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Abstract: Industries are rapidly moving toward mitigating errors and manual interventions by
automating their process. The same motivation is carried out in this research which targets to
study a conveyor system installed in soda ash manufacturing plants. Our aim is to automate the
determination of optimal parameters, which are chosen by identifying the flow rate of the materials
available on the conveyor belt for maintaining the ratio between raw materials being carried. The
ratio is essential to produce 40% pure carbon dioxide gas needed for soda ash production. A visual
sensor mounted on the conveyor belt is used to estimate the flow rate of the raw materials. After
selecting the region of interest, a segmentation algorithm is defined based on a voting-based technique
to segment the most confident region. Moments and contour features are extracted and passed to
machine learning algorithms to estimate the flow rate of different experiments. An in-depth analysis
is completed on various techniques and convincing results are achieved on the final data split with
the best parameters using the Bagging regressor. Each step of the process is made resilient enough
to work in a challenging environment even if the belt is placed in an outdoor environment. The
proposed solution caters to the current challenges and serves as a practical solution for estimating
material flow without manual intervention.

Keywords: automation; industrial process; conveyor belt; soda ash; machine learning; convolutional
neural networks; computer aided design (CAD)

1. Introduction

With the changing face of the world, adopting technology in the industrial processes for
the purpose of automation is inevitable. Artificial intelligence (AI) is radically transforming
the industrial processes to ensure the mitigation of errors or risks induced by manual
interventions, simultaneously allowing the processes to be more structured [1]. The same
idea of the digital revolution also inspires our research. The belt conveyor system is an
example of a widely used means of transporting a variety of items, especially in the industry,
having the capability to carry thousands of tons of material per hour through a simple
mechanism [2]. Quantifying the real-time flow of items over the belt is crucial for many use
cases; for instance, measuring the flow aids in effective planning, adjusting the speed of the
belt or for the effective use of energy, etc. This research targets to study a similar conveyor
system installed in the soda ash manufacturing plant at LCI, Khewra Pakistan.

For the production of soda ash, raw materials, such as coke and limestone, are used
to generate 40% pure carbon dioxide gas [? ]. The process consists of several stages
from which the Belt Conveyor is being studied on which the raw materials, i.e., limestone
and coke, are transported. First, these materials are carried to a vertical lime kiln where
they are heated at a high temperature to produce gas which is further used in soda ash
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production. The amount of coke mixed with limestone is controlled through a variable-
frequency drive (VFD) installed at the source from where coke is passed to the conveyor
belt. This drive is used to regulate the flow of coke on the belt because the optimal
amount of coke in the mixture of these two substances controls the purity of gas produced
through it and makes the production cost-effective. Figure 1 shows a schematic diagram of
the environment.

Figure 1. Schematic diagram of a conveyor system installed in the soda ash manufacturing industry.

The empirical data revealed that conveyor belt system had been a focus of numerous
studies in terms of researching the actual amount of material on belt [4–6], tracking the
movements [7–9], checking for product quality, detecting faults, speed regulation strategy
and variable belt-speed energy issue for energy saving [10], etc. These researches discuss
various techniques for extracting the material from the belt through computer vision
techniques, such as background subtraction, canny edge detection, and morphological
operations for analysis and quantification of the material to perform further processes on it
to achieve their desired goals [4].

The recent past has witnessed tremendous growth in computer vision which has led
to it being widely used in the industry as an automation tool. As righteously quoted by
Li and Zhang [1], artificial systems empowered by computer vision are being created to
boost the quality and efficiency of production while replacing the need for human inter-
vention. Nowadays, the application of artificial intelligence (AI) in the manufacturing
industry covers the areas of product assembly, fault detection, 3D vision system, computer
vision-guided Die Cutting, Predictive Maintenance, Safety and Security Standards, Packag-
ing Standards, Barcode Analysis, Inventory Management, and many more, inducing the
possibility of increasing the production, controlling downtimes, reducing costs, regulating
security and enhancing the quality of production [11].

Taking inspiration from these ideas, several researchers started looking into automat-
ing the conveyor belt problems to detect faults, check for product quality, maintain product
flow, etc. For instance, Zhou et al. [4] initiated their research on these lines to assess the
quantity of material on the belt system and develop an intelligent system that could regulate
the speed of the belt accordingly to reduce wastage in terms of energy and equipment. A
similar study was put forward to measure the real-time load on a conveyor belt with the
help of vision techniques by Shi et al. [12]. It used a system made of a laser generator and
camera to gauge the quantity of load from multiple angles by using area proportion and
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laser-based techniques. The particle velocity of the conveyor system is a determinant of
issues that may arise if it is not at its optimal level. In case of an increase in velocity, there
is more dust generation, more wear, particle attrition, and more noise. On the contrary, a
decrease in velocity results in stagnation zones which causes spillage or blockage. Given the
context, it is essential to maintain the particle flow through analysis using techniques, such
as the discrete element method (DEM) [13], experimental analysis, and continuum-based
analytical methods. In this regard, Hastie & Wypych [14] presented their findings for the
methods mentioned above for granular cohesionless techniques. Using high-speed video,
they used two continuum-based analytical analyses and captured the conveyor flow. The
DEM method was then used to quantify and estimate the particle velocity in a spoon-hood
conveyor system.

Ji et al. [10] also analyzed the impact of a conveyor belt system’s speed regulation
and energy consumption with variable speed energy-saving controllers related to material
flow. They propose an energy saver conveyor belt model with optimal speed regulation for
reducing high energy consumption using a polynomial regression-fitting algorithm which
applies regression on univariate polynomials and then uses Back Propagation Neural
Network Analysis. Karaca & Akinlar [7] built a multi-camera system that tracks the
movement of parcels on a conveyor belt after considering its dimensions using stereo
cameras. A controller is fed with the corner points’ information, allowing it to arrange the
parcels in a line. They use Lucas-Kanade-Tomasi (LKT) algorithms [15,16] for continuous
feature tracking in each frame. The technique is further refined with the addition of
edge mapping as a post step. Research in [17] explains techniques for volume and size
distribution of load transported on a conveyor system. One technique used for data
acquisition was the laser triangulation method, which was adopted to acquire the three-
dimensional shape of the rock.

A real-time measurement of flow of material on a conveyor belt is proposed in [18]. It
used a dual-field measurement system comprised of a couple of light sources to lighten
up both the upper and lower surfaces of the belt. On top of that, two binocular cameras
are appended to provide a dual field of vision. Tessier et al. [19] discusses an approach to
estimate run-of-mine ore composition on a conveyor line system. They explain that the
material on the belt varies in size, grindability, and composition. A solution to measure
the speed of the belt using computer vision and machine learning techniques is presented
in [20]. Given the importance of this task for efficient and secure operation. The focus
here is on a contactless solution instead of a conventional setting, which could provide
better accuracy as the measuring instrument will not have to deal with flow issues and
would avoid wearing off. They adopted a CCD camera to capture the side of the belt. The
speed of the belt was obtained by image texture regularity. Wang et al. [21] worked on the
problem of detecting belt deviation as belt conveyor systems often face deflection problems
in operation. The researchers thus presented a method to use computer vision to detect
belt deviation. They use a combination of the Canny edge detector [22], a belt-positioning
algorithm founded on the Hough line detection technique [23,24], and morphological
processing techniques.

