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Abstract: The aim of the paper was the implementation of low-cost smart sensors for the collection
of bathymetric data in shallow water and the development of a 3D modelling methodology for the
reconstruction of natural and artificial aquatic scenarios. To achieve the aim, a system called GNSS >
Sonar > Phone System (G > S > P Sys) was implemented to synchronise sonar sensors (Deeper Smart
Sonars CHIRP+ and Pro+ 2) with an external GNSS receiver (SimpleRTK2B) via smartphone. The
bathymetric data collection performances of the G > S > P Sys and the Deeper Smart Sonars were
studied through specific tests. Finally, a data-driven method based on a machine learning approach
to mapping was developed for the 3D modelling of the bathymetric data produced by the G > S > P
Sys. The developed 3D modelling method proved to be flexible, easily implementable and capable of
producing models of natural surfaces and submerged artificial structures with centimetre accuracy
and precision.
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1. Introduction

In September 2015, the 2030 Agenda for Sustainable Development was signed by
193 United Nations (UN) countries. Specifically, the 14th goal (Life below water) is dedi-
cated to: “Conserve and sustainably use the oceans, seas and marine resources for sustain-
able development”. In the targets defined by the 2030 Agenda to reach goal 14, the target
14.a aims to: “Increase scientific knowledge, develop research capacity and transfer marine
technology, taking into account the Intergovernmental Oceanographic Commission Criteria
and Guidelines on the Transfer of Marine Technology, in order to improve ocean health
and to enhance the contribution of marine biodiversity to the development of developing
countries, in particular small island developing States and least developed countries” [1].
Furthermore, 2021–2030 was declared by the United Nations as the “Decade of Ocean
Science for Sustainable Development” and among the social outcomes to be achieved is
“Data Transparency and Accessibility”, which aims to achieve an ocean with open access to
data, information and technologies for nations, stakeholders and citizens [2].

Unfortunately, obtaining data and information from underwater environments with
proprietary instrumentation is often difficult. In particular, bathymetric data, which are
the subject of this work, are expensive data in terms of instrumentation, specialised staff,
logistics, time and mode of execution [3–6]. These elements may be an obstacle to achieving
the sustainability goals of the 2030 Agenda and the Decade of the Ocean. However, the
emergence in the consumer market of new smart and Internet of Things (IoT) technologies
for mapping aquatic and marine environments is an opportunity to disseminate low-cost
instrumentation for research purposes, democratisation and access to data even in remote
areas, and involvement of the population in citizen science projects.
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For these reasons, this paper intends to investigate the Single Beam Echo Sounders
(SBES) sonar (SOund Navigation And Ranging) produced by Deeper UAB. These SBES,
called Deeper Smart Sonar, are inexpensive, lightweight devices that are easy to use even
by non-experts, can be mounted on Unmanned Aerial Vehicles (UAVs)/Unmanned Surface
Vehicles (USVs) and, as will be seen in the literature review section, found some interest in
scientific applications.

1.1. Literature Review

Concerning the use of Deeper Smart Sonar in science, Bandini et al. [7] used the Deeper
Smart Sonar Pro+ connected to a UAV via a winch to survey three inland water bodies
in Denmark: Lake Furesø, Marrebæk Kanal and Åmose Å. The authors estimated that
the Global Navigation Satellite System (GNSS) receiver built into the Deeper Smart Sonar
Pro+ had an accuracy of several metres (up to 30) and, through comparison with sample
depth measurements, that the sonar committed an error of 3.8%. Bandini et al. [7] then
proposed a method of correcting the horizontal positioning of the SBES using the nadiral
images acquired by a UAV equipped with GNSS, Inertial Measurement Unit (IMU) and
RAdio Detection And Ranging (RADAR) sensors, while the depth was corrected by linear
regression with ground truths collected during the survey. After applying these methods,
the authors obtained a horizontal positioning accuracy of about 20 cm and an error of about
2.1% for depths up to about 30 metres.

Alvarez et al. [8], through the integration of UAV imagery, sonar (data from the Deeper
Smart Sonar Pro+) and adaptive sampling, surveyed a small reservoir located at the Kessler
Atmospheric and Ecological Field Station (KAEFS) near Purcell, Oklahoma, USA. In order
to perform the survey, the authors connected the SBES to a UAV via a cable and a small
vessel containing an Android tablet to collect bathymetric data. Alvarez et al. (2018),
comparing the direct measurements with echosounder measurements, observed a Root
Mean Square Error (RMSE) of 0.0147 and an R of 0.987.

Giambastiani et al. [9] used the Deeper Smart Sonar Pro+, connected to a bait boat,
to collect depth measurements of small-to-medium water bodies (between 50,000 and
2000 square metres) located in Tuscany. The authors described the sonar’s internal GNSS
as “highly accurate”. From the acquired data, the authors deduced the volume of the water
bodies investigated (204) and found a high correlation (R2 = 94) between the deduced
volumes and the actual volumes of some sampled water bodies (55).

Bogoyavlensky et al. [10] by combining data from UAVs, georadar and two sonars,
one of them a Deeper Smart Sonar Pro+, surveyed the Seyakha C11 crater in Siberia and
produced a Digital Elevation Model (DEM) of it. The Deeper Smart Sonar Pro+ was
geolocated with the internal GNSS and the authors reported a positioning accuracy of up
to 3 metres.

Kellerer-Pirklbauer et al. [11] used the Deeper Smart Sonar CHIRP+ (technological
successor of the Pro+) with other sensors to study the recession processes of the Pasterze
glacier in Austria. Using the CHIRP+, the authors highlighted that there was a lack
of reference studies on the CHIRP+ that indicated the accuracy of SBES in measuring
depth. However, the authors estimated the accuracy of water depth measurements of less
than 0.1 m in shallow waters (<5 m) and flat bottoms, and 0.5 m for deeper waters with
sloping bottoms.

Broere et al. [12] used the Deeper Smart Sonar CHIRP+ to detect suspended macro-
plastics in rivers. The authors demonstrated with this research that they could detect
suspended macro-plastics with low-cost sonar and that specific plastic objects had differ-
ent reflections.

Ruffell et al. [13] tested a system called “Dronar” for forensic purposes. The system
consisted of a Deeper Smart Sonar (Pro+ or CHIRP+ 2) connected by wire to a UAV. The
authors showed how the Dronar could be a system to identify sunken objects, provide back-
ground information for further investigation and signal possible dangers to the navigation
of boats and divers.
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Sanjou et al. [14] developed a floating UAV system for measuring natural river dis-
charge. The system consisted of a UAV equipped with a floating ring, a Global Positioning
System-Real-Time Kinematic (GPS-RTK) receiver (DG-PRO1RWS) a smartphone for data
recording and a Deeper Smart Sonar Pro+. By combining the GPS-RTK receiver to measure
the river’s velocity and the sonar to take cross-sections, the authors were able to derive the
discharge of the river.

Koutalakis et al. [15] created a UAV + sonar system to estimate the velocity and
discharge of a river using images collected by the UAV (IV-UAV) and bathymetry detected
using the Deeper Smart Sonar Pro+.

In a research work, Bandini et al. [16] focused on the use of Ground Penetrating Radar
(GPR) and Unmanned Aerial Systems (UAS) for mapping inland water bodies, and posed
the question of applying GNSS Post-Processed Kinematic (PPK) corrections to the Deeper
Smart Sonar CHIRP+ to improve geolocation. In this latter paper, the authors logged
separately on a BeagleBone Black single-board computer the sonar data in NMEA0183
format and the GNSS raw data from a ZED-F9P receiver during the bathymetric survey.
In post-processing, the authors, based on Coordinated Universal Time (UTC) timestamps,
matched the sonar data with the GNSS positioning data processed in PPK to re-estimate
the sonar position.

