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Abstract: Over the last years, capabilities of robotic systems have quantitatively and qualitatively
improved. But going beyond isolated robotic systems, the integration and interoperability of robotic
capabilities in complex work processes remains a major challenge. This lack of tools to integrate robots
needs to be addressed on technical, semantic and organizational level. In the ROBxTASK research
project, we developed an approach to support cooperation between different types of users in order
to enable domain experts, with no robotic know-how, to work with robot-assisted workflows. By
engineering robotic skills at a useful and usable level of abstraction for experts in different domains,
we aim to increase re-usability of these skills on two different levels, (robotic) device level, and
on level of application specific workflows. The researched prototype consists of a web platform,
which allows (a) engineers to register (robotic) devices and the implemented skills of the devices,
(b) domain experts to use a graphical task design environment to create workflows across multiple
robotic devices and lastly (c) robot co-workers to download and execute the workflow code in a local
environment with digital twins or real robots. Additionally skills and workflows can be shared across
organisations. Initial user studies have shown that the visual programming environment is accessible
and the defined skill-set is easy to understand even for domain experts that are inexperienced in the
field of robotics.

Keywords: visual programming environment; skill-based programming; digital twin; robotic devices;
end-user programming; healthcare robotics

1. Introduction

Robot technologies are already used in very varying areas of our society. According
to the International Federation of Robotics (IFR) [1] the World Robotics 2021 Industrial
Robots report shows a record of 3 million industrial robots operating in factories around the
world–an increase of 10% compared to 2020. The capabilities of robots have increased, with
a high velocity where, for example between 1995 and 2016, the number of robot-related
patent families worldwide have increased exponentially [2].

Within the service sector the market for Autonomous Mobile Robots (AMRs) is grow-
ing fast [3]. According to a recent market research study [4] containing the analysis of
more than 500 players and 15+ geographical countries/regions, Automated Guided Vehicle
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(AGV) and AMR Market is expected to reach $13.2 Billion by 2026 with a growth rate of
around ~35%. “Mobile robots and AGVs are used in industrial automation applications
and as service robots in new environments such as hospitals.” [5] (p. 2). Other application
areas for mobile robots are production logistics, agriculture, and service [6].

New domains for the application of social robots [7] have emerged. Among others, in
health and daily care services the potentials of social robots have been demonstrated [8].

Implementing robotic solutions in a domain requires the expertise and collaboration of
human resources from many disciplines. This is in particular true in complex environments
like manufacturing [9]. Here, the missing workforce requires an increased level of flexible
automation [10].

Approaches that promise less manual effort, such as data-driven approaches [11,12],
are likely to fail due to missing data and changing processes. A model-driven approach
is desired, requiring expert knowledge of both the robotic systems and the application
domain in which the robotic processes are executed. In the industrial environment, holistic
robotics solutions are often easier to implement due to the proximity of technical tasks
that usually dominate there. In domains like healthcare, involving domain experts can
be more difficult, because in many cases they do not have any robotic know-how. In any
case, knowledge of a complex and unique situation is needed, where requirements and
processes of the application domain, in general, and in the particular of the to-be automated
use-case, is combined with the technical knowledge how to program collaborative robots
interacting with humans and the other system along the processes. Interoperability needs
to be established on technical, semantic and organizational process level [13,14].

Training people from the application domain in computational thinking for being
able to program robotic processes requires effort [15]. The same is true in training robot
programmers in understanding the particularities of the end-user domain. What is needed,
is an approach that allows people either with robotic know-how to easily understand
the requirements and the processes of the application domain, or an approach where
(application) domain experts can easily model robotic processes.

In the project ROBxTASK, we have focused on the second approach [16–19]. In brief,
in this project we support multiple user groups working together on the task of creating
robotic programs. The three roles supported are: (a) the Robotic Engineer to provide
concrete implementations of robotic skills for a specific hardware; (b) the Task Designer, a
person with partial domain and robotic know-how, is working on robotic workflows that
build on the skills provided by (a); (c) the Robot Co-Worker is an end-user domain expert
with no robotic knowledge, but who is working with robots and has the responsibility to
execute the workflows designed by (b).

Application-oriented research of accessible interfaces that allow end-users to build
robot-based applications has already been researched [20,21] including applications for
robot-based therapy [22–24], education [25], social robotics [26,27], industry [28] and service
robots [29]. A broad overview on the topic of end user robotic programming is presented
by Ajaykumar, Steele, and Huang [30]. In general we found the following platforms and
research of particular interest:

• Trigger-Action Programming: The trigger-action paradigm [31], is a possible approach
to help application domain experts, without specific programming know-how, to
personalize the behaviour of humanoid robots. The tool IFTTT (https://ifttt.com,
accessed on 8 May 2023) is a well known example, implementing this paradigm.

• Code3: A System for End-to-End Programming of Mobile Manipulator Robots for
Novices and Experts [32]. Code3 builds on Google’s ™Blockly (https://developers.
google.com/blockly, accessed on 8 May 2023) [33] environment. However there the
focus is on single robots. The focus with respect to targeted user group is on pro-
grammers (with and without robotic coding skills). Code3 enables use-case-specific
code using three parts “(1) CustomLandmarks for developing perceptual capabilities,
(2) CustomActions for programming manipulation actions, and (3) CodeIt for com-
bining the two in a high-level program that captures task requirements” [32] (p. 2).

https://ifttt.com
https://developers.google.com/blockly
https://developers.google.com/blockly
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Use-cases and robot specific Landmarks and Actions are defined in Code3 and can
then be used in the CodeIt environment. This environment shows a lower level of
abstraction, which gets visible by code that includes detailed modelling of gripper
movements [32].

• CoSTAR [34] a system that allows to use natural abstractions and perception in a
way users can both understand and utilize to author plans using behavior trees and
high-level information from perception of known objects. A certain skill for behaviour
trees is needed. Also the behaviour elements needs to be programmed in a specific
way for the targeted systems.

• RAZER [35] is a software framework for task-level programming. The system tar-
gets both user groups, robotic experts and shop-floor workers. The first user group
is supported by a web-based graphical interface providing robotic skills and their
interface. The workers are supported by the graphical interface in creating tasks
from parameterized skills. Although the system has been used to program various
hardware, the focus is on robots.

• ABB Wizard easy programming (https://new.abb.com/products/robotics/application-
software/wizard, accessed on 8 May 2023) and ABB Robot Studio (https://new.abb.
com/products/robotics/de/robotstudio, accessed on 8 May 2023) [36] are exemplary
approaches provided by a company for their proprietary robotic systems. Wizard is the
standard graphical programming interface for ABB cobots and uses a drag-and-drop
paradigm as opposed to coding. The second system, the robot-studio allows off-line
creation and programming of virtual twins of a robot.

• LabVIEW [37] is graphical software for test, measurement, control and regulation ap-
plications. In the foreground are system developments and integration tasks that require
quick access to the hardware and a detailed insight into the recorded data (https://www.
ni.com/de-at/shop/software/products/labview.html, accessed on 8 May 2023). Lab-
VIEW can be enhanced with robotic modules e.g., for LEGO™MINDSTORMS™Robot
Inventor (https://www.lego.com/en-at/product/robot-inventor-51515, accessed on
8 May 2023) (which can be used stand-alone). As such the targeted user group are
expert engineers for LabVIEW. For the MINDSTORMS system the (obvious) user group
are kids interested in robotics.