According to the literature cited above, the most research carried out mainly revolves
around regulating the speed of conveyor belts, e.g., [4,5,10,20], ensuring the quality [1,11],
measuring the quantity [4,12,14], tracking the movement [7] or size of objects [17,19,25] etc.,
However, it’s important to note that many existing methods depend on the use of high-end
devices, including stereo cameras, lasers, speed monitors, and charged-coupled devices,
to carry out the necessary experimentation. Dependency on additional devices limits the
usage of a solution, given the aspects of availability and affordability of components used.
Moreover, the environmental factors also add to the usability of the solution. Through this
research, our primary objective is to address a practical challenge encountered by one of
the Soda-Ash production plants: specifically, the accurate determination of the flow rate of
a mixture on an outdoor conveyor belt. Building upon insights from existing literature, our
approach involves automating this process through the application of Computer Vision
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techniques. By doing so, we aim to achieve several significant advantages, including the
ability to conduct experiments more frequently, the elimination of the need for human
intervention, and a reduction in the likelihood of errors, ultimately enhancing overall
efficiency. Furthermore, our plan is to implement this solution utilizing an easily accessible
and simple RGB camera, thereby ensuring a cost-effective and broadly applicable approach.

The rest of the paper is organized as follows. Section 2 explains the whole industrial
process and how the data is captured for experimental evaluation. The proposed framework
is presented under Methodology in Section 3, which is followed by the Results & Discussion
Section 4. Lastly, the Conclusion Section 5 wraps it up by summarizing the findings.

2. Dataset

Before describing the data capturing setup and dataset details, we briefly introduce the
industrial process of soda ash production at the experimental site, LCI, Khewra Pakistan.

2.1. Industrial Process

The Kiln plant is used to produce carbon dioxide and calcium oxide from the burning
of limestone and coke together in a vertical shaft kiln. Coke burns in the kiln and liberates
carbon dioxide and heat. The heat is used further to decompose limestone effectively. The
carbon dioxide produced in the kiln is used for carbonation in the monocarbonating and
carbonating towers of the Solvay process [26,27], which is the major industrial process
for the production of sodium carbonate. Calcium oxide is dissolved with hot water in
the rotary dissolver to produce ‘milk of lime’, mainly used in the distillers to recover
ammonia. Following are the basic raw materials for kiln operation: Limestone, Coke, and
Air (for combustion).

2.1.1. Limestone

Limestone is a sedimentary rock composed mainly of calcite and aragonite, which
are crystal forms of calcium carbonate (CaCO3). Limestone is abundantly available from
limestone rocks situated within a few miles at Tobar Quarry (Choa Saidan Shah-Khewra,
Pakistan). Around 800 to 1200 tons of limestone from Tobar is received daily in trucks of
20–21 ton capacity each. Stones of size between 63.5–127 mm are used in the kilns. The
suitability of limestone depends upon its magnesium, silica, and alumina contents.

The stone sizing is analyzed by taking a sample of 20 tons of stone passed through
a stencil with two openings. One is 63.5 mm in diameter, and the other is 127 mm in
diameter. Stones that pass through a 127 mm opening and are retained on a 63.5 mm
opening are considered “Size”. Furthermore, the stones which pass through both openings
are considered “Undersize”. Finally, the stones that cannot pass through the 127 mm
opening are considered “Oversize”. Physically quality of the stone is inspected by its color,
quantity of dust, and size.

2.1.2. Coke

The burning of coke supplies the heat required to decompose calcium carbonate. The
size of the coke is kept about half of the size of limestone used, i.e., 35–55 mm. The coke
containing high ash percentages is troublesome as ash is composed of heavy metal oxides
and silicates. Therefore, the size, quality, moisture content, and calorific value of the coke
are essential factors. Coke which is unsorted and has both undersized and oversized
particles, is known as Unsorted Coke.

Unsorted coke is processed by crushing and sieving at Coke Sieving Plant. It is fed
to Hopper Conveyor, which leads to two vibrating screens. The upper one is 44 mm in
size, whereas the lower one is 16 mm in size. Coke which passes through both screens, is
called “Undersize” and is collected at the end of the Undersize Conveyor. “Size” coke is
the one that passes through the upper screen and is retained on the lower screen. In case
any “Oversize” coke does not pass through any of the screens, Coke Crusher and Oversize
Conveyor arrangements are also present. This Sorted Coke is transported from the yard
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to the Coke Bins with the help of dumpers. Dumpers are weighed at the Weigh Bridge
to calculate their Gross Weight. The moisture content of the coke is deducted from this
weight. Upon exit, the dumper is weighed again, and the net weight of the coke unloaded
is then calculated.

A fixed ratio of coke and limestone is maintained using a stone plate feeder stroke and
totalizer. Coke and limestone mixture is then sent to the top of kilns via belt conveyor, from
where all six top kiln feed bunkers are filled using a tripping trolley. Bunkers are to be filled
manually by the belt operator. It is made sure that the Bunker’s level is not less than half.

2.1.3. Experiment Setup

Coke and limestone are kept in the storage bins and open yards as the first part of
the process. There is a shed below which coke is stored and moved with the help of
loaders. When transferred from their respective bins, limestone and coke are stored in their
respective bunkers in the pit. Then, a stone plate feeder is used to drop the limestone from
the bunker into the belt conveyor. The strokes of the plate feeder are adjusted to increase or
decrease its speed, thus controlling the amount of feed being dropped onto the belt. The
limestone experiment is conducted weekly, which helps determine the rate of limestone
being charged. Next, coke is fed to the Belt Conveyor, and the time taken for the bunker to
get empty is noted down. Based on this experiment coke feed rate is adjusted. The rate of
stone changes with the varying stone size, so the stone experiments are carried out every
week to have a clear idea about the exact quantity of coke being fed to the kilns. The coke
stone ratio is adjusted in a way that the stone per ton ash figure should not exceed the
planned amounts.

For this purpose, a variable-frequency drive (VFD) is installed to drop the calculated
amount of coke on the belt conveyor. From its panel in the pit, its output can be varied to
increase or decrease the amount of feed. The output of the coke ratio controller is adjusted
according to the experiment and physical observation of the coke and limestone on the
belt. Kiln parameters are also helpful in determining the coke quantity. Coke experiment is
carried out daily. Coke is taken into eight bags after every 15 s. These bags are weighed,
and the mass is divided by 2 to give the flow of coke in kg/min.

Once on the belt conveyor, the charge, i.e., limestone and coke, in the adjusted ratio
from the pit is carried to the top of the kiln. The belt is 1460 ft. in length. There are ten
safety switches installed on the belt along with a hardwire running throughout its length,
on both ends and parallel to it, which, upon being pulled, forces the belt to stop as it is
connected to the safety switches. The two belt drives are used to drive the belt conveyor.
One is operational, while the other is always on standby. Drive one usually has a more
significant load than Drive two due to the electrical accessories difference between the two
drives. The belt takes around 3 min to take the first piece of stone/coke dropped from the
pit to the Top Bunker in normal conditions. Detailed specifications of the conveyor belt at
the experiment site are presented in Table 1.