1.2. Aim of the Paper

The analysis of the state of art revealed discordant values regarding the achievable
accuracy of this type of sensor for bathymetry. Therefore, the lack of these data makes
it difficult to frame the surveys conducted in more general scenarios and thus define
application ranges with some geomatics sensibility. Based on these considerations, this
paper proposes to analyse the following aspects:

1. Tests to determine the accuracy and precision of shallow-water depth measurement
and planimetric positioning of Deeper Smart Sonar (particularly CHIRP+ and Pro+
2), implementation and evaluation of a system to synchronise the Deeper Smart
Sonars with an external GNSS receiver via smartphone to improve the GNSS Single
Point Positioning (SPP) performance in real-time, and a method to correct the GNSS
positioning of the Deeper Smart Sonar in Post-Processed Kinematic (PPK) based on
a spacetime approach and on the GPS Time (GPST) to further optimise positioning
performance;

2. Building 3D mesh models of the environments surveyed with the Deeper Smart Sonar.

In order to make a comparison with internationally accepted reference values, data
collected during the tests and the aims achieved in the research were analysed first taking
into consideration the standardised uncertainty values of the International Hydrographic
Organization (IHO) [17] and then considering possible applications in science and engi-
neering fields.

2. Materials and Methods
2.1. Research Methodology

To achieve the aims enunciated in Section 1.2, the research was divided into three phases.
In the first phase an electronic system was implemented to synchronise the Deeper

Smart Sonar CHIRP+ or Pro+ 2 and an external GNSS receiver (SimpleRTK2B) via smart-
phone, the system was called GNSS > Sonar > Phone System (G > S > P Sys). The idea
behind the implementation of the G > S > P Sys was to create a network for data exchange,
using the smartphone as a platform for input and output data management between the
external GNSS receiver and the sonar. The final aim of the System was to send real-time SPP
positioning data from the external GNSS receiver to the Deeper Smart Sonar. The System
improves sonar geolocation during the bathymetric survey and simultaneously records
the raw data from the external GNSS receiver for post-processing in PPK, to additionally
improve the sonar GNSS positioning in post-processing. The real-time correction of sonar
geolocation via an external GNSS receiver was possible due to the “mock location” function
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present in Android smartphones. Using this function, an app connected to an external
GNSS receiver can correct the geolocation of other apps on the smartphone.

In the second phase, through some specific tests, several datasets were built to study
the performance of the Deeper Smart Sonar and G > S > P Sys. A preliminary test was
performed to evaluate the performance in static GNSS positioning of the Deeper Smart
Sonar (CHIRP+ and Pro+ 2) and the G > S > P Sys. Subsequently, two tests were performed
under dynamic conditions to evaluate the performance of the Deeper Smart Sonars and the
G > S > P Sys in kinematic positioning. To study the accuracy and precision of the Deeper
Smart Sonars in measuring water depth, a test under controlled conditions in a swimming
pool and a test under real conditions in the sea were performed.

In order to apply the PPK correction method of sonar geolocation and test the pipeline
for 3D modelling of the data obtained from the G > S > P Sys, the complete survey of a
swimming pool and the survey of a portion of the seabed was performed.

Based on the pool survey, a dataset was created to test the 3D modelling of artificial
structures, while based on the sea survey, a dataset was created to test the 3D modelling of
natural surfaces. In addition, the purpose of the sea test was also to analyse the devices
under real operating conditions. Both tests were performed using the Deeper Smart Sonar
CHIRP+.

In the third research phase, a pipeline was created for the 3D modelling of natural
surfaces and artificial structures. The 3D modelling method used can be classified in the
macro-group of data-driven modelling [18].

The pipeline developed for modelling natural surfaces consists of three steps: synchro-
nisation, interpolation and 3D modelling.

In the synchronisation step, the GNSS positions recorded by the external receiver and
corrected in PPK were synchronised with the depth values recorded by the sonar; the sonar
GNSS position was corrected during the survey.

The proposed method is spatio-temporal as it is performed by synchronising the data
produced by the System first based on latitude and longitude coordinates and then on the
GPS Time (GPST). This step is possible because, through the electronic synchronisation in
real-time of the devices via smartphone, the external GNSS receiver previously transmitted
its coordinates to the sonar. The operation allows synchronisation to a one thousandth of a
second (1/1000).

The interpolation step was performed in order to transform isolated data into continu-
ous data in a grid format. To generate the bathymetric grid, an innovative interpolation
method based on Machine Learning (ML) was used. In particular, the Forest-based Classifi-
cation and Regression algorithm implemented in ArcGIS PRO software (ESRI, Redlands,
CA, USA) was applied. This algorithm is a powerful classification and regression method
based on the Random Forest supervised ML method of Leo Breiman and Adele Cutler.

In the most general form, proposed by Leo Breiman [19], a Random Forest for regres-
sion generates trees that grow according to a random vector Θ. The tree predictor h(x, Θ)
takes numerical values and the training set is assumed to be independently extracted from
the random vector Y, X. The mean-squared generalization error for any predictor h(x) is:

EX,Y(Y− h(X))2 (1)

In order to use only the detected bathymetric data, without external data (e.g., satellite
images), a grid produced by the Inverse Distance Weight (IDW) method was used to define
the initial training features of the algorithm [20,21].

The formula used for the IDW interpolation was [22,23]:

Vg =
∑n

i=1
vi
dP

i

∑n
i=1

1
dP

i

(2)

where:
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Vg: value of the point to be estimated at the x and y coordinates of the grid;
vi: value of the i-th observed point;
n: number of points close to the point to be interpolated;
di: distance of the i-th point from the point to be interpolated;
P: a positive parameter representing power.

The grid IDW was subsequently transformed into a 3D model to be used for compara-
tive purposes in the results analysis process.

In order to be able to make a subsequent comparison with the 3D model (generated
on the basis of the grid produced with Forest-based Classification and Regression) an addi-
tional grid was generated in ArcGIS Pro using the Ordinary Kriging interpolation method.

In the Kriging method, the spatial correlation between the surveyed points can be
estimated using [24,25]:

γ̂(d) =
1

2|N(d)|∑N(d)

[
V(ui)−V

(
uj
)]2 (3)

where:

N(d): set of pairs of measured points;
|N(d)|: number of distinct pairs in N(d);
d: separation vector between points;
|d|: equal to ui-uj;
V(ui): value of the random variable to describe the possible outcomes of the measured
quantity V in the spatial location ui;
V(uj): value of the random variable to describe the possible outcomes of the quantity V in
the spatial location uj.

This method was chosen as it emerges in the literature as one of the best and most
flexible interpolation methods, which is also valid for the interpolation of bathymetric
data [26].

Finally, in the 3D modelling phase, the three bathymetric grids produced (with Forest-
based Classification and Regression, Ordinary Kriging and IDW) were transformed into
3D triangular mesh models. The idea behind the transformation consists in the possibility
of interpreting the bathymetric grids as a set of digital values in matrix form. Based on
this principle, bathymetric grids were first transformed into point clouds and subsequently
modelled in 3D. The 3D modelling was performed by applying the Poisson surface re-
construction method. The Poisson method, given a set S of points p of a solid model M
whose surface area is ∂M, reconstructs the 3D surface area by solving a classical Poisson
problem [27,28]:

∆X̃ = ∇·
→
V (4)

with
→
V vector field. The gradient of the smoothed indicator function of M is equal to the

vector field obtained by smoothing the field normal to the surface:

∇
(

XM ∗ F̃
)(

q0
)
=
∫

∂M
F̃p
(
q0
)→
N∂M(p)dp (5)

where:
→
N∂M: normal to the surface of point p;
F̃: smoothing filter.

The integral cannot be solved directly since the surface of the solid to be modelled is
not known.
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To solve the problem, using the set of points p, the surface is divided into many
patches and the integral on a patch is approximated to the value of the point, scaled by the
area of the patch:

∇
(

XM ∗ F̃
)
(q) = ∑

s∈S

∫
Ps

F̃p(q)
→
N∂M(p)dp ≈ ∑

s∈S
|Ps|F̃s.p(q)s.