While these applications are highly valuable for making robot programming more
accessible to end-users, they are partially constrained to certain use cases, application
domains, commercial technology providers or specific hardware. In contrast to domain-
specific approaches, interfaces for end-user-friendly robot programming that are applicable
across different domains and hardware would bring remarkable benefits, since robotic
tasks in different application domains are usually similar. For example, picking up an
item and placing the item in another location is a task that is common in both industrial
and healthcare domains [18]. Thus, applications that enable both the easy development of
robot-based tasks and the exchange of tasks between different application domains bear
great potential, as they can support transfer of knowledge between different domains,
decrease redundancies, and ultimately reduce time and costs.

The contributions of our research can be summarized as follows:

• Development of a scalable micro-service based open source web platform ROBxTASK
(https://github.com/ROBxTASK, accessed on 8 May 2023), to support cooperation
between user groups, enable domain experts to develop robotic workflows using the
Visual Programming Language (VPL) Google Blockly and generate executable code.

• Identification of appropriate skills at the right level of abstraction for domain experts
inexperienced in robotics for cross-domain and cross-device usage for the healthcare
and industrial domain.

• Improving test ability of distributed workflows by enabling testing without robotic
hardware and supporting integration of a digital twin.

• Evaluation of the operational capability of the platform in healthcare and industry use cases.

https://new.abb.com/products/robotics/application-software/wizard
https://new.abb.com/products/robotics/application-software/wizard
https://new.abb.com/products/robotics/de/robotstudio
https://new.abb.com/products/robotics/de/robotstudio
https://www.ni.com/de-at/shop/software/products/labview.html
https://www.ni.com/de-at/shop/software/products/labview.html
https://www.lego.com/en-at/product/robot-inventor-51515
https://github.com/ROBxTASK
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• User-centered evaluation of the platform for task designers based on three user studies
to test the usability of the developed platform for the selected target group.

The paper is organized as follows. Section 2 gives an overview of the ROBxTASK
platform. In Section 3 the use cases that were used in the project to evaluate the platform
are explained. The user studies evaluated in the research project are then described in detail
in Section 4. Section 5 discusses the methods and results. Finally, our paper is concluded in
Section 6.

2. ROBxTASK Overview

In order to introduce the reader to the general context of this work, we describe user
roles, followed by the interaction between roles.

As briefly mentioned in Section 1, the collaboration platform provides an infrastructure
that connects three types of users. This allows to build an organisational workflow to link
detailed and hardware-specific implementations with domain experts and robotic end-users.

The three user roles are described in more detail in Figure 1 and in the following.

Figure 1. ROBxTASK user roles.

• Robotic Engineer: Users in this role, do not have and do not need any end-user specific
know-how. They focus on implementing skills for a specific hardware.

• Robot Co-Worker: Users in this role are focusing on the execution of processes. The
robot is a tool only. Users in this role have no specific robotic know-how. For this type
of user, the focus is on efficiency and effectiveness of execution.

• Task Designer: Users in this role bridge the gap between end-user domain-specific
needs for executions of processes on the one side and robot-specific implementations
of tasks that are needed within the processes. Task Designers need know-how in
robotic and end-user domain. However, ROBxTASK support eliminates the need for
detailed knowledge for users in this role. The tools and approach supports abstraction
of details from both domains. Organizational and tooling support includes reuse and
sharing of both process models and task module implementations. The task designer
is a system integrator on technical level and on organisational level. The platform
supports users in this role to collaborate with both other roles. Robotic engineers are
contacted to create task-implementations [38] for robotic systems and on the other
side robot co-workers need workflows to execute their processes (Figure 2).

The ROBxTASK platform uses Google’s ™Blockly (https://developers.google.com/
blockly, accessed on 8 May 2023)-Editor on the frontend, which allows users to build
appropriate actors/software agents [39–41] by using the skills of the corresponding robotic
devices.

https://developers.google.com/blockly
https://developers.google.com/blockly
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Figure 2. ROBxTASK Task and Process Design and Exchange Environment.

The full workflow to create and run an application involves all previously described
user roles and can be simplified into five steps:

1. Robotic Engineer: Implement skills and register a robot on the platform. An engi-
neer needs to implement a server application (e.g., ROS action Server or OPC UA
Server), create a JavaScript Object Notation (JSON) based registration file containing
all available skills of the target robot, and register the device on the platform.

2. Task Designer: Select a robot target platform for task programming.
3. Task Designer: Create a task design in the Blockly task design editor by using the

available robotic skills and combining task modules in any way. May also design a
distributed process using multiple robots/robotic devices (see Figure 3).

4. Task Designer: Save the task design project.
5. Robot Co-Worker: Start the project download and run the generated program agents/

actors locally. Note that all robots should be in the same intranet for shared execution.
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Figure 3. Symbolic overview of handling multiple robots/robotic devices in ROBxTASK.

2.1. Skills in ROBxTASK

Skill-based programming simplifies the creation of robot programs, and helps to enable
non-experts to create robot applications [42]. Thus, a lot of research with respect to skill-based
programming can be found in literature especially for the the industrial area [43–46]. Following
Pedersen et al. [47] approaches of task-level programming using skills can be divided into
three layers:

• Primitives: Perform a single operation related to the robot system.
• Skills: Are combination of primitives.
• Tasks: Are directly related to solving goals and can be either explicitly programmed

or planned ad hoc, if skills are e.g., conform to the STRIPS [48] notation.

Some approaches also take care of supporting to find the right skill. Bøgh et al. [49]
developed first a method to find re-usable skills through analysis of industrial tasks, industrial
implementations and laboratory experiments; secondly they analyse Standard Operation
Procedures (SOP).

The result of the analysis finds that only a few standard skills are needed e.g., to
support flexible mobile manipulators for industrial logistics and assistive scenarios: Move
To, Locate, Pick up, Place, Unload, Shovel, Check, Align, Open, Close, Press, Release
and Turn.

According to [42] (p. 1) “the Skill Based Programming eases the robot program genera-
tion, its similarity to human behavior allows non expert operators maintaining, adapting or
creating robotic applications”, so this approach was also chosen for implementing a visual
programming environment in ROBxTASK.

The initial set of skills was drafted in a series of workshops with stakeholders from
healthcare and industry domains. One of the major criterion for developing the initial skill
was that a specific skill is needed for the description and later implementation of a use case
(see Section 3) from the perspective of the task designer: In the workshops the MIRO boards
(https://miro.com, accessed on 8 May 2023) (see Figure 4) were used to identify the skills,

https://miro.com
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skill slot parameters and skill slot types presented in this chapter. The MIRO software
has proven to be extremely useful in picking up the different groups of participants in the
research project with their different levels of knowledge at an appropriate level.

Figure 4. Planning skills and tasks in MIRO boards.

Multiple evaluation studies have been conducted to find the right level of abstraction
regarding specifically the skill formal definition, slot parameters, return values and applied
skill semantics. The slot types that can be used in module descriptions have been initially
defined in the workshops of the project. However, during progress of work we have been
reducing the slot types to:

• “String”
• “Numeric”
• “Enum” (e.g., list of predefined position from which the user can choose)
• “Bool”

To enable heterogeneous robots to agree on a basis of skills that can be programmed
in the editor, the project developed a skillset that can be targeted by concrete robots while
registration of a new robotic system on the platform. The target version of the skill set
implementation of the robot has to be provided upon registration. Table 1 shows our
defined skills (ROBxTASK skillset version 1.0) and all blocks that are available in the task
design editor for programming agents/actors.

Concrete robots can communicate their provided subset of the skillset using a JSON-
based registration file (details about registration process following in Section 2.2).

Similar to the servicelevel used in [50] we can add other runtime environment (RTE)
features later to provide additional blocks for task programming. This architecture enables
us to support building e.g., more intelligent software agents later, by providing AI features,
database access, . . . if needed.
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Table 1. Blocks implemented in the ROBxTASK Blockly environment ( RTE Feature, Robotic Skill,
Programming Feature).