Table 1. Specification of the conveyor belt at the experiment site.

Property Value

Motor Power 40 HP
Speed 1465 RPM
Length 1460 feet
Small rollers 510 units
Return rollers 90 units
Main rollers 10 units

Lastly, a tripping trolley is used for coke/stone distribution in all six bunkers. The
conveyor belt moves over its rollers, and the coke/stone mixture is put into bunkers via its
two chutes. The belt operator appointed at the top of the kiln is responsible for distributing
the coke/stone mixture into the desired bunkers. Stone belt conveyor is critical as there
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is no stand-by for it, and in case of its outage, plant shutdown could occur, so extreme
precautions are taken in this operation. The belt operator monitors its running loads and
reports to the kiln operator if he finds any abnormality. The top bunkers level is maintained
at around half to full. Many other units are involved in the complete process, but they are
not included in the scope of our research.

2.2. Data Acquisition

A single-camera is mounted on top of the conveyor belt to capture the dataset. Due to
environmental and industrial constraints, it is not precisely on top of the belt instead it is
mounted on a pole of the conveyer. The belt operator carries out the weekly experiments
and measured flow values are noted for the complete recording. All the experiments
took around 30 to 35 min to complete. The primary factor is the amount of coke and
limestone carried out on the belt. Hence, we tried to estimate the flow by analyzing
the experimental data provided to us. Since the belt conveyor is installed in an outdoor
environment, environmental factors such as weather, time of the day, and sunlight affect
the quality of the videos, as shown in Figure 2. The dataset was captured using a Samsung
high-resolution weatherproof camera as AVI videos over a span of twenty-four weeks. The
videos have a resolution of standard definition widescreen video, which is 720× 576 (16:9).
Each video in the dataset is between thirty-five to forty minutes long, where the actual
flow rate measurement is spanned over thirty to thirty-five minutes. From a set of twenty
videos, sixteen are being used to train the machine learning model and four are being used
to test the trained model’s performance.

(a) (b) (c)

Figure 2. Variation in dataset video quality: good image quality (a), captured at evening time (b),
and dusty image (c).

3. Methodology

The section introduces the proposed framework to estimate the flow rate of limestone
and coke being transported from the belt to the top of the Kiln. A visual sensor mounted
on top of the conveyor belt is utilized to capture the entire conveyor belt region. This data
is used to assess the stone’s quality, the ratio of coke and limestone, issues of belt conveyor,
etc. The proposed framework starts by extracting the region of interest to capture only
the conveyor belt and discard any unnecessary area around it. Afterward, pre-processing
is done to remove any noise from the video frames. Later, considering the challenges of
an outdoor environment, limited data, and a single camera, we devised our algorithm to
properly segment the material transferred through the conveyor belt. Finally, features are
extracted from the segmented region, and machine learning is used to find hidden patterns
in the features and estimate the flow rate of the load. The complete process can be visualized
in the conceptual map in Figure 3. Each step is described in the following sections.
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Figure 3. Conceptual map of the proposed framewrk.

The implementation of the proposed methodology is done in python by utilizing
several libraries for various tasks. Mainly, OpenCV is used for image processing tasks.
In addition, Pandas, Numpy, and Scikit-learn are utilized for data analysis and machine
learning. Finally, Jupyter Notebook is used as a development environment for better
documentation and quick analysis.

3.1. Extracting Region of Interest

The region of interest (ROI) for our problem is the conveyor belt on which the raw
material is carried. Different algorithms can be used for localization by treating conveyor
belt edges as straight lines and using algorithms such as Hough transform (HT) [23] to
detect these lines. For example, Wang [21] proposed an algorithm based on the Canny
edge operator, morphology processing, and Hough line detection to localize the belt-
positioning under a complex background environment. Similarly, Dabek [28] also used
Hough transform to localize the belt region for automatic conveyor belt maintenance using
inspection robots. In our scenario, the camera’s position with respect to the conveyor belt
is permanently fixed, making it not only easy for us to extract the region of interest but also
computationally very efficient as it does not involve the complex operations like Hough
transform, etc. We drew two lines at the boundary of the conveyor belt using OpenCV and
extracted the region within those boundaries, which gave us the image mask shown in
Figure 4c. Using the image mask, we performed an AND operation of the original image
with its prepared masked image, which returns us the region of interest or the surface
region of the conveyor belt. Figure 4a shows the original image of the conveyer belt and
the lines used to mark the ROI are shown in Figure 4b. Figure 4c shows the masked region
and the extracted ROI is shown in Figure 4d.

(a) (b) (c) (d)

Figure 4. (a) Original image, (b) Lines drawn to separate the region of interest, (c) Masked region
inside the lines and, (d) Extracted region.

3.2. Pre-Processing

The conveyor belt is installed in an outdoor environment due to its long length and the
materials it carries; hence, the environmental factor varies significantly with the weather
and other environmental conditions. Furthermore, being outdoors, the raw material
contains much dust and sometimes affects the video quality by adding much noise. Due to
this, it is essential to pre-process the data to make sure that the material is fairly visible. For
this, a kernel is convolved on an image by computing some function of that pixel and its
neighbors, to perform a transformation, such as highlighting or sharpening its edges [29] or
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removing the noise by blurring the image [30,31]. These transformations serve as features
for many machine learning or deep learning tasks, especially in the case of convolution
neural networks [32], where it helps the network extract important features. Hence, as a
pre-processing step, we first sharpen the image by convolving it using a kernel of size 3× 3
shown in Figure 5. Convolving the kernel allows us to give a value that best represents the
area under that kernel and aids in extracting features of the image. 0 −1 0
−1 5 −1
0 −1 0


Figure 5. Kernel used for image sharpening in pre-processing step.

Sharpening the image helps distinguish the raw material transferred on the belt,
providing grounds for better segmentation. However, with sharpening, the noise in the
image is also enhanced, which damages the overall quality of the image; thus, blurring
is applied to each frame to suppress the noise. Gaussian smoothing [33] is the most
famous technique which uses Gaussian distribution as its kernel. The disadvantage of
Gaussian blurring is that it blurs the image uniformly, meaning that each region has equal
importance. However, in our scenario, the edges of the raw material should be maintained
to keep it easily distinguishable. Thus, for this case, we have used the bilateral filtering
technique [34] which serves as an advanced version of Gaussian blurring as it maintains the
edge information while removing noises. These two differences can be seen in Figure 6. It
utilizes the Gaussian distribution values but considers distance and pixel value differences.
The bilateral filter starts with linear Gaussian smoothing.

g(x) = ( f ∗ Gs)(x) =
∫
R

f (y)Gs(x− y)dy (1)

The weight is only dependent on the spatial distance ‖x− y‖. The bilateral filter adds
a weighting term that depends on the total distance f (y)− f (x). This results in:

g(x) =

∫
R f (y)Gs(x− y)Gt( f (x)− f (y))dy∫
R Gs(x− y)Gt( f (x)− f (y))dy

(2)

(a) (b)

Figure 6. Image blurring results on a sample frame from the dataset using a Gaussian blur kernel
(a) and bilateral filtering (b).