→
N ≡

→
V(q) (6)

The modelling of artificial structures was treated as a special case of the modelling of
natural surfaces and the pipeline is theoretically not different from the one just described.

Section 2.4.4 was dedicated specifically to the modelling of artificial structures; indeed,
in this section, it is possible to find further information and a description of how the pipeline
was implemented.

2.2. GNSS > Sonar > Phone System Implementation
2.2.1. Devices and Apps

The G > S > P Sys consists of a hardware part and a software part. The hardware
components forming the G > S > P Sys and tested, also individually, in this work were
the Deeper Smart Sonar Pro+ 2 (Deeper UAB, Vilnius, Lithuania), the Deeper Smart Sonar
CHIRP+ (Deeper UAB, Vilnius, Lithuania), the SimpleRTK2B (ArduSimple, Principality of
Andorra) and the Huawei P30 Pro (Huawei Technologies Co., Ltd., Shenzhen, China).

The Deeper Smart Sonar Pro+ 2 and CHIRP+ are two Single Beam Echo Sounders [29,30]
operating at frequencies of 100 kHz, 240 kHz and 675 kHz and with scan cones of 47◦, 20◦ and
7◦ respectively. The devices perform about 15 scans per second and cover a depth ranging
from a minimum of 0.15 m to a maximum of 100 m.

The Deeper Smart Sonars have an internal GNSS receiver that enables geolocation.
Alternatively, they can geolocate themselves via the GNSS receiver of the smartphone.
The Sonars connect to the smartphone via Wi-Fi and are controlled by an app called Fish
Deeper—Fishing App. This allows Sonars to transmit their data to the smartphone (Sonar
data in Figure 1).

Due to geolocation, the Sonars produce 2D maps with the bathymetric information
obtained while scanning the bottom. The products of a survey immediately available to
a user consist of a georeferenced sonar scan of the bottom and a 2D bathymetric map.
The products are displayed in real-time on the smartphone and, after the survey, are also
available via the web platform of Deeper UAB. Instead, the raw data, downloadable from
the smartphone and the web platform, consist of a text file (*.csv) containing the latitude
and longitude of the acquired points, the depth values recorded from the bottom scans (in
metres), the water temperature values (in ◦C) and the acquisition time of the sonar scans
(in UNIX format).

The difference between the Deeper Smart Sonar CHIRP+ and the Pro+ 2 consists of
the CHIRP technology. CHIRP stands for “Compressed High Intensity Radar Pulse” and
sonar with CHIRP technology, unlike a classic sonar, scans the bottom by sending multiple
pulses simultaneously.

This provides more information and allows it to create more accurate scans, better
detect the bottom and better separate targets.

Table 1 shows the technical features of the Deeper Smart Sonar Pro+ 2 and the Deeper
Smart Sonar CHIRP+.
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Table 1. Technical features of the Deeper Smart Sonar Pro+ 2 and the Deeper Smart Sonar CHIRP+.

Device Deeper Smart Sonar Pro+ 2 Deeper Smart Sonar
CHIRP+

Image
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in Single Point Positioning (GNSS-SPP data Real-time in Figure 1) and transmit via USB
On-The-Go (USB OTG) connection the GNSS raw data in *.ubx format (GNSS-Raw data in
Figure 1). Two files were produced from the file containing the GNSS raw data (in *.ubx
format): the first file was produced via U-center (in *.csv format) and contained mainly the
coordinates of latitude and longitude, ellipsoid height and GPS Time of the positioning
performed by the device in SPP in real time; the second file was produced with RTKLIB:
demo5_b34f.1 (version of RTKLIB [32] developed by rtklibexplorer [33] for working with the
ZED-F9P and downloadable from https://github.com/rtklibexplorer/RTKLIB/releases/
tag/b34f (accessed on 8 January 2023)) and consisted of a RINEX (Receiver INdependent
EXchange) file of the observables for subsequent post-processing. The post-processed file
mainly contained latitude, longitude, ellipsoidal height and GPS Time. Table 2 shows the
technical features of the SimpleRTK2B.
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Figure 1. Synthetic pipeline of the G > S > P Sys functioning.

In this case study, a Huawei P30 Pro smartphone was used to synchronise the Deeper
Smart Sonars and the SimpleRTK2B. For the implementation of the G > S > P Sys, the model
of the smartphone is not particularly relevant. However, it is important that the smartphone
has a good chipset and good RAM (Random Access Memory) to manage several apps at
the same time in the background, an Android OS, the possibility of activating the “mock
location” and finally the possibility of receiving data via USB OTG connection. The Huawei
P30 Pro matches these features, it has a Huawei HiSilicon Kirin 980 chipset, 8 GB of RAM,
the EMUI 12.0 OS, USB OTG connection and “mock location”.

The apps constituting the software part were: GPS Connector v1.0.1.7 (PilaBlu -Apps,
Stuttgart, Germany), SW Maps GIS & Data Collector v2.9.1.1 (Softwel Pvt. Ltd., Kathmandu,
Nepal) and Fish Deeper—Fishing App v1.22.0.3259 (Deeper UAB, Vilnius, Lithuania).

GPS Connector (developed by PilaBlu) allows an external GNSS receiver to be con-
nected to the smartphone via Bluetooth or a USB connection. GPS Connector provides the
external GNSS position data to other apps that use navigation data on the smartphone via
the “mock location” and consequently improves the GNSS positioning performance of the
other apps on the device. The app was used to improve the real-time SPP positioning of
the Fish Deeper—Fishing App and consequently the sonar. For this app Android 4.1 or
later is required.

SW Maps (developed by Softwel) has many functions related to the world of GIS
(Geographic Information System) and allows an external GNSS receiver to be connected to
the smartphone via Bluetooth or USB. This app was used to record data from the connected
external GNSS receiver in *.ubx format for post-processing. SW Maps requires Android 4.4
or later.

Fish Deeper—Fishing App (developed by Deeper UAB) connects the Deeper Smart
Sonars to the smartphone via Wi-Fi and allows the user to set the sonar scanning parameters
(e.g., beam scan angles or fishing mode: Onshore, Boat, Ice fishing, Bait Boat and Scan
Only), view the surveyed data (temperature, water depth, bathymetric map and sonar scan)
and download the raw data [34]. The app requires Android 7.0 or later.
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2.2.2. Connection Management and App Data Transfer

In order to make the operating system and synchronise the devices described, the
connections of devices and the transmission of data between apps must be organised
correctly.

The external GNSS receiver (SimpleRTK2B) was connected via USB OTG connection to the
smartphone to receive power from the smartphone and transmit the GNSS-Raw data to the SW
Maps app, which recorded the GNSS-Raw data for post-processing (GNSS-Raw data—Power
in Figure 1). Simultaneously, the external GNSS receiver was connected via Bluetooth to the
smartphone in order to transmit in real-time the GNSS SPP positioning data (GNSS-SPP data
Real-time in Figure 1) to the GPS Connector app. The GPS Connector re-transmits the GNSS-SPP
data Real-time to the Fish Deeper—Fishing App using the “mock location” function of the
smartphone. Finally, the Deeper Smart Sonar was connected to the smartphone via Wi-Fi to
receive the GNSS-SPP data Real-time by the Fish Deeper—Fishing App and re-transmit the
GNSS-SPP data Real-time and the Sonar data to the Fish Deeper—Fishing App (GNSS-SPP
Real-time + Sonar data Figure 1).

In order to allow GPS Connector to send external GNSS positioning data to other
apps, GPS Connector must be enabled via the “mock location” function accessible from
the developer options (developer options must be unlocked depending on the type of
smartphone) and via the settings of the app itself. This step is very important as it allows
the real-time synchronisation between the external GNSS receiver and sonar and the
subsequent synchronisation in PPK.

