaneng.2018.09.016
https://doi.org/10.1016/j.apor.2018.12.001
https://doi.org/10.1016/j.oceaneng.2022.112873
https://doi.org/10.1109/ICACSIS56558.2022.9923446
http://arxiv.org/abs/2307.16240
https://doi.org/10.3390/jmse11030645
https://doi.org/10.1063/5.0139568
https://doi.org/10.1016/j.knosys.2019.105201
https://doi.org/10.1109/TNNLS.2023.3250269
https://doi.org/10.1016/j.oceaneng.2023.114354
https://doi.org/10.1016/j.apor.2019.02.005
https://doi.org/10.3390/jmse11030489
https://doi.org/10.3390/jmse11071386
https://doi.org/10.1016/j.oceaneng.2023.113965

Appl. Syst. Innov. 2023, 6, 109 19 of 19

22. Luan, T.; Tan, Z.; You, B.; Sun, M.; Yao, H. Path planning of unmanned surface vehicle based on artificial potential field approach
considering virtual target points. Trans. Inst. Meas. Control 2023. [CrossRef]

23. Yang, X.-S. Nature-Inspired Optimization Algorithms; Elsevier: London, UK, 2018; Volume 118. [CrossRef]
24. Zitouni, F.; Harous, S. Integrating the Opposition Nelder–Mead Algorithm into the Selection Phase of the Genetic Algorithm for

Enhanced Optimization. Appl. Syst. Innov. 2023, 6, 80. [CrossRef]
25. Xin, J.; Zhong, J.; Yang, F.; Cui, Y.; Sheng, J. An improved genetic algorithm for path-planning of unmanned surface vehicle.

Sensors 2019, 19, 2640. [CrossRef]
26. Wang, H.; Fu, Z.; Zhou, J.; Fu, M.; Ruan, L. Cooperative collision avoidance for unmanned surface vehicles based on improved

genetic algorithm. Ocean Eng. 2021, 222, 108612. [CrossRef]
27. Zhang, W.; Xu, Y.; Xie, J. Path Planning of USV Based on Improved Hybrid Genetic Algorithm. In Proceedings of the 2019

European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; pp. 1–7. [CrossRef]
28. Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-objective multi-robot path planning in continuous environment using an

enhanced genetic algorithm. Expert Syst. Appl. 2019, 115, 106–120. [CrossRef]
29. Kim, H.; Kim, S.-H.; Jeon, M.; Kim, J.; Song, S.; Paik, K.-J. A study on path optimization method of an unmanned surface vehicle

under environmental loads using genetic algorithm. Ocean Eng. 2017, 142, 616–624. [CrossRef]
30. Hao, K.; Zhao, J.; Li, Z.; Liu, Y.; Zhao, L. Dynamic path planning of a three-dimensional underwater AUV based on an adaptive

genetic algorithm. Ocean Eng. 2022, 263, 112421. [CrossRef]
31. Pehlivanoglu, Y.V.; Pehlivanoglu, P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage

problems. Appl. Soft Comput. 2021, 112, 107796. [CrossRef]
32. Potochnik, A.; Colombo, M.; Wright, C. T test as a parametric statistic. Korean J. Anesthesiol. 2015, 68, 540–546. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/01423312231190208
https://doi.org/10.1007/978-981-10-6689-4_8
https://doi.org/10.3390/asi6050080
https://doi.org/10.3390/s19112640
https://doi.org/10.1016/j.oceaneng.2021.108612
https://doi.org/10.1109/EURONAV.2019.8714160
https://doi.org/10.1016/j.eswa.2018.08.008
https://doi.org/10.1016/j.oceaneng.2017.07.040
https://doi.org/10.1016/j.oceaneng.2022.112421
https://doi.org/10.1016/j.asoc.2021.107796
https://doi.org/10.4097/kjae.2015.68.6.540

	Introduction
	Related Work
	Problem Formulation and Contribution
	Method
	Experimental Setup
	Proposed Methodology
	Performance Evaluation

	Results and Analysis
	Sample Experiment
	Overall Analysis
	Significance Test

	Conclusions
	Appendix A
	References