Group Skill/Block

Communication (Basic Interoperability) SendMessage
OnMessageReceive

Moving MoveToLocation
DeliverObject
FetchObject

Detecting MeasureHydration
DetectObject

Grabbing and Unloading GrabObject
PutObject

Setup and Teaching TeachingWorkspacePosition
TeachingObjectRecognition

Basic Control Concepts Loop
Selection

External Interaction WaitForCondition
WaitForExternalEvent
WaitForUserInput
VoiceOutput
GraphicalUserInteraction

Setting and Getting Data of External Systems GetData
SetData

2.2. ROBxTASK Platform

The ROBxTASK cloud platform is based on the microservice architecture of the “col-
laboration network for industry, manufacturing, business and logistics in Europe platform”
(NIMBLE) [51]. NIMBLE (https://www.salzburgresearch.at/projekt/nimble, accessed on
8 May 2023) is a cloud-based, Industrie 4.0, Internet-of-things-enabled B2B platform on
which European manufacturing firms can register, publish machine-readable catalogues for
products and services, search for suitable supply chain partners, negotiate contracts and
supply logistics, and develop private and secure B2B and M2M information exchange chan-
nels to optimise business workflows. Using the existing technology stack from NIMBLE,
the ROBxTASK platform can support features like, e.g., user management, registration of
items on the platform, searching for registered items or chatting with other users. Some
sample dialogs of the platform can be found in Appendix A.

Figure 5 shows the Task Design editor, where all registered device skills are available
as blocks to be used in Google Blockly. In the Task Design editor, the total workflow can
be saved and restored in XML. Finally, the code for a concrete RTE (e.g., “ROS”) can be
downloaded as a zip file which contains for any device used in the workflow the concrete
python agent code. Thus, these agent files can be used by the robot co-worker then to
execute the workflow.

When the Robot Co-Worker presses the button “</> OPCUA”, the flexible generator
(https://github.com/ROBxTASK/codegen-service, accessed on 8 May 2023) generates
Python code that supports our ROBxTASK RTE (RxRTE) developed within the project [19].
RxRTE also supports the use of different test environments during the execution of the
workflow, e.g., to test workflows without hardware by using mock objects (skill calls are
then only emulated by waiting, e.g., 2 s) or to simulate the workflow using a digital twin,
and enables the monitoring of the distributed workflow using some additional tools (see
Section 3.2.1).

https://www.salzburgresearch.at/projekt/nimble
https://github.com/ROBxTASK/codegen-service
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Figure 5. Sample of the ROBxTASK Task Design Editor.

The ability to support digital twins proved to be helpful for task designers too. In
a later stage of the project we developed a docker based testing environment where task
designers can now download their programs from the platform and test them using digital
twins which support our use cases. This new environment simplifies the understanding of
the programs for task designers, and is described in more detail in Section 4.3.

3. Use Cases

A central goal of the ROBxTASK project is to demonstrate and validate the functionality
of the platform based on practice-oriented use cases. To promote the cross-domain usability
of the platform, use cases in healthcare and industry have been planned.

To identify meaningful use cases for both application domains, design fiction work-
shops with stakeholders from industry and healthcare domains were conducted as part of
the human-centered development process in ROBxTASK. In the workshops, stakeholders
were asked to brainstorm useful robot-based applications for the respective domains. Next,
these ideas were further developed into concrete use cases, also taking their practical
feasibility into account. The different use cases were further refined by members of the
project consortium as described in Sections 3.1 and 3.2. To test the cross-device use of our
skills, we planned to use different robotic devices in the use cases for the same robotic tasks,
e.g., for grasping/lying operations (skills: GrabObject, PutObject) and transport tasks (skill:
MoveToLocation).

3.1. Use Case Healthcare (UCH)

In contrast to the manufacturing industry the Nursing and Care industry is dominated
by direct human interaction in a physical and social manner. That fact rises specific
considerations about the implementation of robotic systems within this environment.
Societal and ethical issues like autonomy, dignity, acceptance and responsibility are the
primary subjects of the debate nevertheless, in view of the increasingly aging society and
simultaneous shortage of skilled workers within the nursing and care sector, assisting
robotic systems can be a building block to relive that tensioned situation [52].

Different activities on social and service robots are already on the rise. Some prominent
examples to name are the therapeutic robot seal PARO (http://www.parorobots.com,
accessed on 8 May 2023) [53] or service robots like the Care-o-Bot (https://www.care-o-
bot.de/de/care-o-bot-4.html, accessed on 8 May 2023) [54] from the Frauenhofer-Institute
in Germany or LIO (https://www.fp-robotics.com/de/lio, accessed on 8 May 2023) [55]
from F&P Personal Robotics.

http://www.parorobots.com
https://www.care-o-bot.de/de/care-o-bot-4.html
https://www.care-o-bot.de/de/care-o-bot-4.html
https://www.fp-robotics.com/de/lio
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The knowledge of predictable physical activities is crucial to identify further appli-
cation fields. Estimates assume the proportion of such activities within nursing and care
industry around 30–36% opposed to the manufacturing industry, where the amount of
predictable activities is up to 59% [56].

In order to identify an applicable use case for nursing and healthcare scenarios in
ROBxTASK, an analysis on the basis of “nursing phenomena” [57] in combination with a
fictitious “nursing process” [58] was conducted. Therefore, two possible scenarios were
selected, namely “malnutrition” and “high risk of falls”. Both variants were presented and
discussed in the consortium, finally a consensus was reached on the malnutrition scenario.
This is mainly explained by the consideration of possible technical implementation and
practical added value for nursing professions. The process design was guided by the view
of robotic systems as assistive devices in the day-to-day nursing process.

The flowchart in Figure 6 illustrates the whole malnutrition process. This process
is characterized by the fact that intersections between health professions (nurses), task
designers and the robotic system become visible. The process starts on the task designer
side with the decision for whom the use case should be active and which assessment or
screening tool should be applied. The robotic system independently performs the selected
assessment or screening tool at predefined intervals and compares the data to predefined
thresholds. If no deviation is detected, the robotic system performs a re-assessment at a
specified interval. In the event of a detected deviation, an action message is sent by the
robotic system to the health professionals. In addition, predefined measures take place
with regard to close surveillance.

During the project implementation the use case was analyzed and discussed in detail.
The joint decision was made from a feasibility perspective and represents a sub-process in
the main malnutrition process, namely receive the request to bring beverages and monitor
the fluid intake.

Figure 6. Flowchart of the malnutrition process.

The next step was to examine the use cases of industry and healthcare for syner-
gies. The goal was to determine which robotic motion sequence can be similarly or even
identically mapped. As a result, elements of the initial process could be used for further
processing in the project.
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In the healthcare domain we want to show that we can use the presented visual
programming approach to enable an immobile patient to get drinks and food delivered to
their patient bed. Since we want to show robot-cross execution we separated this delivery
task into three different robots, each equipped with different individual unique skills. No
single robot is able to perform the task alone, the robot always needs the skills of the others
as well. Their shared task execution should work as described by the task designer in
Blockly task design editor and collectively deliver an order to the patient bed.

For the healthcare domain we implemented a ROS-based local environment and
registered three robots (see Figure 7) to the platform via JSON upload:

• Q.Bo One (https://thecorpora.com, accessed on 8 May 2023) (social robot by TheCor-
pora). Implements the following skills: GetData, SetData, GraphicalUserInteraction,
VoiceOutput, WaitForUserInput, WaitForExternalEvent.

• ARTI Chasi robot (https://arti-robots.com/project/product-chasi, accessed on
8 May 2023) (mobile robot by ARTI). Implements the following skills: GetData, SetData,
MoveToLocation, GraphicalUserInteraction, WaitForUserInput, WaitForExternalEvent.