To enable the sonar to geolocate itself via GNSS data received from the smartphone in
the Fish Deeper—Fishing App, “Boat” must be selected as the fishing mode. In addition, to
improve the connection between the smartphone and the sonar, Deeper UAB recommends
disabling the mobile data and the settings that automatically switch between Wi-Fi and
mobile data to stay online. Therefore, internet access is not available during the survey.
Finally, during the experimentation with the Huawei P30 Pro, it was noted that in order
to prevent GNSS positioning from being compromised by mobile and Wi-Fi networks
surrounding the area to be surveyed, it would be advisable to disable the “Google Location
Accuracy—Improve Location Accuracy” function; we do not know if this problem is also
present on other smartphones.

2.3. Tests and Datasets Creation

The following sections describe the tests performed and the datasets constructed to
analyse the performance of the devices investigated.

During the tests, sonar scans were performed at a frequency of 675 kHz and a 7◦

cone, the frequency was chosen as the most accurate to operate in the test scenarios [16].
Post-processing for relative GNSS positioning was performed with the HxGN SmartNet
permanent station network (Hexagon AB, Stockholm, Sweden), the closest station was
TARA located on the roof of the Polytechnic University of Bari, Taranto, Italy. The software
used for the static and kinematic post-processing was primarily RTKLIB: demo5_b34f.1,
while the post-processing in Precise Point Positioning (PPP) was performed with CSRS-
PPP [35,36].

2.3.1. Static Datasets

The preliminary test to study the performance of the static GNSS positioning of the
Deeper Smart Sonar Pro+ 2 and CHIRP+ and the G > S > P Sys was performed in Open
Sky conditions on the roof of the Polytechnic University of Bari, Taranto, Italy, site of the
Geomatics Laboratory in Taranto. To perform the test, the instrumentation was placed on
an old vertex of a permanent GNSS network, named FATA which was already used in
previous experiments [36]. For greater accuracy, the vertex coordinates were re-acquisition
by the professional GNSS receiver Trimble R10. The Deeper Smart Sonars were placed on
the observation vertex using a cylindrical vessel approximately 0.25 m high, filled with
water (to turn on the sonars and guarantee the recording of GNSS data), with a hole at the
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top equal to the diameter of the sonar to allow the sonars to be centred. The G > S > P Sys
was positioned by installing the Helical antenna on the point to be surveyed using a stand.
Each device conducted 8 h (28,800 s) of static observation and five datasets were produced.
Two datasets were built with the real-time planimetric GNSS positioning in SPP, from the
Deeper Smart Sonar CHIRP+ and the Deeper Smart Sonar Pro+ 2. One dataset was built
with the real-time 3D GNSS positioning in SPP, from the G > S > P Sys. Another dataset
was created with post-processed data in PPP 3D static, from the G > S > P Sys, and finally,
one dataset post-processed in 3D static positioning was created from the G > S > P Sys.
Table 3 shows the composition of the static datasets, “Deeper GNSS CHIRP+ ” refers to
the internal GNSS receiver of the Deeper Smart Sonar CHIRP+ and “Deeper GNSS Pro+ 2”
refers to the internal GNSS receiver of the Deeper Smart Sonar Pro+ 2.

Table 3. Static datasets composition.

Device Positioning Obs. Time (s) Data
Sample (no.) Main Data

Deeper GNSS CHIRP+ SPP 28,800 28,800 Latitude, longitude

Deeper GNSS Pro+ 2 SPP 28,800 28,800 Latitude, longitude

G > S > P Sys

SPP 28,800 28,800
Latitude,

longitude,
ellipsoid height

Post-Processing
Static 28,800 28,800

Latitude,
longitude,

ellipsoid height

PPP 28,800 28,800
Latitude,

longitude,
ellipsoid height

2.3.2. Dynamic Datasets

To construct the datasets for the evaluation of Deeper Smart Sonar Pro+ 2 and CHIRP+
and the G > S > P Sys in kinematic positioning, a sea test and a test in an open pool were
performed.

The sea test was performed on the coast of Mar Grande, Taranto, Italy (Lat.: 40◦25′23.32′′

N; Long.: 17◦12′53.01′′ E). The place is rich in beaches, has shallow water for many metres
and is protected by breakwaters. The purpose of the test was to compare the planimetric
positioning performance of the Deeper Smart Sonars and the G > S > P Sys. The test consisted
of moving the devices along a straight path of approximately 11.50 metres from point A to
point B. The points were identified by inserting stakes and to facilitate the operator, additional
intermediate stakes were inserted to form a corridor. For comparison, the path was surveyed
using traditional methods and a GNSS survey.

The pool test (Figure 2a) was conducted to study in detail the performance of the
G > S > P Sys considered to be more precise and accurate than the Deeper Smart Sonars
after the first tests. In the test, the G > S > P Sys surveyed the four sides of a rectangular
swimming pool (largest side = 8.95 m, smallest side = 4.47 m, surface area~40.01 sqm)
using the edges of the structure as a guide. For comparison, the pool was surveyed using
traditional methods (rigid metric ruler, metric roll, laser distance meter, etc.) and a static
GNSS survey.

To conduct the tests, the instrumentation was mounted on a small floating platform
(prototype zero) built for experimental purposes (Figure 2b). The platform allowed flotation
via the high-density foam base, waterproofing and control of the instrumentation via the
transparent container, the possibility of mounting both the G > S > P Sys antenna and the
smartphone on the stand, and continuous contact between the Deeper Smart Sonars and
water using a part of “flexible arm mount 2.0” by Deeper UAB.

The sea test produced five datasets: (i) Deeper Smart Sonar CHIRP+ with the planimet-
ric positioning data in real-time in SPP, (ii) Deeper Smart Sonar Pro+ 2 with the planimetric
positioning data in real-time in SPP, (iii) G > S > P Sys with the planimetric positioning data
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in real-time in SPP, (iv) G > S > P Sys with the planimetric positioning data in PPP-kinematic,
(v) G > S > P Sys with the planimetric positioning data in PPK.

The pool test produced three datasets containing the 3D positioning data for the G > S
> P Sys in real-time in SPP, in PPP-kinematic and in PPK.

Table 4 shows the composition of the dynamic datasets built in the sea test and Table 5
shows the composition of the dynamic datasets built in the pool test.

Table 4. Dynamic datasets composition of the sea test.

Path Length [m] Device Positioning Data
Sample (no.) Main Data

~11.50
linear

Deeper GNSS
CHIRP+ SPP 150 Latitude, longitude

Deeper GNSS Pro+ 2 SPP 150 Latitude, longitude

G > S > P Sys
SPP 150 Latitude, longitude

PPP-kinematic 150 Latitude, longitude
PPK 150 Latitude, longitude

Table 5. Dynamic datasets composition of the pool test.

Path Length [m] Device Positioning Data
Sample (no.) Main Data

~26.84
rectangular G > S > P Sys

SPP 1000 Latitude, longitude,
ellipsoidal height

PPP-kinematic 1000 Latitude, longitude,
ellipsoidal height

PPK 1000 Latitude, longitude,
ellipsoidal height
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2.3.3. Water Depth Datasets

Two different tests were performed to evaluate the accuracy and precision of the
Deeper Smart Sonar CHIRP+ and Pro+ 2 in measuring water depth.

The first test was conducted in a swimming pool to evaluate the performance of the
sonar in fresh water and under controlled conditions (purified and transparent water,
obstacle-free bottom and no waves). The second test was conducted in the sea to evaluate
depth measurements in salt water and under operating conditions (the sites were the same
as those indicated in Section 2.3.2.). During the two tests, the depths of two points were
measured with sonar, one at 0.9 m and one at 1.52 m corresponding to the minimum and
maximum depths of the pool. For the comparison between sonar measures and ground-
truths, the points in the pool and in the sea were also measured using classical methods,
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such as a rigid metre, a graduated pole and a weighted metric roll [7,8]. The tests were
performed with a water temperature as constant as possible between them. The mean
salinity of the Mar Grande in Taranto, the test site, can be considered to be ~37.8‰ [37,38].
In the tests, the “flexible arm mount 2.0” by Deeper UAB was used to ensure constant
immersion of the sonar in the water. This accessory allows the sonar to be fixed to boats,
kayaks and, as in this case, to the edge of the pool and Stand Up Paddle board (SUP).

