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Abstract: In recent years, artificial intelligence technologies have been developing more and more
rapidly, and a lot of research is aimed at solving the problem of explainable artificial intelligence.
Various XAI methods are being developed to allow the user to understand the logic of how machine
learning models work, and in order to compare the methods, it is necessary to evaluate them. The
paper analyzes various approaches to the evaluation of XAI methods, defines the requirements for
the evaluation system and suggests metrics to determine the various technical characteristics of the
methods. A study was conducted, using these metrics, which determined the degradation in the
explanation quality of the SHAP and LIME methods with increasing correlation in the input data.
Recommendations are also given for further research in the field of practical implementation of
metrics, expanding the scope of their use.
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1. Introduction

One of the areas for the development of AI (Artificial Intelligence) technologies is the
development of explainable artificial intelligence (hereinafter referred to as XAI) methods
that allow users to understand why machine learning algorithms have come to certain
results and conclusions. These methods are mainly aimed at increasing user confidence in
AI technologies, but their imperfection undermines this trust [1]. For example, many XAI
methods (LIME, GGCAM, OCC, etc.) can incorrectly interpret the model if the input data
is distorted: for example, if the colors of a small number of pixels in several patterns are
changed in the input data of an image classification model [2].

For the practical application of XAI methods, it is important to have an idea about their
speed, accuracy, and resource intensity. When evaluating XAI methods, different problem-
oriented approaches are used [3–5], which often do not have the portability property [6].
The evaluation is aimed at certain parameters of the method, ignoring the rest, and this
becomes a confirmation bias [7]. To solve these problems, it is possible to define a set of
metrics that take into account a wide range of technical characteristics of the XAI method
(for example, computational complexity, accuracy [8]).

XAI methods are divided into local (providing an explanation for only a part of the
units in the data set) and global (providing an explanation for the entire data set). In this
paper, we consider the problem of evaluation global XAI methods. As models to which the
method will be applied, models of artificial neural networks will be used. Among the global
XAI methods, several of the most famous were chosen as the object of study—SHAP, LIME.

The goal of the work is to develop metrics that allow evaluating the result of applying
the methods of explainable artificial intelligence LIME, SHAP to machine learning models
using synthetic data.

To achieve the goal, must be completed the following tasks:
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1. Determination of criteria for approaches to assessing XAI methods;
2. Study of existing metrics for evaluating XAI methods;
3. Selection of XAI evaluation metrics and their modification;
4. Development of software for generating synthetic data and calculating metrics;
5. Study of SHAP, LIME XAI methods using the developed software

The object of the research is the methods of explainable artificial intelligence. The subject
of the study is the metrics for evaluating the methods of explainable artificial intelligence.

2. Relevance. Overview of Analogues

To search for analogues of solving the problem of estimating global methods for ex-
plaining machine learning models, we searched articles in Google Scholar for the following
keywords and phrases: (1) Explainable Artificial Intelligence; (2) Interpreting model predic-
tions; (3) XAI benchmark; (4) XAI evaluation; (5) Metrics for XAI; (6) Method evaluation.
To select relevant articles, a filter was used by the year of issue: 2019–2021.

2.1. Determination of Criteria for Evaluating Analogues

In order to compare analogues, it is necessary to understand what key criteria can
characterize the system for evaluating XAI methods. The criteria should mainly be based
on the metrics used in the system. In this case, a metric is a measure that allows one to
obtain the numerical value of some property of the algorithm, its implementation and
practical application. To evaluate the methods of explainable artificial intelligence, a variety
of metrics from various sciences can be used: mathematics, computer science, sociology, etc.

Some methods suggest specifying method requirements for evaluation. In this case,
the requirements should be such that it is possible to define a metric showing the extent to
which the assessment system complies with this requirement.

An important criterion is the number of metrics that have a methodical or mathematical
description. If an assessment method offers metrics that do not have a precise description
of how they are calculated, researchers may calculate these metrics in different ways, which
will not solve the problem of subjectivity and the inability to compare different assessments
of XAI methods. Under the methodological description, which is most often applicable
to sociological metrics, is meant a step-by-step instruction on measuring a certain metric,
indicating the input parameters, the method for obtaining them and forming the metric for
them. For example, a methodological description of the measurement of a metric could
be conducting interviews and questionnaires using the Likert scale with questions from
the checklist.