The camera is mounted on top of the conveyor belt, which increases its field of vision
and makes it capture a lot of unnecessary areas. We also do not need the entire belt region
for our study; therefore, we have only selected the region close to the camera. Since the
limestone will always be between 63.5–127 mm and coke between 35–55 mm in size, based
on this information, given its maximum size limits, we have chosen the optimal region of
size 420× 100 at the end of the belt, which is closest to the camera (see Figure 7). It saves
computation as the region to process in a frame has reduced.
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Figure 7. Selected region for processing.

3.3. Coke and Limestone Segmentation

After pre-processing, the next step is to extract coke and limestone being carried on the
conveyor belt in each frame. Given the outdoor setup, handling the environmental factors
is challenging as each condition can affect the algorithm’s performance. Deep learning
is quite famous nowadays due to its high effectiveness in segmenting a challenging and
diverse environment [35]. However, the only restriction with deep learning is the huge
amount of labeled data [36]. A lot of data needs to be labeled with each relevant class
separately before it can be passed as input to the deep learning algorithm. The algorithm
can then automatically extracts the relevant features from the raw image it will use to
segment the unseen data. We have the image sequences for our problem but do not have
the label. Thus, we tried segmenting data using unsupervised deep learning segmentation
techniques [37]. In unsupervised segmentation, the algorithm, namely convolutional neural
network (CNN) assigns each pixel to the cluster to which it belongs. The pixel labels are
clustered together using their feature representations. Unsupervised segmentation works
well for examples where objects are easily distinguishable based on color, texture, or other
features. Their accuracy can also be increased by giving user input as a scribble [38], which
roughly specifies different objects in the image. These scribbles can be used as input to the
algorithm. Nevertheless, the environment for our problem is quite challenging. It contains
many variable factors in each of our data samples. Even with provided scribble, it struggles
to properly distinguish between the conveyor belt and the raw material available on the
belt. A resulting segmentation is attached in the Figure 8.

(a) (b)

Figure 8. Poor Segmentation with a deep learning algorithm: (a) original frame, (b) segmentation
results using deep learning.

Watershed algorithm [39] is also a widely used technique for segmentation and is
especially useful in scenarios where we want to extract objects touching or overlapping.
The watershed algorithm uses greyscale images for its segmentation. The greyscale image
contains both high and low-intensity values. The watershed algorithm treats the images
like a topographic map. The high-intensity values are termed peaks, while low intensities
are denoted as valleys. If we fill out each valley with water, the water will rise, and
different valleys will start to merge. This is when we build barriers to constitute the object’s
boundary, which prevents different valleys from merging. Spread-out objects are easy to
identify as they have different intensity values, but heavily clustered objects make it harder
to differentiate objects accurately based on intensities. The watershed algorithm produces
a set of labels as an output, where each label corresponds to a unique object in the image.
The results of the watershed algorithm on our data samples are shown in the Figure 9.
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(a) (b)

Figure 9. Segmentation results of Watershed algorithm: (a) sample frame from dataset, (b) segmenta-
tion results.

The results look pretty good for the respective frame. However, the algorithm works
on the threshold value set to extract the sure foreground region. Therefore, it does not work
well for all the data samples as it has different intensity values, negatively impacting the
overall segmentation results.

Background Subtraction is another widely used technique for segmentation in which
the constant area is termed its background, and the moving instance is identified as
its foreground [40]. Background subtraction is used in various applications, such as
monitoring, tracking, and recognition of objects, traffic analysis, people detection, tracking
of animals, and others [41]. It helps obtain relatively rough and rapid identifications of
the objects in the video stream for their further subtle handling. Background subtraction
techniques work like our brain; if something does not change, then our brain treats it like
a background. The commonly used algorithm for background subtraction is the frame
difference [42] method. It takes the absolute difference of two successive frames. So the
constant regions in both the frames are termed the background, and the other region is
segmented as the image’s foreground. This way of segmenting moving objects in the image
works quite well in segmenting the moving environment.

However, in our specific situation, there is an additional challenge. Alongside the
raw material on the conveyor belt, there are occasionally dust particles present. The frame
difference technique can be sensitive to the choice of threshold, and this sensitivity can
lead to some regions of the belt being incorrectly identified as part of the foreground. This
issue arises because the dust particles introduce subtle changes in pixel values, which may
surpass the threshold and be mistakenly labeled as moving objects.

Apart from the basic frame difference technique, advanced background subtraction
methods also exist, which solve the task of foreground extraction by creating a background
model. They start by generating a background after processing N frames to provide the
background image, then model a technique to keep the background updated for handling
the changes that occur over time [43]. Finally, it divides the pixels into sets of background
or foreground. Models use different features such as color, texture, and edge descriptors to
capture optimal foreground. These features are also called descriptors.

The background model to be finalized is vital as some of the algorithms assume
that the background area is static, meaning that the color of the same regions is fixed,
and hence background can be identified. However, different illumination variations can
distort the colors. Thus, the background model we used must be resilient enough to deal
with environmental factors. Given the context, we used the BackgroundSubtractorCNT
method [44] due to it being resilient to outdoor lighting conditions. It is also one of the
fastest algorithms for background subtraction. The CNT in its name stands for the count,
as it counts for how many frames a pixel does not change and divides it into background
or foreground.

The algorithm effectively distinguishes the raw material from the conveyor belt,
achieving good separation. However, it’s worth noting that some noise may still be present
in the output. To address this, we have applied morphological operators to further refine
the results. Morphological image processing encompasses a set of operations that pertain
to the shape and structure of an image [45]. These operations help us improve the quality
and accuracy of the segmentation results.

To eliminate noise from the image, we employ the opening morphological opera-
tion [46]. This operation involves two key steps: erosion and dilation. Initially, the image
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undergoes erosion, followed by dilation, using the same structuring element for both
operations. The morphological opening helps remove small objects and thin lines from an
image while preserving the shape and size of larger objects in the image. Next, dilation
is applied. Morphological dilation makes objects more visible and fills in small holes in
objects [47]. As a result, lines appear thicker, and filled shapes appear larger. Finally, to
remove its gaps, the closing morphological operation is applied [48]. Morphological closing
helps fill small holes in an image while preserving the shape and size of large holes and
objects. The closing operation, starts by dilating the image and then proceeds to erode
the dilated image, utilizing the same structuring element for both operations. All these
transformations are visually depicted in Figure 10.

(a) (b)

(c) (d)

Figure 10. (a) Background subtraction using CNT, (b) noise removal using open morphology, (c) filled
shapes using dilation operation, and (d) close gaps using dilation operation close.