Table 6 shows the composition of the water depth datasets.

Table 6. Water depth datasets composition.

Device Real Depth
(m) Water Temperature

(◦C)
Data

Sample (no.) Main Data

Deeper Smart
Sonar CHIRP+

0.9
Fresh 22.27 3700 Depth

Salt~37.8‰ 20.90 3700 Depth

1.52
Fresh 22.27 3700 Depth

Salt~37.8‰ 20.90 3700 Depth

Deeper Smart
Sonar Pro+ 2

0.9
Fresh 22.27 3700 Depth

Salt~37.8‰ 20.90 3700 Depth

1.52
Fresh 22.27 3700 Depth

Salt~37.8‰ 20.90 3700 Depth

2.3.4. Building of the Datasets for 3D Modelling

The surveys performed for the construction of the datasets for 3D modelling were
conducted with the Deeper Smart Sonar CHIRP+ implemented in the G > S > P Sys (as in
Figure 1).

The dataset for 3D modelling of artificial structures, in this case, a swimming pool with
bottom variation, was constructed by surveying the pool used in the tests in Section 2.3.2.
The dataset for the 3D modelling of the natural surfaces was constructed by a seabed
survey in the site indicated in Section 2.3.2. The survey covered an area of about 3 hectares
(about 2 beaches) with the most distant point from the coast surveyed at about 240 m
(Figure 3a). For the survey, 16 transects orthogonal and 1 parallel transect to the coast were
executed, and 1659 points were collected. The survey was conducted semi-automatically
by “creating” the map in real-time by executing transects according to the areas of the map
to be completed indicated by the Fish deeper—Fishing App. This survey mode can be
compatible with cost-efficient science projects and citizen science projects, for example.

The survey was conducted using a SUP board (Figure 3d–f) with a new floating
platform connected to it (prototype 3—Figure 3b,c). The new low-cost platform had a
trimaran structure for greater stability in navigation, and an “F” bracket was installed at the
stern to planimetrically align the external GNSS antenna with the Sonar (Figure 3b–d—in
green circle).

In order to facilitate the exposition in Section 2.4, dedicated to 3D modelling, the
file downloaded from the Deeper Smart Sonar CHIRP+ was called “File Sonar”, the file
containing the real-time positioning data in SPP of the SimpleRTK2B was called “File SPP”
and the file containing the post-processed positioning data in PPK of the SimpleRTK2B was
called “File PPK”.

Table 7 shows the composition of the datasets for 3D modelling of the seabed (natural
surface) and Table 8 shows the composition of the datasets for 3D modelling of the pool
(artificial structure).
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Table 7. Datasets for 3D modelling of the seabed (natural surface).

Area
Surveyed (sqm) Transects (no.) Device File Produced Positioning Points

Surveyed (no.) Main Data

~30,000 16 + 1

Deeper GNSS
CHIRP+ File Sonar SPP 1659 Latitude, longitude, depth

SimpleRTK2B
File SPP SPP 6098 Latitude, longitude,

ellipsoidal height, GPST

File PPL PPK 6098 Latitude, longitude,
ellipsoidal height, GPST

Table 8. Datasets for 3D modelling of the pool (artificial structure).

Area
Surveyed (sqm) Transects (no.) Device File Produced Positioning Points

Surveyed (no.) Main Data

~40.01 2 + 2

Deeper GNSS
CHIRP+ File Sonar SPP 111 Latitude, longitude, depth

SimpleRTK2B
File SPP SPP 982 Latitude, longitude,

ellipsoidal height, GPST

File PPL PPK 982 Latitude, longitude,
ellipsoidal height, GPST

2.4. 3D Data Modelling

This section describes in detail the implementation of the pipeline for the creation
of the 3D models of the datasets produced in Section 2.3.4. The seabed was modelled as
representing the natural surfaces and a pool with a variable bottom as representing the
artificial structures. As mentioned in Section 2.1. the modelling consisted of three steps:
synchronisation, interpolation and 3D modelling. Figure 4 shows the synthetic pipeline for
3D modelling with the main software used for implementation.
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2.4.1. Synchronisation

The synchronisation was performed in the open-source software QGIS (QGIS Devel-
opment Team) using the geoprocessing algorithm of joining attributes between fields (ID
algorithm: ‘native:joinattributestable’). Some secondary data processing was performed
using spreadsheets in software such as Excel (Microsoft, Redmond, Washington, USA) and
Libre Calc (The Document Foundation).

The synchronisation followed:

1. The File Sonar was synchronised with the File SPP via the latitude and longitude
fields, the new file was named “File Sonar + SPP” (through this synchronisation, the
File Sonar was associated with the GPS Time value of the system);

2. The File Sonar + SPP was synchronised with the File PPK via the common GPS Time
field. Figure 5a shows a detail of the pre-synchronisation File Sonar + SPP in orange
and the File PPK in red. The new file produced was called “File Sonar + SPP + PPK”
and contained the information on latitude, longitude and ellipsoid height corrected
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to PPK, depth of water and time of point acquisition. Figure 5b shows a comparison
between the File Sonar + SPP + PPK in green and the File PPK in red.
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Generally, after the synchronization, the File Sonar + SPP + PPK may be processed as
follows:

1. Correction of the offset between the GNSS antenna and sonar transducer;
2. Correction of the offset between the sonar transducer and keel line;
3. Selection of the vertical reference system, for example, tidal observations (Mean

Sea Level—MSL, Lowest Astronomical Tide—LAT, etc.), physical model (geoid) or
reference ellipsoid [17];

4. Correction of the water level variations.

In this specific case study, the planimetric offset between the GNSS antenna and
sonar transducer was originally annulled by the floating platform. Concerning the vertical
reference, it was decided to use a physical reference on land, that is the tide gauge of Taranto,
part of the National Mareographic Network and located in the Mar Grande a few kilometres
from the surveyed site. The water level variations corrections were deduced from the tide
gauge data. In order to be able to subsequently process the dataset in CloudCompare
(DF R&D/TELECOM Pari-sTech ENST-TSI, Paris, France) [39], the GNSS coordinates of
the surveyed points were converted into the WGS 84/UTM 33N system with the VERTO
software (Istituto Geografico Militare—IGM, Florence, Italy).

Finally, a random sample of 1000 points (approximately 60% of the surveyed points)
was extracted for 3D modelling; the remaining 40% of the points were used in the model
validation phase.

2.4.2. Interpolation

As mentioned in Section 2.1. the main interpolation was performed with the ArcGIS
Pro software and the Forest-based Classification and Regression method was used.

The processes performed for the interpolation of data via Forest-based Classification
and Regression were:

1. Parameter definition and creation of a first bathymetric grid interpolated using the
IDW method (Figure 6c);

2. Definition of the training features for the Forest-based Classification and Regression
method;

3. Training, algorithm running and producing the final bathymetric grid interpolated by
Forest-based Classification and Regression method (grid FCR).
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In the second process, the input training features were the bathymetric points surveyed
(Input Training Features), the variable to predict was the depth (Variable to Predict) and
the explanatory training variable was the bathymetric grid IDW (Explanatory Training
Rasters).

Figure 6a shows the grid FCR produced by the Forest-based Classification and Regres-
sion method (1 × 1 m cell). Figure 6b,c show the additional grids used for comparison in
the analysis phase. Specifically, Figure 6b shows the bathymetric grid obtained by applying
the Ordinary Kriging interpolation method (grid OK) and Figure 6c the bathymetric grid
obtained with the IDW interpolation method (grid IDW). The values shown in Figure 6
correspond to the value of depth (in meters) in relation to the water level.
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Classification and Regression method (grid FCR); (b) grid produced by Ordinary Kriging method
(grid OK); (c) grid produced by IDW method (grid IDW).