The number of metrics that depend on the size of the sample is a criterion that
allows you to assess the complexity of the implementation of the assessment method and
its dependence on the size of the study. A sample is a set of sets of input parameters
required to obtain a set of metrics. This criterion is based precisely on the description of the
methods—whether there are requirements for the sample size, whether the dependence of
the quality of the metric on it is mentioned.

The evaluation metrics of XAI methods can be roughly divided into two groups:

1. Metrics based on technical specifications
2. Metrics based on sociological and cognitive characteristics

The technical characteristics of the XAI method are its measurable parameters and
properties that determine the software implementation, applicability on a computer, the
mathematical properties of the algorithms used in it and the method as a whole. A metric
that characterizes one or more technical characteristics allows you to evaluate the method
from the point of view of constructing and analyzing algorithms, mathematical analysis.
For example, such a metric can be the computational complexity of the method, or the
dependence of the number of operations on the computational complexity of the model
to which the XAI method is applied; accuracy of parameter determination; limitations
and vulnerabilities. To determine the number of such metrics, a criterion is defined—the
number of evaluated technical characteristics. The performance of explanation methods
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depends on many factors: the machine learning model they explain and the data on which
the model was trained. Accounting for heterogeneity of input data criterion shows if the
methods of evaluation explore the performance differences of the method under different
models and datasets.

Sociological and cognitive characteristics determine the user’s interaction with the
XAI method, the receipt and assimilation of information provided by the methods, if
generalized, the degree and nature of the influence of the method on the user. However,
such metrics, as it is right, significantly depend on the sociological sample: age, computer
proficiency, degree of familiarity with AI technologies, etc. Thus, the metrics depend
significantly on the scope of the study. To take this into account, a criterion of the amount
of research required to calculate the metrics is defined.

There are several ways to calculate the metrics described in Table 1. The list of criteria
is presented in Table 2.

Table 1. Methods for calculating metrics.

Method Name Characteristic

Functionality-grounded Theoretical, based on the description of the algorithm
Human-grounded Experimental calculation

Application-grounded User Experience Research

Table 2. Criteria for comparing analogues.

No Criterion Name

1 The number of metrics that have a mathematical or methodological description
2 Number of evaluated technical characteristics
3 Accounting for heterogeneity of input data
4 Types of studies for calculating metrics
5 The amount of research required to calculate the metrics

2.2. Description of Analogues

A study by Keane M. T. et al. [9] raises the issue of evaluating counterfactual ex-
planatory methods based on psychological issues and seeks evidence that the nature of
evaluations of certain explanatory methods correlates with the user experience of using
these methods. The article also points out that such an analysis is relevant not only for
counterfactual methods of explanation, since many other types of XAI are not able to
properly meet the requirements of end users. To evaluate the methods of explanation, the
authors propose certain requirements for the method:

1. The method must be accuracy-oriented (proximity-guided)
2. The method should focus on functionality (eng. focused on features)
3. The method must be distributionally stable (eng. distributionally-faithful)
4. The method must be instance-guided

The proposed four requirements make it possible to assess the technical characteristics
of the method. It can also be noted that these requirements are quite relevant for users.
However, any methodological description of how the compliance of the method with the
requirements should be determined is not indicated in the article, and user experience is
not provided.

The article by Rosenfeld A. [7] considers the problem of evaluating the methods
of explainable artificial intelligence and sets the goal of showing how the ambiguity in
determining the goals that XAI is designed to achieve affect the qualitative and quanti-
tative evaluation of these methods. The article mentions that modern XAI methods are
often developed with the aim of maximizing their performance, including using artificial
intelligence methods, even if this may affect the stability of the explain method algorithm.

The article proposes a set of metrics that can be used to evaluate XAI methods:
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1. D, performance difference between models and XAI method execution;
2. R, the number of rules in the model explanation (rule based);
3. F, the number of features used to construct the explanation;
4. S, the stability of the explanation of models;

The four metrics proposed by the authors dive deep enough into the technical features
of the implementation of the XAI method. They may be useful for further research, however,
for example, the R, F metrics for potential users are hardly representative. It should be
noted that examples of their mathematical description are given for metrics.

