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Abstract: Modern computers’ network interface cards (NICs) are undergoing changes in order
to handle greater data rates and assist with scaling problems caused by general-purpose CPU
technology. The inclusion of programmable accelerators to the NIC’s data channel is one of the
ongoing improvements that is particularly intriguing since it gives the accelerator the chance to take
on a portion of the CPU’s network packet processing duties. Accelerators are frequently developed
using platforms like field-programmable gate arrays because packet processing operations have
severe latency requirements (FPGAs). When implementing packet processing activities, FPGAs’ gain
for through put is the number of data packets being successfully sent per second and latency is the
actual time those packets take. However, due to their restricted resources, programming may need to
be shared throughout a variety of applications. We provide hXDP, a software solution for FPGAs that
targets the Linux eXpress Data Path and performs packet processing functions outlined with the eBPF
technology. While maintaining performance on par with top-tier CPUs, hXDP only uses a tiny portion
from the field programmable gate arrays, which are semiconductor devices that are based around a
matrix of configuration logic blocks (CLB) connected over programmable interconnects. However, we
demonstrate that when aiming towards a purpose-built FPGA architecture, many extended Berkeley
packet filters (eBPF) allow programmers to use Berkeley packet filter byte code that makes use
of certain kernel resources and instruction set architecture, to collocate and even eliminate, with
considerably productivity and effectiveness. On an FPGA NIC, we implement hXDP and test its
effectiveness using authentic eBPF programmes from the real world. Our version consumes 15% of
the FPGA resources and operates at 156.25 MHz. This can constantly change and lead to the act of
identification, inspection, extraction, and manipulation so that a network may make more intelligent
management decisions.

Keywords: architecture; eBPF technology; FPGA; NIC

1. Introduction

The hardware component used for processing data traffic arrivals, without which a
computer cannot be connected over a network, consumes a significant portion of the CPU
resources. A few examples of the duties carried out by these systems include enforcing
security, for instance, the process of keeping our network firewalls secure by analysing
key firewall monitoring parameters such as traffic, bandwidth, utilization, and sessions.
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Since a CPU performance cannot be further scaled and NIC port speeds are reaching over
100 Gigabit/s (Gbps), the best solutions for meeting the increasing energy are developed.

One of the possible methods for freeing the CPU from resource-intensive packet
processing chores and reserving its valuable cycles for operations that cannot be performed
elsewhere is the addition of programmable accelerators to the NIC [1]. The Flex network
interface programming model can improve packet processing performance by reducing the
memory system pressure at fast networks speeds [2,3]. As a result, different technologies,
such as ASIC for a particular kind of transmission protocol, FGPA—based on a matrix
of configurable logic blocks—and many more interconnected technologies are used to
implement accelerators in the modern world.

Both a hierarchy of reconfigurable interconnects and a variety of programmable logic
components are found in FPGAs [4]. The interconnects allow these blocks to be assembled
in a variety of ways after they have been manufactured [5]. FPGAs offer a combination of
programmability and performance when compared to other processors, as seen in Table 1.

Table 1. Performance description of processor.

S No. Abbreviation Processor Description

1 ASIC s Application Specific
Integrated Circuits

The most efficient devices are those that are specifically designed,
like Google’s Tensor Processor Units (TPU). They cannot be
changed to suit your changing demands.

2 GPU s Graphics Processing Units A common option for AI calculations. GPUs are faster at rendering
images than CPUs because they can perform parallel processing.

3 CPU s Central Processing Unit CPUs are general-purpose processes but have subpar performance
for processing graphics and video.

4 FPGA s Field-Programmable Gate
Arrays

The performance of FPGAs is comparable to that of ASICs, such as
those offered on Azure. In order to include new logic, they are also
adaptable and re-configurable throughout time.