2.4.3. 3D Modelling of Natural Surface

The 3D mesh modelling was performed using the software: QGIS 3.22.8, CloudCom-
pare and Meshlab (Visual Computing Lab-ISTI-CNR, Pisa, Italy) [40]. The bathymetric grids
of Section 2.4.2. (grid FCR, grid OK and grid IDW) were imported into QGIS and trans-
formed into punctual shapefiles. Each point was associated with the depth value of the cell
and the coordinates in the WGS84/UTM 33N system (ID algorithms: ‘native:pixelstopoints’
and ‘native:addxyfields’). Subsequently, the layers were exported in text format (*.csv).
During this step, it was possible to add additional information to the files in order to
generate 3D models with depth exaltation, a type of representation used to visualise large
surfaces (or lengths) with small variations in height (some modelling examples are shown
in Figure 7). Then the files were converted into Polygon File Format (*.ply, a specific format
for 3D object representation) via CloudCompare, generating the point clouds (Figure 7a–c).
After, the files were imported into Meshlab for 3D modelling. In Meshlab, point cloud
normals were generated and then the point clouds were modelled into 3D models tri-mesh
using the Poisson surface reconstruction method (Figure 7d–f). Finally, the textures of the
bathymetric grids of Section 2.4.2. were applied in Meshlab to improve the readability of
the models (Figure 7g–i). In order to facilitate exposition, the 3D model created using the
grid FCR was called 3D model FCR, the 3D model created using the grid OK was called 3D
model OK and the 3D model created using the grid IDW was called 3D model IDW.
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2.4.4. 3D Modelling of Artificial Structure

Concerning the 3D modelling of artificial structures, the software used was Cloud-
Compare and Rhinoceros® 7 (Robert McNeel & Associates, Seattle, Washington, USA). In
the 3D modelling of the swimming pool, the GNSS data and sonar data were synchronised
in accordance with the step described in Section 2.4.1. However, since the survey was
conducted with the first prototype floating platform, an offset correction between the GNSS
antenna and Sonar was performed and the overflow side of the full pool was assumed as
a vertical reference. In the interpolation phase, as the area to be reconstructed was small,
the bottom point cloud was generated by linear interpolation of the nearest non-empty
neighbouring cells.

Figure 8a shows the point cloud obtained after the synchronisation and correction
operations, the emerged edges derive from the GNSS data while the bottom derives from
the G > S > P Sys data. The missing parts (in red circles) refer to the pool ladders that were
not surveyed. Figure 8b shows the bottom of the pool reconstructed by interpolation; this
operation was necessary to give longitudinal continuity to the sonar data for subsequent
slicing operations. Figure 8c shows the 3D model of the pool surveyed with traditional
techniques and assumed as the ground-truth in the analysis phase.

Since the structure to be modelled had a well-defined shape, data-driven modelling
by a primitives approach was used.

In CloudCompare by Cross Section tool, the contour lines for the creation of the
primitives were generated by extracting the sections of the pool edge and the bottom. In
order to regularise the contour line of the pool edge, the contour line regularisation via
mesh plane, previously described [18], was performed (Figure 9).
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The contour lines were imported into Rhinoceros® v.7 software for the creation of
the primitives and the final 3D modelling. The primitives representing the pool walls
and bottom were automatically generated by the commands: ExtrudeCrv and ExtendSrf
(Figure 10a). Finally, based on the primitives, the 3D model was created by the commands:
Intersect, Meshpolyline and Loft (Figure 10b).
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3. Results

This section reports the results obtained during the tests performed to evaluate the
static and kinematic GNSS positioning, the accuracy and precision of depth measurements,
and the quality of the 3D models produced. In the exposure, the values of Total Horizontal
Uncertainty (THU) at a 95% of confidence level and Total Vertical Uncertainty (TVU) at a
95% of confidence level were calculated according to the sixth edition of IHO Standards for
Hydrographic Surveys [17] by formulas:

TVU = 1.96·σV (7)

THU = 2.45·σ2D (8)
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where σV is the vertical Standard Deviation, e.g., in the case of the depth measurement,
and σ2D is the horizontal Standard Deviation, e.g., in the case of the planimetric GNSS
positioning. In cases where the positioning values were reported in the two coordinates
North and East (σN for the North and σE for the East), the worst σ value of the two was
used, since the standard assumes the THU expressed by a single value.

3.1. GNSS Positioning Test Results

This section reports data collected under static and kinematic conditions to evaluate
the geolocation performance of the GNSS receivers studied. Table 9 shows the real-time
static Single Point Positioning (SPP) values of the GNSS receivers of the Deeper Smart Sonar
CHIRP+ (Deeper GNSS CHIRP+), Deeper Smart Sonar Pro+ 2 (Deeper GNSS Pro+ 2) and
G > S > P Sys (G > S > P Sys). The observation time for the three devices was 8 h (28,800 s).
The value of ∆, in the components North (∆N), East (∆E) and Up (∆U), represents the mean
distance between the surveyed point P and FATA (known coordinates). σ is the standard
deviation of the GNSS positioning of the receivers in P in the components North (σN), East
(σE) and Up (σU).

Table 9. Performance in real-time static SPP of Deeper Smart Sonar CHIRP+, Deeper Smart Sonar
Pro+ 2 and G > S > P Sys.

Device Positioning Obs. Time (s) ∆N (m) ∆E (m) ∆U (m) σN (m) σE (m) σU (m) THU (m)

Deeper GNSS CHIRP+ SPP 28,800 2.621 0.761 ND 0.877 0.624 ND 2.150
Deeper GNSS Pro+ 2 SPP 28,800 3.537 1.706 ND 0.674 0.980 ND 2.401

G > S > P Sys SPP 28,800 2.484 0.570 2.018 0.194 0.199 0.659 0.487

For easier graphical evaluation, Figure 11 shows the real-time static planimetric SPP
accuracy (∆2D) of the G > S > P Sys during an observation time of 1 h (3600 s).
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In blue is reported the best positioning recorded during the 8 h of observation and in
orange the worst positioning. The accuracy was calculated using the formula:

∆2D =
√

∆E2 + ∆N2 (9)

For comparison, Figures A1 and A2 in Appendix A show the real-time static SPP
planimetric positioning accuracy of the Deeper Smart Sonar CHIRP+ and the Deeper Smart
Sonar Pro+ 2. Figure 12 shows the Signal-to-Noise Ratio (SNR) of the G > S > P Sys. A
high SNR corresponds to better measurement. The images show the SNR for L1 and L2 for
best and worst positioning expressed in Figure 11 (for 3600 s). Figure A3 (in Appendix A),
shows the SNR values for the Huawei P30 Pro (for L1 and L5) for comparison.
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Figure 12. For the G > S > P Sys: (a) Best SNR for L1; (b) worst SNR for L1; (c) best SNR for L2;
(d) worst SNR for L2.

Table 10 shows the GNSS static positioning data, post-processed in static and PPP
mode of the G > S > P Sys. The values of ∆ and σ are based on observations of 5 min (300 s),
15 min (900 s), 30 min (1800 s) and 1 h (3600 s) of eight samples collected during 8 h of
observation.
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Table 10. Performance in static positioning post-processed in static mode and PPP mode of the G > S
> P Sys.