• Franka Panda (https://www.franka.de, accessed on 8 May 2023) (arm robot by Franka
Emika). Implements the following skills: GetData, SetData, WaitForUserInput, Wait-
ForExternalEvent, GrabObject, PutObject.

Figure 7. Use case healthcare-Robots: TheCorpora Q.Bo One, ARTI Chasi and Franka Panda.

In the registration of the three robots the task designer can get additional informa-
tion on how the robots are registered and which skills they do implement (decided and
implemented by the robotic engineer). For the healthcare demonstration lab setup, we
registered and implemented skills based on the minimum requirements needed to perform
the scenario presented. After successful registration of these three robots, the task designer
may for example design the workflow of the robots in the Blockly task design editor as
follows (see also Figure 8):

1. Patients can interact with the social robot ‘Q.Bo One’ and place an order via audio
input (e.g., say ‘Hugo, I need a cup of water!’). In our lab setup, there are nine different
storage positions to choose food and drinks from, so the designer needs to hard-assign
storage positions to audio commands.

2. Now the mobile robot ‘Chasi’ will autonomously drive to the drink station.
3. Next, the arm robot ‘Franka Panda’ will grasp the desired item and places the item

on the mobile robot. The designer here needs to make sure that the mobile robot is
always correctly parked in the parking slot first.

4. Then the mobile robot ‘Chasi’ will autonomously drive to the patient bed. Finally, after
the item has been picked up, the robot should drive back to the original parking position.

https://thecorpora.com
https://arti-robots.com/project/product-chasi
https://www.franka.de
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Figure 8. Use case healthcare-Initial planning of the workflow for ‘get a drink’.

In the end, how they want to implement the specific scenario is left up to the task
designers. The goal however is to deliver an ordered item to an immobile patient lying in a
bed and communicating with Q.Bo robot. Figure 9 shows an exemplary task design for the
healthcare use case.

Figure 9. Sample Blockly code for the healthcare use case.

Developing the Healthcare Use Case by Using ROS

In the local environment when working with ROS we use the ROS visualization tool
RViz (http://wiki.ros.org/rviz, accessed on 8 May 2023) and MoveIt (https://moveit.ros.
org, accessed on 8 May 2023) for visualization and testing the execution of robotic skills
triggered by the ROBxTASK system. The illustration in Figure 10 shows, how they are

http://wiki.ros.org/rviz
https://moveit.ros.org
https://moveit.ros.org
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connected in case of Franka Panda arm robot. This setting is used in the Salzburg Research
Forschungsgesellschaft (SRFG) lab to showcase the health use case scenario.

Figure 10. Connection of the ROS framework with MoveIt and RViz.

The ROBxTASK lab translation modules take commands from the ROS action clients
(Python client) and communicate them to the robot’s action server implementation (Python
server). Each robot hosts his own action server and waits for ROBxTASK commands to
execute given tasks. These action servers perform the action on the robot accordingly.
Commands are communicated via intranet in Python-based ROS action topics with strictly
defined message formats. Command sending success is evaluated using the Wireshark tool
(https://www.wireshark.org, accessed on 8 May 2023). The ROS action clients are automat-
ically generated by the codegenerator based on the compiled Task Design Editor project.

While the robots execute the command the planned paths of every movement are
visualized for testing purposes in RViz before the actual movement is executed. This also
allows stopping the robot before executing the movement by means of emergency stop
functions and prevents self-damage of the robot due to bad ROBxTASK command designs.
Since commands are derived from the graphical user interface Blockly application they will
be accessible to non-technical users, which requires the robots to have this additional safety
layer. Figure 11 shows what the RViz tools graphical user interface looks like when used
with Franka Panda arm robot.

The autonomous driving of ARTI Chasi robot is achieved through Monte Carlo al-
gorithm Simultaneous Localization and Mapping (SLAM), ROS navigation stack and
Google Cartographer (https://google-cartographer-ros.readthedocs.io/en/latest, accessed
on 8 May 2023). The robot uses light detection and ranging (LIDAR) and 3D cameras for
indoor navigation. We applied existing outdoor navigation algorithms to work for indoor
navigation in corridors and rooms.

Figure 12 shows a RViz visualisation of a sample robot navigation within the map of
the Salzburg Research lab. On the left image one can see the robot in the lab trying to find
his way down the narrow corridor to reach the room next to the lab (on the right side of the
left image). On the right image we can see a clean bird perspective of the lab where the
room on the right and the corridor have not yet been discovered by the cartographer. The
food and drink pickup station is located in the lab (left room), the patient bed with Q.Bo
social robot is situated in the neighboring right room.

https://www.wireshark.org
https://google-cartographer-ros.readthedocs.io/en/latest
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Figure 11. RViz tool layout-used for testing movement before execution.

Figure 12. Arti Chasi driving-visualized with RViz tool.

However, this technical RTE toolchain is only of interest for robotic engineers. Task
designers can simply use the final skills to implement appropriate tasks.

3.2. Use Case Industry (UCI)

The conceptualized industrial use case application targets the domain of manufac-
turing, specifically the pre-sorting, commissioning and delivery of finished parts or raw
materials. Similarly, as for the healthcare domain, the primary focus is on applying the
ROBxTASK programming approach to implement the required system behavior. Highly
optimized primitives for, e.g., precise handling of parts, or visual perception are beyond
the scope of this use case implementation. The following actors and sensors are integrated
and coordinated within an OPC UA-based environment:

• UR10 CB3 (https://www.universal-robots.com/products/ur10-robot, accessed on 8
May 2023) (collaborative 6-DOF robot manipulator by Universal Robots). Implements
the following skills: GrabObject (ObjectType, ObjectPosition), PutObject (TargetPosi-
tion), GetData (VariableName).

• MiR100 (https://www.mobile-industrial-robots.com/solutions/robots/mir100, accessed
on 8 May 2023) (industrial mobile platform by Mobile Industrial Robots A/S). Imple-
ments the following skills: MoveToLocation (TargetLocation), GetData (VariableName).

• Peripherals including an electric gripper, a Sensopart VISOR (https://www.universal-
robots.com/plus/products/sensopart/visor-robotic, accessed on 8 May 2023) camera
system, and inductive/capacitive/light-barrier sensors.

https://www.universal-robots.com/products/ur10-robot
https://www.mobile-industrial-robots.com/solutions/robots/mir100
https://www.universal-robots.com/plus/products/sensopart/visor-robotic
https://www.universal-robots.com/plus/products/sensopart/visor-robotic
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Note that the mentioned peripherals (sensors and camera system) are physically linked
and managed by the robot systems UR10 and MiR100. This is because of practical reasons,
e.g., a robot controller usually comes with digital/analog I/O ports, and simplicity reason,
i.e., to reduce system complexity.

The system layout considered for the industrial use case is depicted in Figure 13. The
stationary UR10 robot system (‘UCIUr10’), equipped with an electric gripper and a camera
system, is configured to (a) grab objects of type ‘Part_Cube’ and ‘Part_Cylinder’ and
(b) to put the same type of objects to predefined target locations. Those target locations in-
clude a ‘Box’, two slides (gravity chutes ‘Slide.Part_Cube’ and ‘Slide.Part_Cylinder’)
are used as storage for sorted parts, and a tray to hold pre-commissioned parts of both
types. The tray is mounted on an autonomously guided vehicle (AGV) of type MiR100
(‘UCIMir’), which enables transport of parts to the required storage or production cell. Both
slides include sensors at the entrance and bottom of the slides to enable interpretation of
the storage level.

Figure 13. Schematic overview of the system layout of the industrial use case.