With fewer FPGA resources and seamless integration with current operating systems,
our approach is towards a universal and simple use of the method of programming by
enabling the offloading of expensive packet processing. We achieve this using info, a group
of technologies that makes it possible for the file system eXpress Data Path (XDP) [6,7]
to be executed successfully on FPGA. The Linux community uses XDP extensively in
production contexts because eBPF technology is used in the Linux kernel to provide
secure programmable packet processing. The whole XDP feature of hXDP enables users to
dynamically load content.

eBPF is a revolutionary technology with origins in the Linux kernel that can run
sandboxed and was initially intended as an ordered list of something with an efficacious
performance of operated devices where energy efficiency is key, such as in a register
machine. The problem further proceeds for running XDP applications highly integrated in
a field program [8]. In other words, extended Berkeley was made with high clock rates of
the control unit in the server with a capacity of extended Berkeley instructions. As opposed
to high-end CPUs, a field programme gate array has a widely parallel execution paradigm
of 5 to 10 times lower with clock speeds [9].

Firstly, we take on the task by undertaking a thorough examination of the abstract
model of a computer that defines the eBPF Instruction Set Architecture (ISA) and the
current express data path programmes in order to identify as well as seize optimization
opportunities. In the beginning, it lists the eBPF instructions that, when they are not being
executed in the context of the Linux kernel, can be removed without risk.

Secondly, the extensions of the extended Berkeley instruction is going to introduce
3 mathematical operation architecture and there is also a program that stores a new param-
eterized program.

RETRACTED
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Finally, we influence instruction level uniformness in extended Berkeley for complier
design techniques and processor executing numerous eBPF instructions concurrently by
conducting a symbolic execution of the programmes at build time [10]. By minimizing
pointless PCIe transfers, for example, we are able to fully utilise the on-NIC execution
environment and integrate these efficiencies in the way we construct hXDP.

Here are the following features of our design:

A. A compiler for the enhanced hXDP ISA that converts the bytecode of XDP applications;
B. An independent is a block of logic or data that is used in making field programme

gateway arrays or is application specific with various low-level optimizations;
C. The tool chain mechanism, which is dynamic at run time, loads a library and commu-

nicates for data path programmes, handles the acceleration tasks, and passes to NIC
devices for additional processing.

This is an open source of Net FPGA logic blocks that implements a multiple level fan
in gates, which gives it more impact on the design compared to an implementation [11].
The evaluation of our results shows real world applications of basic firewalls, which are
going to load balancing with a re-engineered forwarding plane that takes advantage of
kernel engineering as well as the XDP sample programmes provided by the Linux source
code [12,13]. While offering a 10× lower forwarding latency, the Linux express data path
will be equal, which refers to the capability of switching to forwarding packets in packet
per second [14]. This is accomplished while using less than 15% of the FPGA resources and
the frequency of prototypes with low clock speeds.

Conception

The main objective is making it possible to show data path applications on FPGA,
which handles the acceleration tasks and passes packets to the NICs effectively, utilizing
the least amount of FPGA hardware resources possible, as shown in Figure 1.
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As it allows for additional consolidation by fitting many application accelerators on
the same FPGA, minimal utilization of the FPGA resources is particularly significant [15].

Instead, the decision to adopt XDP is driven by two advantages that the technology
offers [16]. Because it offers an on-NIC optimization method that is widely known to a
sizable community for Unix coders, programmers are spared from having to learn novel
development tools like those offered by P4 or Flow Blaze It also makes NIC offloading for
XDP programmes that have previously been deployed simple [17,18].

Requirements: From the discussion above, we list three high-level requirements for
hXdp:

a. It must run compiled XDP programmes without modification and, therefore, must
support the provided coverage foundations’ tool chain, providing immense contribu-
tion to reloading and user-mode access to maps.

b. Performance for processing packets ought to be at least on par with top-tier process-
ing packets.

c. It can be utilized only for the small portion of the hardware in the FPGA.
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We will now provide a quick history of XDP before providing a more thorough
explanation of the hXDP idea.

2. Materials and Methods
2.1. Xdp

By using express data path, inputs will be taken in code network interface, where
they will be performed over the network packet and forwarded to the Linux network stack
plan of action for XDP, which is built using eBPF technology from Linux [19]. A kernel
virtualization provided by eBPF enables the trusted execution operation of code snippets
within the core environment.