Device Positioning Obs. Time (s) ∆N (m) ∆E (m) ∆U (m) σN (m) σE (m) σU (m) THU (m)

G > S > P Sys

Post-Processing
Static

300 0.001 0.006 0.031 0.002 0.002 0.004 0.005
900 0.001 0.006 0.030 0.002 0.002 0.005 0.005

1800 0.001 0.006 0.031 0.001 0.002 0.006 0.004
3600 0.001 0.006 0.031 0.001 0.001 0.006 0.003

PPP

300 0.667 0.632 0.249 0.474 0.906 1.107 2.220
900 0.639 0.712 0.074 0.134 0.317 0.320 0.778

1800 0.636 0.765 0.043 0.058 0.143 0.148 0.352
3600 0.646 0.750 0.026 0.010 0.022 0.033 0.053

For easier interpretation, Figure 13 shows a synthetic diagram representing the evolu-
tion of the accuracy in static planimetric post-processing positioning of the G > S > P Sys
during 3600 s. In grey are represented the data post-processed in static mode and in yellow
the data post-processed in PPP mode. For completeness, Figure A4 (in Appendix A) shows
the diagram of 3D positioning accuracy.
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Figure 13. Accuracy in static planimetric post-processing positioning in static mode (grey) and in
PPP mode (yellow) of the G > S > P Sys.

Tables 11 and 12 show the data regarding the GNSS kinematic positioning tests of the
Deeper Smart Sonar CHIRP+, the Deeper Smart Sonar Pro+ 2 and the G > S > P Sys. In
particular Table 11 shows the data from the test performed in the sea and Table 12 shows
the data from the test performed in the pool. Based on the tests performed, for the Deeper
Smart Sonars (CHIRP+ and Pro+ 2) the SPP data of the sea test are reported.

For the G > S > P Sys the SPP, PPP-kinematic and PPK data for the sea and pool tests
are reported. The µ2D and µ3D values report the mean distance of the set of surveyed
points in relation to the trajectory travelled in planimetric and 3D, σ2D and σ3D are the
respective standard deviations in planimetric and 3D.

In order to evaluate the dispersion of the points surveyed in the pool test, Figure 14
shows a comparison between the G > S > P Sys positioning data and the real trajectory trav-
elled. In these figures the real trajectory is shown in green; in particular, Figure 14a,d show
the SPP data in planimetric and 3D, respectively, Figure 14b,e show the PPP-kinematic posi-
tioning data in planimetric and 3D, respectively and Figure 14c,f show the PPK positioning
data in planimetric and 3D, respectively.

Figure A5, in Appendix A, shows the dispersion of the points surveyed in the sea test.
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Table 11. Performance in the GNSS kinematic planimetric positioning of the Deeper Smart Sonar
CHIRP+, the Deeper Smart Sonar Pro+ 2 and the G > S > P Sys in the sea test.

Path Length (m) Device Positioning µ2D (m) σ2D (m) THU (m)

~11.50
linear

Deeper GNSS CHIRP+ SPP 2.007 1.911 4.682

Deeper GNSS Pro+ 2 SPP 0.700 0.482 1.180

G > S > P Sys
SPP 1.034 0.095 0.232

PPP-kinematic 0.640 0.092 0.226
PPK 0.043 0.031 0.075

Table 12. Performance in the GNSS kinematic positioning of the G > S > P Sys in the pool test.

Path Length (m) Device Positioning µ2D (m) σ2D (m) µ3D (m) σ3D (m) THU (m)

~26.84
rectangular

G > S > P Sys
SPP 0.438 0.390 0.524 0.350 0.956

PPP-kinematic 0.417 0.309 0.465 0.290 0.757
PPK 0.037 0.040 0.061 0.060 0.098
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Figure 14. Comparison of the GNSS kinematic positioning of the G > S > P Sys in the pool test:
(a) planimetric SPP; (b) planimetric PPP-kinematic positioning; (c) planimetric PPK positioning;
(d) 3D P; (e) 3D PPP-kinematic positioning, (f) 3D PPK positioning.

3.2. Depth Survey and 3D Modelling Test Results

This section reports the data to evaluate the sonar performance in depth measurement
and the 3D modelling methods.

Table 13 shows the data collected to evaluate the performance of the Deeper Smart
Sonars CHIRP+ and Pro+ 2 in measuring depth. The measured depths were 0.9 m and
1.52 m, in fresh and sea water (salinity 37.8‰). The value of ∆V represents the difference
between the mean of the measured depth value considering 3700 samples and the real
depth value, σV is the standard deviation of the measured values.

To evaluate the accuracy and precision of the 3D models produced, a comparison
based on Cloud-To-Mesh (C2M) distance was performed in CloudCompare (Table 14).
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Table 13. Performance in depth measurement of Deeper Smart Sonar CHIRP+ and Deeper Smart
Sonar Pro+ 2.

Device Real depth (m) Water ∆V (m) σV (m) TVU (m)

Deeper Smart
Sonar CHIRP+

0.9
Fresh 0.02 0.00 0.00

Salt~37.8‰ 0.02 0.02 0.04

1.52
Fresh 0.01 0.00 0.00

Salt~37.8‰ 0.01 0.11 0.21

Deeper Smart
Sonar Pro+ 2

0.9
Fresh 0.03 0.00 0.00

Salt~37.8‰ 0.02 0.02 0.04

1.52
Fresh 0.02 0.00 0.01

Salt~37.8‰ 0.04 0.06 0.12

Table 14. Mean and standard deviation values of C2M distance of seabed and pool models.

Model Example Images Interpolation Method µ3D (m) σ3D (m)

3D model FCR
–

natural surface
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For the seabed (the natural surfaces), the comparison was carried out between the 3D
model FCR, the 3D model OK and the 3D model IDW, and 40% of the points that were
selected for the final validation. In the case study of the pool (the artificial structure), a
comparison was conducted between the 3D model created by the proposed 3D modelling
method and the model reconstructed by the traditional survey. Furthermore, regarding
the swimming pool, the C2M was performed both on the entire structure and only on the
bottom.

In Table 14, µ3D is the mean distance C2M, and σ3D is the corresponding standard
deviation.

In order to make some observations on the interpolation and 3D modelling methods
used, Figure 15 shows three illustrative vertical sections executed on the three 3D models of
the seabed. The points used for validation were represented as black squares, the section of
the 3D model FCR was represented in blue, the section of the 3D model OK was represented
in orange and the section of the 3D model IDW was represented in red. Figure 15a shows
the three sections and Figure 15b,c show the disaggregated data to facilitate comparison
between the models (3D model FCR vs. 3D model IDW in Figure 15b and 3D model FCR
vs. 3D model OK in Figure 15c).

Finally, Figure A6 (in Appendix A) shows the histograms of the analysis performed
on the pool.
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3D model OK (in orange).
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4. Discussion

Comparing the best and worst TVU values (0.00 and 0.21 m) reported in Table 13
with the TVU IHO standards [17] (see Table 15), it can be seen that the Deeper Smart
Sonars produced depth measurements with a TVU between the Exclusive Order and the
Special Order.

Regarding the geolocation of the devices in the static tests, it can be observed that in
the SPP (Table 9 and Figures 11, A1 and A2) the G > S > P Sys was superior in comparison
to the Deeper Smart Sonars. In the post-processing (Table 10, Figures 13 and A4) the static
was superior compared to the PPP static.

In the dynamic tests, analysing the THU values of the Deeper Smart Sonars, as shown
in Table 11 (1.180 and 4.682 m), and comparing them with the reference THU standards
values in Table 15 [17], it can be observed that the Deeper Smart Sonars obtained values
between the Special Order and the Order 1. Observing the values of the G > S > P Sys shown
in Tables 11 and 12 and Figure 14, it can be seen that in all types of positioning performed
(SPP, PPP kinematic and PPK), the THU values are compatible with the Exclusive Order
(the worst value is in fact 0.956 m). The dispersion of the surveyed points (Figure A5) in
SPP had a minor dispersion compared to the Deeper Smart Sonars. In addition, an analysis
of Figures 12 and A3 reveals that the SNR of the G > S > P Sys is in each case better than
the internal GNSS receiver of the Huawei P30 Pro.

Considering overall the THU and TVU values of the Deeper Smart Sonars it can
be deduced that these sensors can express uncertainty values that in the worst case are
compatible with the Order 1 and in the best case with the Special Order. Instead, the G > S
> P Sys in the worst case can express uncertainty values compatible with the Special Order
and in the best case with the Exclusive Order.