As an application use case, a three-step process shall be considered: (a) Bin-picking
of parts (both types) out of the ‘Box’ and placing them onto the slide storage in a sorted
fashion. (b) Picking sorted parts (both types) from the slide storage and commissioning
them onto the tray at the designated tray-sections. (c) Transportation of the commissioned
parts to the target destination.

The skills for UCI conform with the ROBxTASK skill definitions according to Table 1.
To reduce implementation complexity for the task designer, the ‘GrabObject’ skill also
includes the object localization process required to retrieve unordered parts from the ‘Box’.
Moreover, vision systems are tightly linked to the robot system as extrinsic calibration
is often inevitable to achieve reasonable accuracy during part manipulation. The imple-
mentation of ‘GrabObject’ allows for an empty string passed to the ‘ÒbjectType’ slot if
the type of object can be deduced from the specified ‘ObjectPosition’. To give an example:
‘Slide.Part_Cube’ specified as position directly suggests that type ‘Part_Cube’ is of
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interest. The slots ‘ObjectPosition’ and ‘TargetPosition’ also support alias-names for the
slide storages. This need was identified during skill implementation, when initially the
IDs ‘Slide_A’ and ‘Slide_B’ were introduced. However, while such identifiers can be
intuitive enough for a robotic engineer, they are less self-explanatory for a task designer.

Using the setting described in Figure 13 we now wanted to research how to solve
an industrial part delivery scenario. Figure 14 summarizes all available robots, skills,
objects and locations. We recommend that such an overview graph also is provided
to task designers so that they can understand all available robotic skills and and their
supporting arguments.

Figure 14. Robots, skills, objects and locations available in the industrial use case.

We divided the use case into two parts:

• UCI1 ’Fill Slides’ (only UR10): Task: Fill all slides available by picking parts (cubes and
cylinders) from the box using UR10.

• UCI2 ’Deliver Parts’ (UR10 + Mir100): Task: MiR100 shall drive to LocA. Then 3 cubes
and 5 cylinders shall be moved from the slides to the trays at the MiR100. Finally
MiR100 shall drive to LocB, where these parts are needed. Coordination shall be done
using messaging.

Figure 15 show a possible sample solution for UCI1 and Figure 16 a solution for UCI2.
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Figure 15. Sample Blockly code for UCI1 ‘Fill Slides’.

Figure 16. Sample Blockly code for UCI2 ‘Deliver Parts’.

3.2.1. Developing the Industrial Use Cases by Using OPC UA

For our UCI we first generated OPC UA servers that support the planned robotic skills
by using XRob [59] and a SCXML based workflow designer tool.

Using some helper tools we than scanned the OPC UA servers to generate appropriate
agent type stubs that can be used by agents to call the robotic skills using OPC UA, and the
registration files for the ROBxTASK platform to register theses skills. The code generator
then was adapted to be able to call the appropriate software layer to support our RxRTE.
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Now, when the Robot Co-Worker presses the button “</> OPCUA”, the flexible code
generator generates Python code that supports RxRTE to download for all Blockly agents
and theses agents can then be started as individual processes.

In the project we can also generate mock objects [60], where skill calls are only sim-
ulated by pausing the program for 2 s. This feature is helpful for testing without robotic
hardware and was used for our initial tests. Finally, a monitoring application was devel-
oped in the project, that enables users to follow the message exchange between devices and
see the execution of the skills. A sample ROBxTASK monitor [19] webview of the running
UCI2 process of Figure 16 is depicted in Figure 17.

Figure 17. ROBxTASK monitor webview ‘Paths’ - displays parts of a sequence diagram for the use
case industry scenario UCI2 of Figure 16.

Later both industrial use cases were also tested successfully by usage of the simulation
system twin (https://www.digifai.com/twin, accessed on 8 May 2023) which was provided
by our project partner Eberle Automatische Systeme GmbH & Co KG. twin is a physic
based tool for the virtual commissioning of special purpose machines. In the project, e.g., a
simulation model was built that works together with our robotic OPC UA servers for UCI
(see Figure 18).

A video of the running simulation in twin that also shows the usage of the monitoring
application is given in [61].

In the further progress of the project the scenario was then developed and tested using
real hardware (see Figure 19). However, except for configuration changes, this did not
mean any changes for the agents or the already developed code, since the OPC UA interface
remained the same.

The simulation model developed in twin can also support task designers to test their
robotic programs without a need for concrete hardware (see Section 4.3). Thus, within our
project task designers can develop and test robotic workflows which are then transferable
to run on real hardware.

https://www.digifai.com/twin
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Figure 18. twin Setting for UCI.

Figure 19. Hardware Setting for UCI.

Discussions Concerning the UCI Scenarios

Although at first glance these scenarios seem simple. However, a closer look at the
details raises some questions:

• UCI1: What if there are not enough parts in the box to fill the slides?
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• UCI1: How must the program be changed if we want to work with 4 slides, for example?
• UCI2: What happens if there are not enough cubes or cylinders on the slides to pick them?
• UCI2: What if there is not enough space to put cubes or cylinders on the MiR100 trays?
• UCI2: What if MiR100 never sends a message?
• UCI2: What if the number of parts should be configurable?
• UCI2: Who starts the robotic workflow?
• UCI2: Shall the UR10 code end after servicing the Mir100, or wait for additional messages?
• UCI1, UCI2: What about error-handling?

Although error handling was not in the focus of this research project, we want to give
some suggestions:

• Since we use code generators to generate the agent types, we can, for example, auto-
matically add logging statements or exception handling if needed.

• Since each OPC UA skill is a state machine, the skill can be set to ‘Halt’ mode in case
of errors and a robot co-worker can be informed to correct the problem. For any skill
a ‘StatusMessage’ is available which holds the last problem text and can help the
co-worker to solve the problem. For example, if skills can be “resumed correctly”, the
workflow can then continue. So, in this case, throwing an exception would not be a
good idea, as this would then interrupt the entire workflow.

• We currently only use simple messages for coordination in the scenario UCI2. The
RxRTE has some additional choreographic features which can be used if tasks shall
run as autonomous services [19], but at the time of writing these features are not
implemented as Blockly blocks for the platform.

• If configurability across multiple agents is required, some parameters can be sent
between devices agents using message arguments. A second feature we evaluate at
the RxRTE is to integrate the key-values data store solution REDIS [62] and then use
scenario global variables instead. Setting global variables may be easier to understand
for task engineers.

3.2.2. Environmental Skills-Virtual Storage Concept

UCI2 uses, e.g., the bottom slide-sensor of trays to find out if there is still space to put
down parts. But what if we want to change the slides to an other kind of store concept
later? Or what if the sensor-name differs on another slider scenario? An initial finding is
that using real sensor-names in programs makes them less portable to other settings. Also
if someone wants to enlarge the space for parts at the table, e.g., by adding additional slides
’Slide_C’ and ’Slide_D’ later, the programs then must be massively adapted by the task
engineer. This might even be too complex.

Thus, we propose to hide these details for the task designer. Actually, the plan in
the project was to include only the obvious skills of robotic devices via registration to the
platform. But if we look deeper in this grab and put scenarios, we immediately see, that
some kind of storage concept would be very useful for manipulators, boxes, slides and
trays. If we grab objects we may have a camera at this position which can tell us if there’s
a part available to grab. Or some technical sensors could have this knowledge. Or some
algorithm is internally counting parts on locations. One question in our use case was also
whether to model the camera on the UR10 as an individual device. But we decided against
this because the camera was mounted directly on the UR10. However, this now led to a
sort of ‘combined device’ of a UR10 and a camera, which left room for discussion about
what skills to provide then. For example, if someone implements only a skill GrabObject
and internally hides the cameras skill DetectObject, then the error case when the camera did
not detect a part must be included in the GrabObject skill.