The study by Hsiao J. H. [8] considers the problem of evaluating the quality of ex-
planatory methods and pays special attention to research in the field of cognitive science
and psychology, which allow a more pragmatic and naturalistic approach to evaluating
XAI methods. The article proposes the following cognitive assessment metrics:

1. Explanation Goodness
2. User satisfaction
3. User Curiosity/Attention Engagement
4. User Trust/Reliance
5. User understanding
6. Productivity/Productivity of use (English User Performance/Productivity)
7. System Controllability/Interactivity

The authors Lin Y. S., Lee W. C., Celik Z. B. [10] conducted a study that addresses
the problem of assessing the interpretability of models using XAI methods. It points
out that in existing studies, measurements are made by humans and can be tedious and
time-consuming, as well as introduce bias and lead to inaccurate estimates. In addition,
vulnerabilities were found in XAI methods, which in certain situations could give a similar
interpretation of models trained on true and randomized data. The study presents images
as input data, and the model to which the XAI method is applied is an artificial neural
network. To evaluate the methods, the authors propose to use the masking method. So,
the XAI method uses a lot of models trained on various input data distorted according to
certain patterns (model trojaning), and the output data of the methods is compared. The
paper proposes the following metrics:

1. Recovery Rate—determines the effectiveness of trigger detection
2. Computational Cost—determines the cost of defining triggers
3. Intersection of triggers in relation to their union (eng. Intersection over Union)—also

determines the effectiveness of trigger detection
4. Recovering Difference—determines the correctness of the rejection of triggers

In a study by Zhou J. et al. [11] considers the problem of inconsistency of indicators for
assessing the quality of explanation of methods, which makes comparisons of XAI methods
difficult. Explainability is inherently a very subjective concept that depends on users, and
therefore the authors propose a structure of metrics, divided into types and subtypes:

1. Metrics based on method application and user

a. Subjective metrics

i. User trust
ii. User preference
iii. User confidence

b. Objective metrics (user psychological signals)

i. Electrical activity of the skin (eng. Galvanic Skin Response)
ii. Blood Volume Pulse

2. Metrics based on functionality (for methods for evaluating artificial neural net-
work models)

a. Number of operations depending on model size
b. Level of disagreement
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c. Interaction strength

The study also points out that different types of metrics should be integrated together.
The metrics given in the article are only examples of metrics related to one or another type,
while a methodological or mathematical description is not given for them.

2.3. Findings from the Comparison

As a result of the comparison (Table 3), it was revealed that many analogues that offer
the evaluation of technical characteristics either do not take into account the heterogeneity
of the input data, or do not have a mathematical or methodological description of the
calculation of metrics. Nevertheless, the approaches of each of the methods deserve
attention and can be supplemented.

Table 3. Comparison of analogues.

Criterion/Analog
The Number of Metrics
with Mathematical or

Methodological Description

Number of
Evaluated Technical

Characteristics

Accounting for
Heterogeneity of

Input Data

Types of Studies for
Calculating Metrics

The Amount of
Research Required to
Calculate the Metrics

№1, Keane M. T. et al., 2021 0 4 Yes Functionality-,
Human-grounded Middle

№2, Rosenfeld A., 2021 4 4 No Human-grounded Middle

№3, Hsiao J. H. et al., 2021 7 0 Yes Human-grounded High

№4, Lin Y. S., Lee W. C.,
Celik Z. B., 2020 4 4 No Human-grounded Middle

№5, Zhou J. et al., 2021 0 3 Yes All Extremely high

Among the methods based on the technical characteristics of the XAI methods, ana-
logue No. 1 does not offer a methodical or mathematical description of the metrics, instead
some requirements for the method are proposed. This approach leads to the fact that when
using the evaluation method, the metrics will be calculated in different ways, which does
not solve the problem of their incompatibility.

Analogue #4 offers an assessment of the work of methods with synthetic data, in
which noise disturbances and artificial trigger features are added. In general, the use of
synthetic data allows you to specify the features of the sample—the type and parameters
of the distribution of features, the type of function for calculating the true prediction, the
addition of noise disturbances or insignificant features. This approach allows us to explore
the characteristics of the method depending on the input data, for example, by calculating
a certain accuracy metric depending on the correlation of features.