Table 15. THU e TVU bathymetry IHO standards for safety of navigation hydrographic surveys [17].

Criteria Order 2 Order 1 (a/b) Special Order Exclusive Order

THU 20 m +
10% of depth

5 m +
5% of depth 2 m 1 m

TVU√
a2 + (b·d)2

a = 1.0 m
b = 0.023

a = 0.5 m
b = 0.013

a = 0.25 m
b = 0.0075

a = 0.15 m
b = 0.0075

In TVU, a is the portion of the uncertainty that does not vary with depth, b is a
coefficient representing the portion of uncertainty that varies with depth and d is the depth.

The µ2D values of the Deeper Smart Sonar internal GNSS receivers reported in Table 11
(2.007 and 0.700 m) proved to be better than the accuracy estimated in Bandini et al. [7]
and more in accordance with Bogoyavlensky et al. [10]. It seems improper to define the
Deeper Smart Sonar internal GNSS receiver as “highly accurate” as in Giambastiani et al. [9].
However, it proved to have good accuracy. The ∆V values reported in Table 13 (between
0.01 and 0.04 m) showed accuracy in measuring depth in shallow water better than the
accuracy estimated in Kellerer-Pirklbauer et al. [11] and more in accordance with Bandini
et al. [7]. The differences and similarities found may depend on the different measurement
methods used and the technological advancement of the sensors studied. The µ2D values of
the G > S > P Sys in PPK positioning reported in Tables 11 and 12 (0.043 and 0.037 m) proved
that the G > S > P Sys is more accurate than the method presented in Bandini et al. [7] and
logistically not strictly dependent on the use of a UAV. Compared to the system proposed in
Bandini et al. [16], the G > S > P Sys allows excellent real-time geolocation in SPP compatible
with the THU value of the Exclusive Order. Furthermore, the synchronisation principle
of the G > S > P Sys is potentially applicable to other sensors (e.g., optical sensors) that
use the smartphone for geolocation. The implementation of sensors via smartphones had
the advantage of prototyping and operating the system easily, and quickly and saving
microchips during the semiconductor crisis. In addition, as the system is lightweight, it can
also be moved by UAVs and USVs [41]. However, it must be considered that the system
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proposed in Bandini et al. [16] managed multiple devices and an intrinsic weakness of
a system developed on smartphones is that it is vulnerable to malfunctions due to the
different types of smartphone models and the updates that operating systems and apps
will receive during the time.

Concerning the 3D modelling of natural surfaces, analysing the C2M values in Table 14,
it can be seen that the 3D model FCR obtained the best µ3D value. On the other hand, the
values of σ3D differ marginally. Observing the values of the 3D model of artificial structure,
the G > S > P Sys and the proposed 3D modelling pipeline proved to be able to achieve
centimetric accuracy and precision values.

Particularly interesting is the analysis of interpolation by ML. Comparing the bathy-
metric grids in Figure 6 and the 3D models in Figure 7, it can be seen that the grid FCR
preserved the general formal layout of the grid IDW but punctually tried to correct the
values, according to the sonar points used as training features. As can be seen in Figure 15c,
this made the 3D model FCR section numerically similar to the 3D model OK section.

Finally, to give the reader a more complete view, a comparison was performed between
the proposed spacetime PPK synchronisation method and another possible time-only PPK
synchronisation method. In time-only PPK synchronisation, the sonar time was synchro-
nised in post-processing directly with the GPS Time of the File PPK (for the synchronisation
the times were converted to a common Coordinated Universal Time—UTC format). This
method not requiring any intermediate steps (there is no previous electronic and spatial
synchronisation), but produces a natural error due to the synchronisation of two different
clocks with two different times (the sonar clock and the GPS clock) and only allows syn-
chronisation up to the second. The performances obtained with this method were a µ2D
of 0.308 m, a σ2D of 0.130 m and a THU of 0.318 m. The performances are lower than the
spatio-temporal PPK synchronisation method proposed. However, they are compatible
with the THU values of the Exclusive Order.

5. Conclusions

In this paper, smart low-cost sensors implementable via smartphones were used in
order to obtain bathymetric data and an original method for 3D modelling of natural and
artificial underwater environments was developed.

The main topics addressed in this research were:

1. Evaluation via analytical tests of the performance of the Deeper Smart Sonars CHIRP+
and Pro+ 2 in surveys conducted in shallow water;

2. Development and experimentation of a system to synchronise the Deeper Smart
Sonars with an external GNSS receiver via smartphone to improve sonar geolocation
in real-time and post-processing;

3. Experimentation of a mapping method based on an ML approach;
4. Implementation of a pipeline for 3D modelling of underwater natural surfaces and

artificial structures.

Based on the results obtained, it is possible to deduce that Deeper Smart Sonars are
excellent sensors for conducting surveys in natural aquatic environments, characterized by
regular seabed for scientific applications, e.g., in biology, geology, climatology, etc. In the
case of surveys of artificial structures underwater, detailed surveys of natural environments
close to the coast and/or with a complex bottom, or in the case of data fusion between
aquatic and terrestrial environments, it would be preferable to use the G > S > P Sys
with spacetime PPK synchronisation to achieve better performances in the geolocation of
bathymetric data and in the subsequent 3D modelling.

In this case study, the ML based mapping method proved to be able to achieve
comparable if not superior results to established interpolation methods. An advantage
of ML mapping is the automaticity of the method compared to the classical geostatistical
methods. In future research, further studies will be conducted, e.g., varying the morphology
and nature of the surface to be interpolated, in order to accumulate further data in different
scenarios.
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The proposed 3D modelling pipeline has proven to be flexible, easily implemented,
and capable of producing models with centimetric accuracy and precision. The opportunity
to import bathymetric data into MeshLab and Rhinoceros® 7 allows 3D modelling by
various algorithms depending on the goals. Furthermore, the import into CloudCompare
can allow the geometric analysis of data via eigenfeatures analysis [42]. Finally, it is believed
that the modelling of sonar data in specific software, such as CloudCompare, MeshLab and
Rhinoceros® 7, would allow in future research an easier approach to data fusion collected
with different techniques (photogrammetry, Light Detection And Ranging—LiDAR, etc.)
and in different environments (water, ground, etc.)
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Appendix A

Figures A1 and A2 show the real-time planimetric static SPP accuracy of the Deeper
Smart Sonar CHIRP+ and the Deeper Smart Sonar Pro+ 2 during an observation time of
3600 s (1 h).
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Figure A3 shows the Signal-to-Noise Ratio of the Huawei P30 Pro for L1 and L5 in the
best and worst positioning obtained in 3600 s during 8 h of observation.
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Figure A3. For the Huawei P30 Pro: (a) best SNR for L1; (b) worst SNR for L1; (c) best SNR for L5;
(d) worst SNR for L5.

Figure A4 shows a diagram representing the evolution of the accuracy in 3D static
post-processing positioning of the G > S > P Sys during 3600 s. In grey are represented the
data post-processed in static mode and in yellow the data post-processed in PPP mode.
The accuracy was calculated using the following formula:

∆3D =
√

∆E2 + ∆N2 + ∆U2 (A1)
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Figure A4. Accuracy in static 3D post-processed positioning in static mode (grey) and in PPP mode
(yellow) of the G > S > P Sys.

Figure A5 shows a comparison between the G > S > P Sys and the Deeper Smart Sonar
CHIRP+ and Pro+ 2 positioning data and the real trajectory travelled. The real trajectory is
represented in green, the points surveyed in SPP by the G > S > P Sys are represented in red,
the points processed in PPP by the G > S > P Sys are represented in orange and the points
processed in PPK by the G > S > P Sys are represented in blue. The points surveyed by
Deeper Smart Sonar CHIRP+ are represented in brown and the points surveyed by Deeper
Smart Sonar Pro+ 2 are represented in magenta.
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Figure A6 shows the histograms of the C2M analysis carried out on the pool (Figure A6a)
and on the bottom of the pool (Figure A6b).
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