However, if reuse and program simplicity are to be the primary concerns, we suggest
that the task engineer not be burdened with these technical details. Instead we propose to
add a “Virtual Storage” concept providing some appropriate skills:

At a minimum one storage skill shall give task designers the ability to count how
many objects of a given objecttype are at a given location, e.g., CountObjects(sObjType,
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sObjPosition). And a second skill, e.g., CountObjectSpaces(sObjType, sObjPosition) is needed
to give the numbers of spaces available for a special object type at a given Position. Some
additional comfort functions may, e.g., be ExistsObject(sObjType, sObjPosition) and ExistsOb-
jectSpace(sObjType, sObjPosition).

The usage of these skills now can increase the interoperability between different
technical robot scenarios in the future by abstracting the concrete technical implementation.
This also leaves enough room for the robotic engineer for later process improvements by,
e.g., adding cameras, additional sensors or slides.
So in UCI1 instead of

1 while not UciUr10.GetData(Slide_A_Status_Part_Cube_StorageIsFull):

now

1 while UciUr10.CountObjectSpaces(’Table ’, ’Part_Cube ’) > 0:

or even simpler

1 while UciUr10.ExistsObjectSpace(’Table ’, ’Part_Cube ’):

can be used to test if there’s enough space left to put cubes on the (slide on the) table. And
in both use cases CountObjects can be used before a grab operation to not grab parts if there
are none available. Whereas CountObjectSpaces can prevent to try to put objects at positions
where there is no space available, if this is needed in user programming.

Thus, in order to develop more robust, portable and adaptable tasks, we recommend
determining the appropriate skills based on more than just the obvious robotic skills - we
see a need for some kind of environmental skills too.

4. User Studies

In the context of developing interfaces for robot-programming by end-users, explicit
emphasis of principles related to human centered design is called for [20]. Thus, the
development of the ROBxTASK platform is embedded into an continuous human-centered
design process involving various stakeholders from the industry and healthcare domains.
In the following, we provide an overview of the methodology and results of user studies
that have already been conducted in the context of the human-centered design process.
Since the ROBxTASK platform is still under development, we also preview future studies
aimed at evaluating refined versions of the platform.

4.1. Methodology

In the studies, we mainly focused on small scale usability tests as they are an efficient
tool to identify usability issues at an early development stage. According to Faulkner [63],
in a usability test involving only 5 participants 86% of usability problems can be identified
on average. Each of our studies included task-based evaluations of the respective prototype
employing the thinking aloud method [64] (i.e., participants were asked to solve various
tasks with the platform while articulating their thoughts in the process) and additional
interview questions.

So far, 3 user studies (RxT01, RxT02 and RxT03) have been carried out in the project.
The studies were conducted in an iterative process that evaluated various prototypes of the
platform and incorporated feedback from the studies into technical development. In each study,
a refined version of the platform prototype was evaluated (compared to previous studies).

All studies involved stakeholders from industry and healthcare domains. Emphasis
was put on early identification of obstacles related to the interaction with the platform
and insights into possibilities for improvements. Due to restrictions related to the on-
going COVID-19 pandemic, studies were conducted in an online or hybrid setting. A
video conferencing software was used for remote communication (speech and video) and
recording of the study sessions (compliant with data protection regulations). Prior to the
respective study, participants were informed about the goals and content of the study and
gave their informed consent to participate.
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While the first study did not include any training, training with the platform was
applied for the second and third study. This means that before solving the study tasks,
participants received a short briefing on how to use the platform. In addition, all persons
who participated in the second study also took part in the third study to simulate a realistic
environment in which persons become familiar with using the platform over time. Table 2
provides an overview of the sample, procedure and study tasks in the 3 different ROBxTASK
studies conducted so far.

Table 2. ROBxTASK user studies overview.

User Study RxT01 User Study RxT02 User Study RxT03

Sample Females: 4, Males: 1 Females: 4, Males: 4 Females: 4, Males: 4
Mage = 32.2 Mage = 38.25 Mage = 38.25

Procedure Online Online Online or in Person

Training No Yes Yes

Tasks Create an account. Register a user account
and a company.

Register an account or
log in to the participant
account.

Add a new asset to a
specific process.

Define a process (using
the task design editor) to
exchange a message be-
tween two devices.

Search for devices.

Search for a new task
module.

Define a process to grab
and place an object. Register a device.

Edit and save a specific
task module.

Define a process in
which a robot reacts to hu-
man speech input.

Use the task design ed-
itor to define the process
for the basic industrial
use case.

Recreate the described
processes with the help of
“skills” (blocks) provided
(Industry domain).

Define a process to
move a robot to a differ-
ent position.

Use the task design ed-
itor to define the process
for the basic healthcare
use case.

Recreate the described
processes with the help of
“skills” (blocks) provided
(Healthcare domain).

Define a process for
measuring dehydration
in a patient.

Define a process to pick
up and place multiple ob-
jects by a robot.

Freely define a process.

For analysis, recordings from the study sessions were transcribed. Based on this
data, statements were grouped into overarching themes and implications for the further
development of the platform were derived. The results presented in the following focus on
positive and negative feedback from users and respective implications.

4.2. Results
4.2.1. User Study RxT01

In general, participants expressed positive feedback about the cloud platform mock-up
in the first study. The design of the user interface was highly appreciated and all participants
were able to complete the tasks using the VPL prototype, describing them as fairly simple.
However, several participants suggested that initial training and additional documentation
would be needed to make the platform even more accessible. All participants indicated
that they could imagine using such a platform. More detailed results from the first (positive
and negative feedback from participants) study are presented in Table 3.
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Table 3. Feedback from participants of the user study RxT01.

Positive Feedback Negative Feedback

• Interaction with the user interface is acces-
sible and rather easy to understand.

• Using the VPL prototype is fun.
• Design of the VPL prototype is pleasant.
• Blocks hovering help in the VPL prototype

is appreciated.
• Blocks predefined options in the VPL pro-

totype is useful.

• The registration page would need to be
made more user friendly (e.g., option to
see password, password guideline, link to
End User License Agreement).

• Dashboard screen terminology is unclear
at first.

• Account and Company tabs can be com-
bined.

• Con f igure functionality is unclear.
• Some icons could be improved (e.g.,

Download, Search).
• For some functionalities (e.g., Con f igure,

Download) the participants don’t under-
stand whether users items or the online
version are meant.

• The meaning of the Skills and
SupportedModules assets is unclear.

• On the TaskDesign screen the differ-
ence between Blocks, TaskModules and
Processes is unclear.

• Interaction with the TaskDesign screen is
a little bit confusing.

• For experienced programmers the VPL
prototype is too simple and does not offer
enough flexibility.

• Initial training and documentation is re-
quired.

A list of implications was derived from the analysis of the participants comments and
suggestions. Each implication was assigned a priority “high”, “middle” or “low”. These im-
plications will be considered as the platform continues to evolve. For example, implications
rated as “high” focused on maintaining a consistent tab layout and terminology, defining
some functionalities more clearly, displaying more information when hovering, necessity
for documentation, grouping blocks into categories. The implications also contributed to
the improvement of the studies, e.g., the necessity for documentation and training was
rated as “high” and therefore a training concept was developed for the following studies.

4.2.2. User Study RxT02

Generally, the second user study showed positive feedback from the participants from
both the healthcare and the industry domains. The participants appreciated the design of
the platform prototype and the simplification of programming. Participants highlighted
the benefit of initial training to get an introduction to the platform functionalities and the
programming. They also showed interest in using the platform in the future. In addition,
participants pointed out some negative aspects of the platform and future improvements
they would like to see. Participants from both areas commented as follows on the tasks
they had to complete during the assessment:

• Interaction with user registration on the platform was considered very easy.
• The tasks that focus on an action that requires only a few blocks, such as exchanging

messages, grabbing an object, or moving to a position, were considered easy to perform
and required minimum assistance from the study facilitator.