Extended Berkeley packet filter VM currently includes 64 b registers→ 11

(a) r0 stores the return value from in-kernel programmes.
(b) r1, r2, r3, r4, r5 function as the parameters supplied to in-kernel functions.
(c) Holding address throughout control and arguments at r6, r7, r8, r9.
(d) Accessing the stack using the frame pointer, r10.
(e) The standard instruction set architecture that made over a hundred packed frame

lengths is present in the eBPF virtual machine.

The kernel memory locations known as maps, or internal memory locations, which
fundamentally re-arrange tables, are likewise accessible to eBPF programmes. For instance,
arrays and hash tables can be implemented using maps in eBPF systems. A lookup on
a map that has been set up as a hash table is one example of how an eBPF programme
could interact with the locations on a map using an address reference for an unstructured
information authorization or by looking over the communication of the function helper [20].
Since maps are the only way to maintain the programme state of the programme output for
distributing information over eBPF programmes, they are particularly crucial.

2.2. Challenges

We will now take the sample of an XDP programme, which takes the inputs to a
straightforward firewall to verify the formation of bi-directional TCP or UDP flows in order
to gain instinctive knowledge over the structure complexity considered in implementing a
data path on a field programme. It takes 71 eBPF instructions to generate a C programme
that describes this straightforward firewall function.

We generate a rough estimate of the theoretical special case of this function for execut-
ing a field programme gate array based eBPF executor [21], if we assume that each eBPF
instruction executes in a single clock cycle, that the clock cycles are not consumed for any
additional processes, and that the field programme has a clock rate of 156 MHz, which is
typical for a field programme gate array NIC.

2.3. hXDP Overview

By using a software–hardware co-design methodology, hXDP resolves the highlighted
difficulty. Specifically, hXDP offers the necessary hardware module in addition to a compiler.
The compiler utilises hXDP’s hardware module features [22], which are provided to make it
easier to take use of such chances, to take advantage of eBPF ISA optimization potential. By
creating a new ISA that explicitly targets the execution of XDP programmes, we effectively
extend the eBPF ISA.

The eBPF instruction level modifications performed by the compiler optimizations
include the parallelization of instruction execution, the removal of superfluous instructions,
and the replacement of existing instructions with newly designed more succinct ones [23,24].
The target hardware complexity is decreased since all optimizations are carried out at the
time of compilation, shifting most of the complexity to the software compiler.

As a result, there is an exploit instruction level parallelism for performing and imple-
menting thehXDP hardware module, which also implements a system for running up to
four instructions simultaneously. No runtime programme optimization, such as instruction
reordering or branch prediction, is offered by the VLIW soft processor [25].

RETRACTED
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In the end, the hXDP hardware component is implemented in the FPGA as a stan-
dalone module that is part of a larger device and system. The structure can be connected to
additional processing modules, if necessary, and the NIC port as well as its PCIe controller
addressing the core network can be connected to this by simply inserting a spike in the
wire connecting them. Everything needed to use hXDP with the Linux operating system is
provided by the hXDP software tool chain, which also contains the compiler. A compiled
eBPF programme might, therefore, be executed in-kernel or on the FPGA alternately from
the perspective of visualization, as shown in Figure 2.
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2.4. hXdp Complier

Programs must contain a count of additional inputs that are verified by the internal
operating system in order for programmes using the eBPF technology to be able to execute
within the Linux kernel [26]. When aiming for a specialized eBPF executor built on FPGA,
a number of these operations could have been safely removed and returned with less
expensive integrated hardware checks. Guidelines for memory boundary checks and
memory zeroing are two pertinent examples, as shown in Figure 3.
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2.5. Hardware Module

Figure 4 presents the following memory maps of hXdp hardware design:

(a) Input Queue (PIQ);
(b) eBPF runtime environment;
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(c) Embedded packet capture (epc);
(d) Sephirot hardware and software;
(e) Helper functions.
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The four extended eBPF instructions that make up a VLIW instruction are read at
processor start-up and their appropriate execution lanes are statically assigned [27]. The
operations are downloaded in the background from the register file at this point, as four
execution lanes work simultaneously to complete the final three pipeline steps. In case there
is a need of eBPF instructions to load in memory, locations are pre-fetched during ID, and
consuming the pre-defined values, the appropriate subunit is activated during IE. These
include the control unit, memory unit (MU), and arithmetic and logical unit. Utilizing the
hardware module characteristics of hXDP, which are designed to make the exploitation of
such chances easier, the compiler takes advantage of eBPF ISA’s better chance of receiving.
In essence, we create a brand new ISA that enhances the eBPF ISA with a focus on running
XDP programmes.