Following background subtraction and the subsequent application of morphology
operations, we successfully isolate the raw material from the conveyor belt. However, it’s
essential to acknowledge that this entire technique relies on specific parameters, including
the size of the structuring element and the frequency of applying certain morphological
operations. Given the variability in environmental conditions across different videos in
our dataset, it’s crucial for these parameters to adapt to each unique scenario. For instance,
applying the same parameter settings to another example within our dataset could lead
to inaccurate results, as illustrated in Figure 11. Therefore, achieving parameter settings
that are flexible and adaptable to different scenarios is of utmost importance to ensure the
technique’s accuracy and reliability across a diverse range of environmental conditions.

Figure 11. Poor segmentation results using the same parameters for different environment.

Figure 11 clearly demonstrates that the algorithm’s performance cannot be consistently
accurate using fixed thresholds across all data samples. To address this variability, we have
developed a voting-based background subtraction technique. This approach focuses on
extracting the most confident regions as the foreground. In this technique, we leverage
both the frame difference and BackgroundSubtractorCNT methods to extract the image’s
foreground. By combining these two approaches and employing a voting mechanism, we
enhance the accuracy and robustness of the segmentation process, ensuring that only the
most reliable regions are classified as the foreground.

The BackgroundSubtractorCNT method is advantageous because it retains a history
of the image, which allows us to filter out subtle changes that might be considered noise
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in the image. On the other hand, the frame difference technique is sensitive and captures
every minor change between two consecutive frames. Given our knowledge that the raw
material will consistently be flowing in a specific region on the conveyor belt, by merging
these two methods, we effectively preserve the historical information of the target region
while eliminating any subtle changes that could occur in a particular frame.

We achieved this by setting the maximum threshold values for the morphological
operator so that most of the conveyor belt region would be selected. Then, after both
the algorithms select their foreground, we pick only those pixel values detected by both
algorithms. These pixels would have the highest confidence of being the foreground as both
algorithms detect it. The parameters used to perform morphology are shown in Table 2.
Moreover, the structuring element used were rectangle or ellipse, depending upon the
condition. A structuring element of size 5× 5 is shown in Figure 12.

Table 2. Morphology Parameters Setting. SE: Structuring Element.

Operator
Frame Difference Background Subtraction CNT

SE IT SE IT

Open 4× 4 1 4× 4 1
Dilation 7× 7 5 6× 6 5
Close 7× 7 8 4× 4 10


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




0 0 1 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 1 0 0


Figure 12. Rectangular structuring element (left), and ellipse structuring element (right).

The complete procedure for voting-based segmentation is shown in Figure 13. It
shows a single step of the algorithm being performed on an image sequence. The left
side of the image shows the output from the frame difference technique. We will call its
resulting mask M f d, and the right side shows the output from BackgroundSubtractorCNT,
so let its resulting mask be Mcnt. After both the algorithms return their resulting masks, we
performed the bit-wise AND operation to extract the final output Mk.

Mk = M f d ∧Mcnt (3)

The regions highlighted in red in Figure 14a,b are extracted from the second step of
Figure 13. This step illustrates a comparison between the frame difference approach and
the CNT method. It’s evident that the frame difference approach outperforms the CNT
method in some frames, while in others, the CNT method excels. To address this variability,
we have implemented a fusion technique. This technique retains only those pixels that
are consistent between both methods, and we’ve introduced a voting-based mechanism to
ensure the selection of the correct region.

3.4. Feature Extraction

Once the raw material on the belt is segmented, it can be further processed to extract
features for estimating the flow rate. Two techniques are used to extract features; moments
information and contour feature information.
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Input

Frame Difference

Morphology

Mask (Mfd)

Resulting Mask (Mk)

Output

Mfd ∧ Mcnt

CNT

Morphology

Mask (Mcnt)

Figure 13. Flowchart of proposed end-to-end segmentation algorithm.

(a) (b)

Figure 14. (a) Extra region segmented by frame difference, (b) extra region segmented by background
subtraction on sample input frame.

One of the most significant features to extract from images is moments [49]. They
are useful to describe the object of interest in an image after segmentation in terms of
physical properties; for instance, area, eccentricity, orientation, centroid etc. In other words,
these scalar quantities have been used in statistics to describe a shape or to quantify the
mass distribution [50]. Various orders of moments can be computed which can make the
calculations scale invariant, translation invariant and rotation invariant. These features
are calculated by taking the weighted average of the pixel intensities, as shown in the
formula below:

m = ∑
x

∑
y

I(x, y) (4)

where I is a grayscale image of size M× N, and 1 ≤ x ≤ M 1 ≤ y ≤ N. For our problem,
various spatial moments, central moments, and normalized central moments have been
used. The spatial moments are used to give information about the object in the image
pertinent to its positioning and are computed as follows:

mij = ∑
x

∑
y

xiyj I(x, y) (5)



Appl. Syst. Innov. 2023, 6, 88 14 of 27

In case of central moments, the origin of the coordinate system is moved to center of
gravity or centroid of the object, for the purpose of translational invariance adjustment.
These features are computed as follows:

µij = ∑
x

∑
y
(x− x̄)i(y− ȳ)j I(x, y) (6)

where x̄ and ȳ represent the centroid of the object. Lastly, the normalized central moments
factor in the area of object for scaling. Thus, in addition to translational invariance, they
become scale invariant as well. The normalized central moments can be calculated as:

νij =
µij

µ
(1+ (i+j)

2 )
00

(7)

Contour information [51] is also extracted for each region of the segmented image to
achieve better results. As a result of segmentation, the resulting image has four different
regions left in it: background, a small portion of the conveyor belt close to the raw material,
and the two raw materials, i.e., coke, which is of black color, and limestone in white color.
First, k-means image segmentation is used to cluster each region of the image based on
its color information [52]. Afterward, we extract area information of these regions using
contour. Since most of the region is already segmented, it makes it easy for k-means to
segment the regions of interest easily based on their color information.

Based on the information about the image we have, k = 4 seems the optimal choice
since we have four regions in the image. With k set to 4, the k-mean clustering performs
well to segment each region of the image but still, for the third cluster in Figure 15, there is
a region of limestone which is in the same cluster as the conveyor belt. Thus, increasing
the total clusters makes segmentation at a more granular level. After clustering, we extract
the area of all the clusters and used it along with the moment features. For extracting
features, a time window is created to aggregate features of that time period to deal with
variable-length data samples.

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 15. K-means segmentation results with different values of k.

3.5. Feature Selection

We have aggregated features over different length time windows, which contain
moments, area, and count information of coke and limestone for each frame. In addition,
we have also used feature selection techniques to improve our algorithm’s performance
and reduce the computation time of machine learning algorithms. There are multiple ways
for feature selection, and some of the most common ones for regression model feature
selection are forward, backward, and stepwise.

Forward feature selection [53] begins with no features and then adds the most signifi-
cant variable. At each subsequent step, it adds features one-by-one into the model until
no features are left. In contrast, backward selection [54] begins with all the features and
removes the least significant one at each step until none meets the criterion. Finally, the
stepwise selection is a mixture of the forward and backward selection techniques. Features
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are added as described in the forward feature selection, but backward elimination is used
for feature elimination after each step. The assumption is that new variables that are
better at explaining the dependent variable and variables that are already included may
become redundant.