2.4. Solution Method Choosing

Based on the review of analogues and other studies [12–45] and the considered criteria,
the main requirements for the solution were compiled:

1. Taking into account the technical characteristics of the XAI method
2. Accounting for heterogeneity of input data using synthetic data
3. Availability of a methodical or mathematical description of each metric
4. Ability to calculate metrics when running methods with different machine learn-

ing models

It’s important to automate calculation of metrics so it’s proposed to develop Metrics
Calculation Tool which will support SHAP, LIME methods and will use synthetic data.

Schematic representation of the method is shown in Figure 1.
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Figure 1. Schematic representation of the method.

3. Experiments
3.1. Metrics Modification

1. Faithfulness metric. The faithfulness metric allows you to determine the degree of
correspondence between the explanation of the importance of each individual feature
and is determined by the Pearson sample correlation coefficient between the weights
of the feature and its approximate contribution to the change in the model prediction
when it is removed or fixed.

A schematic representation of the iteration of the algorithm is shown in Figure 2.

Figure 2. Scheme of the algorithm for calculating the faithfulness metric.

The values of the Pearson correlation coefficient, by definition, are in the range from
−1.0 to 1.0, the faithfulness metric can take values from 0 to 1. Values close to 1 indicate
the correctness of the distribution of weights, and close to 0 indicate that the influence
of features on the prediction does not match the set of weights. It is important to note
that this metric does not consider the correctness of each weight, but considers them in
aggregate, which in the general case is not always the main indicator of the correctness of
an explanation.
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2. Monotonicity metric. The monotonicity metric is based on this concept and determines
the correctness of a sequence of features, ordered by increasing their weight, obtained
by XAI methods. If monotonicity is not observed, then the XAI method allowed a
distortion of feature priorities: a feature with less influence received more weight, or
vice versa. This metric also cannot assess the accuracy of the weight value of each
feature, but it can assess the correctness of the distribution of weights between features.

A schematic representation of the iteration of the algorithm is shown in Figure 3.

Figure 3. Scheme of the algorithm for calculating the Monotonicity metric.

The main difference between the faithfulness metric and the monotonicity metric is
that to calculate the faithfulness metric, subsets of features are considered, from which each
of the features is iteratively removed. At the same time, the monotonicity metric considers
the cumulative effect of adding features, and therefore can be more reliable if they are
highly correlated.

3. Incompleteness metric. The Incompleteness metric determines the effect of noise
perturbations of each feature on model predictions by calculating the difference
between the weights and the difference between the original prediction and the
predictions given by the noisy feature sets.

3.2. Synthetic Data

The generation of synthetic data is divided into two stages: the generation of feature
sets and their markers. Feature sets are generated by sampling from a multivariate Gaussian
distribution. Noise is added to the feature values by summing their values with a random
value from a normal distribution with zero mathematical expectation, the noise factor
determines the standard deviation. Markers for feature sets are generated as a result of
some feature function. It is possible to use linear, nonlinear and their impurities, piecewise
linear functions.

3.3. Implementing the Metrics Calculation Tool

Python version 3.9 was chosen as the programming language. Programming envi-
ronments used are PyCharm Community and Visual Studio Code. List of used libraries
presented in Table 4.
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Table 4. Table of used libraries.

Library Name Description Library Version

NumPy A library that implements linear algebra operations,
mathematical functions, elements of statistical analysis 1.21.0

Matplotlib Library for plotting various types of graphs 3.5.1

Scipy Library designed to perform scientific and
engineering calculations 1.8.0

Pandas Library for working with tabular data structures 1.4.1

Shap Library with implementation of the XAI
SHAP method 0.40.0

Lime Library with the implementation of the XAI
LIME method 0.2.0.1

Scikit-learn Library with tools for designing and training models 1.0.2

Setting of the designed program launch parameters is carried out using the json files
of the experiment configuration and the script. The program has a CLI interface and has
an indication of the process of performing experiments. Calculation results are saved in
CSV and JSON files. In addition, log files are saved. There is a separate module for plotting
dependencies of metric values on parameters and saving them in PNG format, which is
launched separately. It is possible to customize the models used, XAI methods, parameters
for generating synthetic data, calculated metrics.