• Tasks requiring the design of a complete process were considered more challenging
and required more support in interpreting the task and translating the task into blocks.

The feedback is presented in more detail in Table 4.
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Table 4. Feedback from participants of the user study RxT02.

Positive Feedback Negative Feedback

H
ea

lt
hc

ar
e

D
om

ai
n

• Platform is easy to use and
to understand.

• Programming is simple and fun
with the task design. Thanks
to the blocks and the drag and
drop feature.

• Users without technical knowledge
can imagine using the platform in
the future.

• Platform could be interesting for
other sectors such as schools
or training.

• For non-programmers some infor-
mation or explanations are missing
(e.g., what is a string object).

• Better information or explanation
for blocks is missing (e.g., some
blocks seem to have the same func-
tion and for some blocks partic-
ipants don’t understand how to
use them).

• To make the platform more prac-
tical, some functions should be
improved (select multiple blocks
together, scroll function in the
TaskDesign editor).

• More information for blocks, com-
mand and devices would be useful.

• Lack of feedback from the platform
on whether the user is using the
blocks as intended.

In
du

st
ry

D
om

ai
n

• Platform design is very pleasing.
• Programming is simplified and

easy to handle for a first time user
thanks to the existing blocks and
the hovering help.

• Platform could be used for train-
ing purposes and show many
robotics applications.

• Some blocks need more informa-
tion to use them (e.g., data unit
and format).

• Blocks need some optimizations to
make the programming more nat-
ural (e.g., use blocks inside blocks,
blocks prefilled with example).

• Saving and loading of a program is
not user-friendly.

• Make the saving/loading of a pro-
gram more standard.

• Make a short tutorial included in
the platform for beginners.

• More information about blocks.

In the second study, the implications focused on specific aspects of certain functionali-
ties. For example, the “Save” button should directly save the user’s program as an XML
file and not open the XML code in another browser tab, the “Load” button should open the
Windows Explorer instead of providing an interface for copying and pasting the XML file,
the type of the blocks’ parameters should be clearer, access to the free text field should be
easier, or more information should be added when hovering.

4.2.3. User Study RxT03

In the third study, the less complex tasks (e.g., logging in) were considered easy-except
for the registration of a device. In contrast, the more complex tasks involving the task design
editor (i.e., designing complete use cases for health and industry domains) required the
assistance of the study facilitator and were more challenging for the participants. Detailed
feedback from participants from the third study is presented in Table 5.
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Table 5. Feedback from participants of the user study RxT03.

Positive Feedback Negative Feedback

H
ea

lt
hc

ar
e

D
om

ai
n

• Task design presentation is easy
to understand.

• Task design requires some time to
get used to, but can be operated in-
dependently after training.

• Password restoration does not al-
ways work.

• Search function needs the device
full name.

• Usage of a JSON file for the de-
vice registration cannot be used
by non-programmers.

• Free text field should be accessed in
a faster more convenient way.

• Drag and drop feature could be op-
timized to insert multiple blocks
at once.

• Common keyboard shortcuts do
not work (e.g., CTRL + A) in
the TaskDesign.

In
du

st
ry

D
om

ai
n

• Password registration works well.
• Search function filters the devices.
• User’s devices are easy to find (only

devices users can delete or edit in
the list).

• Users do not understand what they
can do with the device found via
the search function. There is then
only information to read.

• Registration of a device is too com-
plicated with the JSON file.

• There is no indication if the user
made an error in the JSON file.

• In the “if loop” there is no “else”
possibility available.

• Some parameters of the blocks
are unclear.

• Switching from the TaskDesign
tab to another tab erases the
user’s program.

• Differences between some blocks
are not always clear.

Since the participants in the third study already had more experience with the platform
(see Section 4.1), the implications derived from the third study focused primarily on the
newly introduced functionalities. For example, device skills could be more accurately
described in search results, device registration could be made simpler (no use of a JSON
file), runtime errors should be fixed, and the user account password restoration could be
improved. Finally, the fact that most participants required help from the study facilitators
when designing more complex use cases again shows that-while the platform is considered
easy to use by most users-approaches for end-user training are still important to consider.

As part of the third user study (in addition to the evaluation with potential end-users), a
checklist of 27 functional criteria (i.e., functionalities that should eventually be implemented in
the final version of the platform) was created and evaluated by two study facilitators. Based on
the checklist, the current prototype of the platform was explored and the individual criteria
were reviewed. The results are depicted in Table 6 and provide an comprehensive overview of
the functionalities implemented in the current ROBxTASK prototype.
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Table 6. ROBxTASK platform functional criteria ( fulfilled, partly fulfilled, not fulfilled, not
yet tested).

Group Criteria

Platform Users can log in to the platform using their name and password.
A new user account can be created on the cloud platform.
(New) devices can be added to a process in the cloud platform. Actual status:

JSON Files only.
Processes defined using blocks or task modules can be saved in the cloud

platform. Actual status: JSON Files only, download button missing.
Operations in the task design editor can be undone (optional).
Operations in the task design editor can be repeated (optional).
Task modules, processes and devices (assets) can be searched for in the cloud

platform. Actual status: only available for some devices.
A flag for public access (i.e., public or private) can be set when creating/sav-

ing task modules or processes to allow access only for certain user roles on
the platform

If the access to a task module or process is set to private (i.e., non-public) only
certain user roles can view and access the respective item.

Programming All blocks or task modules required for implementing the basic use cases are
available in the cloud platform.

All devices required to implement the basic use cases are available in the
cloud platform.

Different blocks or task modules can be combined with each other in the cloud
platform (“workspace” of the task design editor) using drag and drop.

Blocks or task modules are organized into categories in the task design editor.
Blocks or task modules can be removed from the task design editor workspace.
Blocks, task modules and combinations of them can be copied from the task

design editor workspace. Usability improvements required.
Blocks, task modules and combinations of them can be cut from the task design

editor workspace. Usability improvements required.
Blocks, task modules and combinations of them can be pasted from the clip-

board into the task design editor workspace.
Blocks or task modules can only be assigned to a device if that device can

execute them.
Arguments can be passed to blocks and task modules in the cloud platform.
Predefined variables required for the implementation of the use cases (e.g.,

position specifications) are defined in the cloud platform.
Communication between different devices is visualized in the task de-

sign editor.
Additional information on the functionality of a block or task module is

displayed when hovering over the item in the task design editor.

Runtime Program code is generated by combining blocks or task modules in the task
design editor.

Program code generated by combining blocks or task modules can be down-
loaded or exported.

Downloaded or exported program code can be transferred to the simula-
tion environment.

Code transferred to the simulation environment correctly represents the use
case for the industry domain and can be executed without errors.

Code transferred to the simulation environment correctly represents the use
case for the healthcare domain and can be executed without errors.

4.3. Outlook

An important aspect raised by the test users was that they also wanted to see the
robotic actions when executing their programs. Of course, this is not easy to solve with
real hardware. But in a later stage of the project we developed a docker based testing
environment where our usecases UCH and UCI can be tested virtual by help of the twin
models that were developed in earlier stages of the project. Users can (1) download their
robotic programs from the ROBxTASK platform to some shared folder of a docker-container,
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(2) start the program within a docker-container, and (3) see the simulation in the 3D-view of
twin while (4) observing the monitoring output of the distributed workflow (see Figure 20).

Figure 20. Screenshot of ROBxTASK End-User Testing Environment for the Healthcare Use Case.

An example video that shows how this testing environment can be used by end-users
is given in [65].