The recursive feature elimination technique is an extension of backward elimina-
tion [55]. Recursive feature elimination works on a feature ranking system and is a
wrapper-type feature selection technique. In recursive feature elimination, a model is
trained on the entire set of features, and an importance score is computed for each predictor
variable. Then, the least important predictors are removed from the subset, the model is
re-trained, and importance scores are computed again. This process is iterated until the
desired number remains. These methods are usually computationally very expensive in
case of a large number of features. This is in contrast to filter-based feature selections that
score each feature by finding its correlation with the dependent variable and selecting those
features with the highest or lowest score.

A significant challenge in feature selection is to decide the number of features to
select as it is not known in advance how many features are valid. To find the optimal
number of features, cross-validation is used with recursive feature elimination to score
different subsets of features and select the best scoring collection of features. We utilized
the Decision Tree Regressor as the base estimator for the Recursive Feature Elimination
with Cross-Validation technique. The plot in Figure 16 shows the feature selection approach
to training data for one of the cross-validation sets. It can be seen that the number of
features is added or removed from it iteratively, and a score is calculated at each step. The
best negative root mean squared error is achieved with 160 features for that particular
training set.

Figure 16. Feature selection with recursive feature elimination with cross-validation (RFECV).

3.6. Machine Learning Algorithms

A large number of machine learning (ML) algorithms have been evaluated to find the
best approach. Specifically, as many as nine ML approaches have been tested including
decision tree, XGBoos, random forest, bagging regressor, etc. Each is briefly introduced in
the following.

1. Decision Tree
As evident from the name, decision trees form a tree-like structure for performing
regression. The decision tree was proposed by Quinlan [56] in 1986. In such an
algorithm, the dataset is iteratively broken down into smaller chunks while simulta-
neously building a tree. It contains a root node representing the complete sample and
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is further broken down to form further nodes. The inner nodes form data features,
and branches represent decision rules. Each data point is passed into the nodes one
by one, giving binary answers, which are finally used to give the final prediction.

2. XGBoost
The XGboost Algorithm, given by Chen et al. [57], refers to Extreme Gradient Boosting,
which is an effective and efficient version of the gradient boosting algorithm. It can
be used for predictive regression modeling. It originates from the decision trees and
belongs to the class of ensemble algorithms; in the boosting category, to be precise.
This boosting technique creates decision trees in sequential form and adjusts variable
weights to increase the model’s accuracy produced through predecessors.

3. Random Forest
Another ensemble learning technique, proposed by Breiman [58], comes under the
bootstrapping type. The dataset is sampled randomly over a defined number of
iterations and variables in bootstrapping. The results of these splits are then averaged
out for a better result. It represents a combination of ensemble techniques with a
decision tree to attain varied decisions from data. Then these results are averaged out
to compute a new result that defines strong results.

4. Bagging Regressor
An ensemble meta-estimator, also proposed by Breiman [59]. Bagging Regressor fits
the fundamental estimator on randomly taken subsets of data, k times, and then
combines their predictions through aggregation to attain the final prediction. It in-
dicates that it generates multiple versions of the predictor and utilizes these to get
accumulated predictors. These multiple versions are defined by making replicas of
the learning set and turning them into new sets for learning. The bagging technique
is considered useful because the trees all fit on different data to some extent, which
induces differences between them, leading to different predictions. Moreover, its
effectiveness is also evident from the fact that it has a low correlation between predic-
tions and prediction errors. We have utilized the DecisionTreeRegressor as the base
estimator for our model.

5. Gradient Boosting
The Gradient Boosting regressor, given by Friedman [60], is another tree-based tech-
nique that generates an additive model in a stage-wise manner which in turn allows
optimization of random differentiable functions of loss. It uses Mean Squared Er-
ror (MSE) as a cost function when used as a regressor. At every stage, fitting of a
regression tree is done on the negative gradient of the loss function being used. The
technique is used to find a non-linear relationship between the model target and fea-
tures. Besides, it is good at dealing with outliers, missing values, and high cardinality,
regardless of any special treatment.

6. Gamma Regressor
Gamma regressor proposed by Nelder et al. [61] is a generalized linear model coupled
with gamma distribution. These models allow error distribution other than the
available normal distribution and help build a linear relationship between predictors
and response. Gamma regressors are used for the estimation and prediction of the
conditional expectation of some target variable. This model is recommended in case
the dependent variable has a positive value.

7. Bayesian Ridge
Bayesian is a good choice when it comes to situations where data is not properly
distributed or is insufficient because it uses probability distributions to formulate
linear regressions instead of point estimates. The prediction is not attained as a single
value but is estimated through a probability distribution. The implementation used is
based on the algorithm described by Tipping [62].

8. RANSAC
RANdom SAmple Consensus (RANSAC), intrdocued by Fischler et al. [63] is a linear
model that handles outliers well, so instead of a complete dataset, it uses a subset of
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inliers iteratively to estimate the parameters of the model. Furthermore, the outliers
are excluded from the training process, thus, eliminating their impact on the learned
parameters and coefficients. In terms of implementation, RANSAC uses median
absolute deviation to distinguish between outliers and handlers. Moreover, it requires
a base estimator to be set for estimations.

9. Theil-Sen Regressor
Henri Theil [64] and Pranab K. Sen [65] introduced Theil-Sen regressor in 1950 and
1968, respectively which is devised to cater to the outliers. In some instances, the
Theil-Sen regressor outperforms RANSAC, a linear regression model. Theil-Sen
regressor uses a generalized form of the median in varied dimensions, making it
robust to multi-variation outliers. However, this robustness is inversely proportional
to dimensionality. Theil-Sen regressor’s performance is comparable to the Ordinary
Least Squares for the asymptotic efficiency as an unbiased estimator.

3.7. Window Function

Each sequence in our dataset is of variable length since it depends upon the size and
quality of the raw material. So the overall weight and time it runs for on the conveyor
belt determine its respective outcome. However, for passing the data to machine learning
algorithms, features for all the videos need to be of the same length. Hence, the concept of
windows is applied, where features are collected for all video frames, and then aggregation
is performed, namely sum and mean, at equal intervals over small subsets of the data.

Furthermore, the total number of windows is selected beforehand, which always
produces an equal data length. For instance, if a window is created every minute, all
frames within that one-minute time frame are aggregated together. If we perform sum
aggregation, all features in a one-minute time frame are summed together. Since we are
also deciding the total number of windows, let us say that we only want five windows, then
these five windows will only contain data for the first five minutes of the video. However,
if the video length exceeds five minutes, the last window will encompass aggregation for
all the remaining data. For example, Figure 17 below shows the windows created for a
6 min video.

To summarize, as defined in Section 3.4, the total number of features for a single
training example is equal to the number of features multiplied by the number of frames.
Since the number of frames for each video is variable, by dividing the features into an
equal number of bins, we ensures that our feature vector for all training examples is of
equal length.