2.6. PIPE LINE

Self-resetting programme state: The variables that eBPF applications are going to use
may be zeroed. We offer a programme initialization feature that automatically resets the
stack and the registers. We can exclude any such zero-ing command from the programme
thanks to this low-cost hardware feature that increases security.

Concurrent Branching: With architectures lacking branch prediction, speculative
execution, and out-of-order execution, the inclusion of branch instructions may result
in performance issues. This necessitates the serialization of the branch instructions for
Sephirot. However, in XDP applications [28], particularly during header parsing, there are
frequently a number of branches that are closely spaced apart. By putting on the priority
channel, ordering a combination of hardware and software, we facilitated the parallel
execution of these branches.

Processor Exit: When an exit instruction is carried out, the CPU terminates. The
processor pipeline can be stopped in prior and the balance three clock cycles are saved,
since outcome of inputs can be detected at the IF phase. This improvement enhances the
performance advantage made possible by expanding the ISA to include configurable quit
commands. In reality, before invoking an exit [29], XDP programmes typically shift the
input to r0 to specify dynamic action. The Sephirot pipeline must always be traversed
in order to set a value in a register [30] instead, since the value is already included in a
freshly specified unconditional end exchange of information between a calling program
and subroutine parameter passing eliminates the requirement for setting the input to r0.

RETRACTED
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The Linux data path (hXDP), an intellectual property core, utilizes 8.91% of the avail-
able programme gate array logic resources, and of 3.1% field programme gate array FPGAs,
2.3% address registers resources. APS and Sephirot require more resources in terms of logic
because of their complexity compared to the other components. It is interesting to note that
even more complicated helper functions, such as the one used to do a hash map lookup,
only make a small contribution to the required logic, showing that to include them in the
hardware design can be done for very little money while still providing good performance
gains. The cumulative resource exploitation increases to 19.22%, 7.2%, and 14.22%.

3. Hardware Functionality

We contrasted hXDP with both the server-based version of XDP and the XDP pro-
gramme loads directly on the NIC and execute without using CPU offered by a Netronome’s
sixth generation NFP-4000 multi-threaded Smart-NIC built on a SoC [31]. The 60 micro
engines in the NFP 4000 run at an 800 MHz clock speed. Table 2 shows the processor
utilization in server machines.

Table 2. Model description.

S No. Type Model Processor

1 Intel XL 710 2.1

2 Intel I40 e 3.7

3 Xeon X5670 3.6

We used a variety of CPU frequencies during the tests; we covered a wider range of
deployment circumstances. In fact, a lot of deployments choose CPUs with lower frequency
and more cores. We measured throughput and latency using a DPDK packet generator.

It was an easy way to run high performance packet processing programs without
the hassle of kernel bypass technique. The design of the network flow processors used
for intelligent flow processing in networks and communications of Netronome are all
linked back-to-back to the packet generator, which can provide a 40-Gbps throughput with
any packet size [32]. A traffic generator was used to put traffic onto a network for other
machines to consume and also the round-trip time and perform delay measurements using
hardware packet times tamping. A single network flow’s 64B-sized packets were used for
all testing, unless otherwise specified, in order to maintain consistency. The burden was
difficult for the systems being tested.

4. Evaluation and Results

To carry out the hXDP corrections, we counted the Linux XDP example applications as
well as two actual applications. Table 3 describes the Linux examples. The straightforward
firewalls mentioned in the Katran server load balancer are the real-world applications.With
the use of a weighted scheduling mechanism and per-flow consistency, in Katran, virtual
addresses are transformed into real server addresses by a faster and with better load
balancer. Katran collects a variety of flow data and also does IPinIP packet encapsulation.RETRACTED
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Table 3. Evaluation of test in express data path.