The upcoming user studies will use the new testing environment, and focus on
evaluating revised and improved, as well as newly implemented, functions of the platform
and the VPL. The studies will be based on the healthcare and industrial use cases defined in
the ROBxTASK project and will collect objective metrics (e.g., task time) and subjective data
(e.g., ratings on user experience, qualitative feedback) to continuously monitor and improve
the quality of the application. Furthermore, future studies will evaluate the platform in
real-world settings and explore factors that may facilitate or hinder the practical application
of the task design process from an end-user perspective.

5. Discussions

By leveraging NIMBLE’s [51] existing technology stack, the ROBxTASK platform could
be faster developed than starting from scratch. With the help of the flexible architecture, further
improvements can be added more easily in the future (e.g., self-registering of devices).

In the project a flexible code generator was developed that allows to generate, e.g.,
Python code for different RTEs. For our healthcare use case the code generator, e.g.,
generates code to call ROS actions. Whereas for the industrial use case the code generator
produces source code to be run by using a RxRTE that was developed to be able to also
support exotic runtime environments and robotic devices. The ROBxTASK platform can
therefore be used with various robotic RTEs and thus, the concrete RTE used can be hidden
for the task designers.

In our industrial use case we contact the robotic devices via OPC UA. For the OPC UA
environment, we also developed a parser and code generator so that as new skills become
available on a suitable robotic OPC UA server, we can generate agent type stubs and JSON
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files to register theses skills on the platform and then let task designers use them, speeding
up development.

The logging and monitoring capabilities of the RxRTE environment proved to be
helpful in observing distributed tasks. Displaying message flow paths enables robotic
co-workers to comfortable follow the current state of skill execution. Even task designers
can pre-test robotic workflows to find problems in a workflow, when using a mocking
environment and RxRTE. The platform currently supports only basic interoperability
(messaging) to be used between agents for the ROBxTASK platform. Further improvements
that support service discovery and mediation have been implemented in the RxRTE [19]
but are currently not available using Google Blockly blocks to be used in the platform. In
general additional RxRTE features added later, can also be registered on the platform to
provide additional blocks for task programming. Since AI capabilities, database access and
other additional functions can be provided in this way, the development of more intelligent
and autonomous software agents shall be supported in the future.

By integration twin simulation, problems in the environment can now be more easily
detected by robot co-workers before they work on the real hardware. Using twin for
testing is also helpful for task designers to test the robotic programs and improve their
understanding on how to properly use the robotic skills. But of course, this requires manual
development of a suitable simulation environment.

If advanced error handling is to be integrated in the future, more research is needed.
In this context, we see maintaining usability for task designers while developing robust
robot workflows as a challenge yet to be solved.

6. Conclusions

In the research project ROBxTASK, the partners developed a platform to support
end-users in designing and executing robotic processes. Using the platform, multiple user
groups work together. Robotic engineers can register (robotic) devices including their
skills by using appropriate JSON files. Task designers can use these skills in the “Google
Blockly”-based, graphical task design editor to create workflows across multiple robotic
agents. And robot co-workers can download and execute the workflow code in a local
environment with real robots or digital twins. The platform’s operational capability was
evaluated by end users based on healthcare and industrial use cases.

In workshops MIRO boards proved to be useful to identify skills at the right level of
abstraction to be used by task designers. These skills where then applied to use cases in the
industrial and healthcare domain. The project used the same skills in different domains
and implemented them through different robotic devices to demonstrate the usability of
the skills across domains and devices.

In ROBxTASK we have created the three roles described above that collaborate to
enable end users without robotic expertise to focus on their tasks, while being able to
get support from robotic engineers. Application specific workflows are used to integrate
heterogeneous systems (including robots). Individual tasks in these workflows are realized
by skills, implemented in the technical systems. In order to develop more robust, portable
and adaptable tasks, we recommend determining the appropriate skills based on more
than just the obvious robotic or device skills. For example, using “Environmental skills”
according to our “Virtual Storage” concept proposed in Section 3.2.2, can help to develop
more stable grasping/lying programs.

In the project three user studies were carried out. The user studies showed that
although the platform is relatively easy to use, a training concept for end users is necessary.
Tasks that focus on an action that requires only a few blocks, such as exchanging messages,
grabbing an object, or moving to a position, were considered easy to perform but design of
a full process is considered more challenging.

However, participants generally indicated that they could imagine using such a
platform, so the platform was considered interesting.
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Overall, the ROBxTASK platform is able to help organisations to integrate robotic
systems along a workflow. Through features like sharing skills and workflows the platform
enables knowledge exchange even across multiple organizations. The three user roles
that have been created for ROBxTASK allow that individuals focus with their expertise on
certain tasks, where, most importantly, end users can work in their domain and make use
of robots without much training. Also the robotic programmer can focus on implementing
skills, without the need to understand in detail the application domain(s). Only the role
of the process designer needs knowledge of both worlds. However, that role receives the
most support from the implemented tools. The graphical process editor allows to stay on a
higher level of abstraction with respect to robotic know-how.

The ability to provide simulations for end-user testing proved to be a great added
value for end users. However, developing individual simulation environments for each
robot environment is time consuming. To this end, some ideas have already been discussed
by the project participants to possibly create suitable environments more automatically in a
future follow-up project. Further research has to be taken especially when e.g., advanced
error handling shall be integrated. Here, ease of use for task designers while building
robust robotic workflows can be a challenge.

In the next steps of the project, further studies will be conducted to evaluate the
platform with end users in real-world environments.
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AGV Autonomously Guided Vehicle
AMR Autonomous Mobile Robot
B2B Business to Business
COVID-19 Coronavirus SARS-CoV-2
DOF Degree Of Freedom
IFR International Federation of Robotics
IFTTT If This Then That
LIDAR Light Detection and Ranging
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MEESTAR Model for the ethical evaluation of socio-technological arrangements
MDPI Multidisciplinary Digital Publishing Institute
M2M Machine to Machine
NIMBLE collaboration Network for Industry, Manufacturing, Business and Logistics in Europe
OPC UA OPC Unified Architecture
RTE Runtime Environment
ROS Robot Operating System
RViz ROS visualization
RxRTE ROBxTASK RTE
SCXML State Chart XML
SLAM Simultaneous Localization and Mapping
SOP Standard Operation Procedures
SRFG Salzburg Research Forschungsgesellschaft
UCI Use Case Industry
UCH Use Case Healthcare
VPL Visual Programming Language
XML Extensible Markup Language

Appendix A. Sample Dialogs for the ROBxTASK Platform

The ROBxTASK platform is based on the existing technology stack of (NIMBLE) [51].
Therefore, a lot of documentation can already be found online on the NIMBLE documentation
website (https://www.nimble-project.org/docs/, accessed on 8 May 2023).

In addition, only some of the most important ROBxTASK specific dialogs that task
designers come into contact with in connection with the development of robotic programs
are shown below.

After successfully login to the ROBxTASK platform, the initial dashboard shown in
Figure A1 is presented. Users then can register devices or start writing programs using the
TaskDesign editor.

Figure A1. ROBxTASK platform initial dashboard after successfully login.

Robotic Engineers can register new devices using JSON based registration file contain-
ing all available skills of the target robot by using the form depicted in Figure A2. This
architecture also enables the registration of devices that are currently not yet available in
this form, which in turn enables initial usability tests before the corresponding skills have
to be developed in simulation or reality.

https://www.nimble-project.org/docs/
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Figure A2. Form to register a device in the ROBxTASK platform.

All registered devices can be searched by task designers, to use them for their robotic
workflows (see Figure A3). The result of the query explains the available devices, their
skills and parameters.

Figure A3. Dialog to search for registered devices in the ROBxTASK platform.
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