Figure 17. Window function concept: dividing the video into smaller equal size chunks, except the
last which might contain the leftover frames not enough to form a complete chunk.
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4. Experimental Evaluations
4.1. Evaluation Metrics

Since we have a regression problem, the metrics we used for performance evaluation
include mean absolute error, mean squared error, root mean square error, and mean absolute
percentage error. Mean absolute error (MAE) measures the average of the absolute values
between prediction (ŷ) and actual observation (y) over all the instances where all the
differences have equal weight. Mean absolute error is less sensitive to outliers.

MAE =
1
N

n

∑
i=1
|yi − ŷi| (8)

where n is the total instances. The mean squared error (MSE) tells how good a regression
line is to a set of data points. Mean squared error takes the distance of each point to
the regression line. After finding the distance, any negative signs are removed by tak-
ing the square of these values. It also gives more weight to larger differences from the
regression line.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

Root mean squared error measures (RMSE) the average magnitude of the error. It is
the square root of the average squared differences between prediction and actual values.
Root mean squared is desirable when large errors are undesirable since it gives higher
weightage to large errors. MSE uses the square operation to remove each error value’s sign
and punish large errors. The square root reverses this operation, although it ensures that
the result remains positive.

RMSE =
√

MSE (10)

The mean absolute percentage error (MAPE) is the mean of the absolute percentage
errors of predictions. The mean absolute percentage error is scale-independent and is not
affected by the global scaling of the target variable. The lower the value for MAPE, the
better the machine learning model is at predicting values. The error measurement is more
intuitive to understand as a percentage than other measures such as the mean square error
because many other error measurements are relative to the range of values.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (11)

4.2. Results & Discussion

The purpose of the proposed framework is to make the process of measuring the
material flow over the belt more efficient, and less prone to error using the mounted visual
sensor. The experimental work is carried out to cater the varying environmental scenarios
and to eliminate the need for human intervention. The goal is to determine the optimal
settings for variable frequency drive and thus, defining the optimal amount of the material
being carried on the belt by using image processing and machine learning techniques.

The results are evaluated based on two types of validation, k-fold cross-validation and
leave-one-out validation. The cross-validation is used to evaluate the model’s performance
on limited data. In k-fold cross-validation, k represents the number of non-overlapping
groups or splits into which the data is split. At each iteration, one group is separated as
test data. Meanwhile, the rest of the groups are used for training the model. The data
is iterated k number of times to test each group of the model and evaluate the model’s
performance. This technique gives better confidence in our model performance. For testing
our model, we have set the value of k to 5, and the average of all five splits is used as its
final metric value. Leave-one-out is also a type of cross-validation, but in this technique
each data sample is a separate group, meaning that only one data sample is used as the
test data and all other data is used for model training. Leave-one-out is mainly used for a
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smaller dataset as it is repeated for each example in the dataset. Given our limited data, it
represents a suitable choice.

After the features are extracted from the video sequences, the data is split into test train
splits using the cross-validation techniques mentioned above. The training set contains
the features calculated for each frame of the sample and its respective flow rate value,
which serves as our predictor variable. At each iteration, the features are selected from the
training data and the model is trained only on the selected features. Then same features are
selected for the test dataset, and the model is evaluated further. Finally, we have evaluated
the model’s performance with and without the feature selection technique. The figure
shows the performance of the trained models based on the parameters defined above on a
single test example.

Results are also separately evaluated based on the window size used to aggregate
the data and also the type of aggregation used on the data in each window. The three
aggregation methods used are sum, mean, and a combination of both sum and mean. In the
combination of both sum and mean, the aggregated results from both sum and mean are
included as part of the feature vector. Finally, the whole data is evaluated on the best-fitted
parameters. The figure demonstrates the results of selected models on different window
sizes and the type of aggregation performed.

Machine learning algorithms are also divided into two categories: Linear and non-
linear. The non-linear category includes models such as Decision Tree, XGBoost, Random
Forest, Bagging Regressor, and Gradient Boosting. On the other hand, the linear models
category comprises the Gamma Regressor, Bayesian Ridge, RANSAC, and Theil-Sen Re-
gressor. The primary reason for using Linear models was twofold. Firstly, linear models
have a lower risk of overfitting, making them suitable for datasets with limited samples.
Secondly, linear models can effectively handle high-dimensional data, where the number
of features exceeds the number of samples.

Furthermore, the linear models, including the Gamma Regressor, RANSAC, and Theil-
Sen Regressor, have exhibited robustness in dealing with outliers during prediction. Given
the existence of numerous outliers in our input data, such as fluctuating lighting conditions
and dust, these algorithms emerged as logical choices for the task.

The evaluation of the feature window size involves assessing various parameters, and
the outcomes indicate that altering the window size has a substantial impact on the results.
A smaller window size accommodates numerous features, which extends training time
but yields inaccurate results. Figure 18 shows the results without the feature selection
technique, and the plot shows results for windows with 100, 250, 500, 1000, and 2000 frames,
respectively. This visualization demonstrates how the model’s accuracy is affected by
varying window sizes. Smaller window sizes exhibit higher root mean squared errors,
while increasing the window size results in a reduction of the overall error. Notably, the
window size of 500 frames consistently produces the most reliable results. All algorithms
perform well with this window size, eliminating the need for feature selection.

Figure 18. Leave-one-out results without recursive feature engineering.
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Figure 19 shows the results with recursive feature selection with Cross-Validation
(RFECV) technique in which feature selection is made for each fold separately. The Linear
model has shown poor results with the feature selection technique. Apart from the linear
models, the windows with sizes greater than 500 frames have performed better for the
given parameters. By excluding the linear models, we can say that the window with
aggregation performed per 2000 frames has performed the best.

Figure 19. Leave-one-out results with recursive feature engineering.

Feature selection serves to reduce the algorithm’s complexity and training time by
eliminating non-relevant features based on their scores. However, it’s important to note
that sometimes it can have an adverse impact on the overall accuracy of the models. Our
findings reveal that none of the linear models, namely the Gamma Regressor, Bayesian
Ridge Regressor, and Theil-Sen Regressor, performed well when feature selection was
applied, as evidenced in Figure 19. However, the linear models have given a good root
mean squared score without the feature selection technique as can be noted from Figure 18.
A linear model, the Theil-Sen regressor, gives the best RMSE score for the model training
without the feature selection. The results show that feature selection consistently performed
better for non-linear models. However, interestingly, the linear models produced the best
results without feature selection, reflecting the importance of the complete set of features
used for making predictions with the linear models. This observation highlights different
behaviors of linear and non-linear models when it comes to feature selection. While
non-linear models may benefit from a reduced feature set, linear models demonstrate
superior performance when all features are considered. Meanwhile, the boosting methods
such as XGBoost, and Gradient Boosting regressor methods have shown mixed results
for different parameters such as the size of the window or the aggregation performed on
that window. Feature selection does reduce the overall processing speed by excluding
unnecessary features, but in our scenario, it comes at the cost of better model accuracy.

The non-linear methods are more flexible and can capture complex relationships
between features and the target variable. Feature selection enables the model to focus
on the most discriminative features for capturing these non-linear decision boundaries.
However, the linear models inherently rely on the linear relationships between features and
the target variable, making them less sensitive to irrelevant features. Due to these reasons,
we can see from the analysis that linear models are performing slightly better without the
feature selection technique compared to the non-linear models.