Program Description

xdp1 Parse pkt headers up to IP and XDP _DROP

Xdp2 Parse pkt headers up to IP and XDP _TX

Xdp_adjust_tail Receive pkt, modify pkt into ICMP pkt and XDP _TX

Router _ipv4 Parse pkt headers up to IP, look up in routing table and forward (redirect)

Rxq_info(drop) Increment counter and XDP _DROP

Rxq_info(tx) Increment counter and XDP _TX

tx_ip_tunnel Parse pkt up to L4, Encapsulate and XDP_TX

Redirect(map) Output pkt from a specified interface (redirect)

We assessed how a compiler tries to minimally or maximally affect some attributes and
the number of instructions in the programmes and the level of parallelism attained using
these applications. As efficiency is computed over Net FPGA, implementation was then
assessed. We also compared the performance of express data prototype with a Netronome-
4000 Smart NIC architecture using micro benchmarks, as shown in Figure 5. Despite the
fact that the two devices aim to address various deployment circumstances, this can shed
further light on how the hXDP design decisions have affected the final product. We were
unable to conduct a thorough review because the Netronome Flow processors-4000 only
provides minimal extended Berkeley packet filter (eBPF) support. This section concludes
with a summarized explanation of the output after we compared hXDP to alternative FPGA
NIC programming methods.
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4.1. Test Results

We report that the X86 instruction set that refers to the set of instructions that X-86 com-
patible microprocessor supports produced the extended Berkeley kernel programmability,
which provides secure and high-performance kernel programmability from the operating
system for compiler along with the decrease initiated by each optimization in the form of a
stacked column, as shown in Figure 6. The benefit from parallelization to increase available
computation power for fatter application processing and problem-solving gains attained by
anticipating instructions from control comparable blocks is shown in the graph in Figure 7.
We can see that our generator has the ability to produce a set of inputs that permits simpler,
cheaper, high-performance implementations that are smaller than the set of instructions
in the original programme. Observe how, in contrast, the JIT compiler for x86 typically
produces an output that increases the number of instructions, as shown in Table 4.
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Table 4. Instruction per cycle and IPC.

S No. Program Instruction X86 hXdp

1 Xdp1 77 2.18 1.65

2 Xdp 2 60 2.22 1.69

3 Xdp tail 115 2.32 2.69

4 Ipv4 117 2.31 2.31

5 rxq info 80 2.74 1.75

6 Ip 281 2.34 2.76

7 Katran 267 2.31 2.61

8 Firewall 70 2.28 2.55

4.2. Application Performance

We stated that 2.8 Mpps show a limit in the mechanism of a straightforward firewall.
The identical number of requests processed per minute per server instance achieves a
throughput of 6.35 Mpps utilising a complier that tries to minimize or maximize some
attributes of an executable program. For all packet sizes, hXDP offers a 10× reduction
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in processing delay (see Figure 8). Since hXDP does not cross the PCI or provide lower
latency and higher data transfer rates than parallel buses such as PCI and PCI-X, this
is the situation. The header and metadata are delivered to a flow processing, while the
payload is forwarded to one of the memories in the displayed programmed express data
path software, which solely conducts relaying of packets from one segment to another
by nodes in the network. Despite the fact that it cannot be executed, the eBPF software
offload solution provides a foundation for high performance, kernel complaint firewalls,
DDoS protection, and load balancing. Even in this scenario, it is clear that hXDP offers a
transmission capacity delay, particularly at smaller packet sizes. Figures 8–13 show the
performance of express data path and network flow processing for base line, performance,
latency, and speed.
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5. Conclusions

The express data system, which enables Linux’s data path programmes to execute
on field programme gate arrays with NIC, was designed and implemented in this work.
Field programme express data can execute unmodified data path XDP applications with
performance comparable to a top-tier system, over 2.2 GHz x86 CPU core. While we
think the performance results for a design running at 156 MHz are already amazing, we
also highlighted several areas for further improvements. Designing and implementing an
express data path required considerable research and engineering efforts that included the
creation of a processor and its compiler. In fact, this can be considered as the foundation
express data path and application level to develop future connections among computer
systems, programs, and network adapters. We provide access to various solutions for the
scientific community to encourage work throughout connectivity.
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