Choosing the suitable aggregation to perform on the window is also crucial as it
impacts the model’s performance and the total number of features used to train the model,
impacting its training speed. As discussed, we have performed three aggregation types on
each window separately: sum, mean, and a combination of both sum and mean. The sum
aggregation performed the worst for small window sizes without any feature selection
technique, see Figure 18. However, it performs adequately for large window sizes without
the feature selection technique as can be seen from Figure 19. Furthermore, when trained
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with the feature selection, it performed well on all window sizes. The mean aggregation
has shown promising results for linear models without the feature selection technique;
however, the rest of the models have not performed very well. However, mean aggregation
with feature selection tends to give better accuracy for larger window sizes. Finally, the
combination of sum and mean aggregation does not show any significant difference in their
performance. However, adding both sum and mean feature increase the overall training
time for the models and may add multicollinearity, which undermines the statistical
significance of an independent variable.

The leave-one-out validation might work well for small data. However, a similar
evaluation is also carried out with k-fold cross-validation and the results using RMSE metric
are shown in Figures 20 and 21. The leave-one-out validation can have high variance as its
value changes more for different data samples than the value for k-fold cross-validation.
So, to maintain the bias-variance ratio, it is also evaluated with k-fold cross-validation.

Figure 20. K-fold results without recursive feature engineering.

Figure 21. K-fold results with recursive feature engineering.

The mean value of frames in a window has proved to be the most reliable aggregation
method in k-fold cross-validation with and without the feature selection technique. How-
ever, the sum has given the best results for smaller window sizes. The different machine
learning algorithms have shown similar results as the leave-one-out cross-validation. The
linear model has performed better without the feature selection, and with feature selection
they have produced poor results. The Decision Trees, Random Forest, and Bagging regres-
sor models have produced the best results with the feature selection technique. Without
the feature selection technique, the linear models tend to produce better results for larger
window sizes. With feature selection, the window size does not have much impact on the
final results. The best result for k-fold cross-validation is given by Gamma regressor for
2000 window size without using the feature selection technique.

After analysis, we selected the optimal settings for all the given parameters and trained
the machine learning algorithms. The final model was evaluated with a split of training
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data and test data. For training the final model, the complete dataset was used. For the test
set, a new set of input data was utilized, and the model’s performance was reported based
on those predictions. The results are shown in Table 3. We have trained our final model
without feature selection since the results are better without the feature selection for our
problem. Nevertheless, the situation can be changed if the performance is considered more
important than accuracy. Apart from it, a window size of 1000 is chosen for performing the
mean aggregation function.

Table 3. Performance comparison of different machine learning models.

Model MAE MSE MAPE RMSE

XGBoost 16.938 443.814 0.011 21.067
Decision Tree 19.750 535.750 0.012 23.146
Random Forest 19.753 535.976 0.012 23.151
Bagging Regressor 16.160 274.602 0.010 16.571
Gradient Boosting 26.247 1112.44 0.016 33.353
Gamma Regressor 14.290 415.210 0.009 20.377
Bayesian Ridge 12.148 322.544 0.007 17.960
RANSAC 16.938 443.814 0.011 21.067
Theil-Sen 12.131 322.424 0.007 17.956

The evaluation statistics presented in Table 3 show that the best mean absolute error
and mean absolute percentage error are achieved by the Bayesian ridge and the Thiel-Sen
regressor, whereas the best mean squared error and root mean squared error is achieved by
the Bagging regressor model. To further investigate the performance of all these models,
the mean absolute error (MAE) is computed for each of the four test video sequences and
the results are presented in Figure 22. These results reaffirm the superior performance of
the Thiel-Sen regressor which shows appreciable MAE. The Bayesian ridge also produced
good estimates in three tests, however, the difference between the actual (1647 kg/min)
and estimated flow rate (1613 kg/min) in the third test video is slightly high. In addi-
tion to this error analysis on each test video sequence, we also present the actual and
estimated flow rates achieved by our machine learning models on sample test video to
show the relative impact of this error. Figure 23 illustrates the performance of the trained
models, based on the defined parameters, on a test video 4. In this specific case, the flow
rate value for the example was 1637 kg/min, and through the complete procedure, the
nearest model predicted its value to be approximately 1639 kg/min. We note from the
experimental evaluation that the percentage error is as low as 7% which shows that the
proposed framework is reliable in predicting the flow rate of raw material on the belt
conveyor system.
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Figure 22. Absolute error between the estimated and the actual flow rates (kg/min) on test dataset.
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5. Conclusions

This paper proposed a comprehensive solution for determining the flow rate of the
raw material on the belt conveyor system installed in a Soda-Ash manufacturing plant
at LCI Khewra, Pakistan. The flow rate helps us choose the optimal setting for the coke,
which is transferred on the conveyor belt through a variable frequency drive. The optimal
setting for coke results in optimal gas production and less production waste, which can
help save expenditures. We aim to eliminate manual effort by taking the help of an optical
lens, making the whole process automatic and making it more efficient and less prone
to error.

Since the belt is mounted in an outdoor environment, using an optical lens involved
several challenges. However, each part of the algorithm is resilient enough to deal with each
type of situation. First, the raw materials are extracted from the conveyor belt by extracting
the region of interest, and then segmentation is performed to separate the material from
the conveyor belt. The exact position of the conveyor belt and the stable structure on which
the camera is placed makes it easy to extract the region of interest. A novel technique was
proposed based on background subtraction. The algorithm combines the sequence history
and recent changes to extract the foreground region effectively. After the raw material
was segmented, different features were computed from the segmented regions, such as
moments, color, and information regarding the area of each material. Since each video
sequence in the dataset was of variable length, a window technique was used to capture
all the information in a fixed-size window which can be further used as an input to the
machine learning algorithm. Aggregation was also performed to capture all the information
in fewer frames, which helps in reducing complexity. Complexity was also reduced by
employing a feature selection technique and testing the model’s performance.

The extracted features were transformed and given as input to different machine
learning algorithms. Since we have regression problems, several well-known regression
algorithms were used. In terms of model performance, the linear models, namely Gamma
regressor, Bayesian Ridge regressor, and Theil-Sen regressor, produced the best results
without the feature selection technique. Whereas the Decision Trees, Random Forest
performed well with the feature selection technique. Furthermore, the boosting methods
such as XGBoost, and Gradient Boosting regressor methods have shown mixed results. The
Gradient Boosting algorithm works well with and without feature selection technique, and
it also produced the best mean squared error and root mean squared error value for the
final run. The techniques were tested with k-fold and leave-one-out cross-validation to
maintain the bias-variance trade-off.

The future work includes improving the environment by either developing infras-
tructure on top of the conveyor belt or installing a high-end optical lens to deal with
environmental factors. In addition, the data captured weekly is also being added to the
dataset, which may impact the algorithm’s performance; thus, a pipeline needs to be im-
plemented to monitor the model’s performance continuously, and further research can be
conducted to optimize the current solution or modify it to cater to the new data.
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