There some modules implemented in the program:

1. Synthetic data generation module. The synthetic data generation module includes
classes that allow you to generate sets of features by sampling from various distribu-
tions (multivariate normal distribution, including conditional distribution according
to the method described in paragraph 2.1), as well as markers for data sets using
various methods (linear, piecewise -linear, non-linear function) for linear regression
or classification models.

2. Module for calculating metrics of XAI methods. Each metric is implemented as a
separate class: Faithfulness, Infidelity, Monotonicity. When any of these classes are ini-
tialized, an instance of the CustomData class and an instance of the machine learning
model are passed. Each of the metric classes implements the evaluate function, which
takes as input the initial data set, the weights obtained from the XAI method, and a
parameter that controls the number of additionally generated samples for calculating
the metric.

3. XAI methods application module. The module is responsible for initializing and
applying the XAI methods. For the SHAP method, two classes are implemented that
provide an interface for calling the shap.Explainer and shap.KernelExplainer classes
included in the shap library. The library is the official implementation of the method,
and its documentation contains many examples of applying the method to models of
various types.

3.4. Results and Discussion

Based on the results of the experiment, it is also possible to build graphs of dependence
on other parameters, for example, on the sample size, or plotting the stability of metric
values, all other things being equal. Dependence is built by a piecewise line graph, and the
area from the minimum to the maximum value of the metric is also painted over.

As a result of the experiment with a given configuration, the values of the metrics
were obtained. For example, the values of the faithfulness metric for the linear regression
model are presented in Table 5.
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Table 5. Confidence metric for a linear regression model.

Method Marker Function
The Value of the Metric at the Correlation Coefficient

0.0 0.2 0.4 0.6 0.8 0.99

SHAP Linear 0.94 0.86 0.77 0.66 0.66 0.6

Non-linear 0.96 0.87 0.81 0.81 0.76 0.62

LIME Linear 0.86 0.77 0.72 0.65 0.66 0.63

Non-linear 0.92 0.88 0.8 0.8 0.72 0.57

Graphs of dependences of the value of the faithfulness metric on the correlation
coefficient are shown in Figure 4.

Figure 4. Dependence of the reliability metric on the correlation coefficient.

With correlation coefficients of 0.8 and especially 0.99, both methods show fairly signifi-
cant errors. It is worth noting the rather high values of the metric for the non-linear marker
generation function when applying methods to a linear regression model—methods are ways
to identify non-linear dependencies and evaluate their contribution to model prediction.

Graphs of dependences of the value of the monotonicity metric on the correlation
coefficient are shown in Figure 5.

It’s worth noting that the XAI methods also need tweaking. For example, the stability
and accuracy of the explanation of the Lime method can vary significantly with different
kernel settings. The SHAP method has many modifications that differ in the way the
Shapley values are calculated and taken into account. Additional studies are needed to
study the effect of various parameters and method modifications.

Depending on the other metrics, the incompleteness metric determines the correspon-
dence of weights to prediction changes when noise is added to all features at once. The
value of the metric itself is the average difference between these values, so the smaller the
metric, the more complete the explanation can be considered. It can be seen from the graphs
that with an increase in the correlation coefficient, the explanation becomes more complete.
Higher values of the metric for binary tree models are also noticeable. In general, the values
of the metric are low, which indicates the correct determination of the total contribution of
all features to the model prediction.
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Figure 5. The dependence of the monotonicity metric on the correlation coefficient.

The results of calculating the incompleteness metric are shown in Figure 6.

Figure 6. The incompleteness metric.

4. Conclusions

As a result of the study, the criteria for the evaluation system of XAI methods were
determined. For a comprehensive assessment, it is necessary to take into account both
the technical characteristics of the method, which can be determined experimentally or
mathematically, and the sociological and cognitive characteristics that can be obtained in
the course of sociological research and are strongly influenced by sampling parameters.
At the same time, a balance should be observed between the types of metrics in order to
eliminate the bias of the assessment.

The considered analogues [7–11] with methodological and mathematical descriptions
of metrics assumed the use of either technical or cognitive characteristics. In analogue [11],
the importance of their joint use in the assessment was mentioned, but specific metrics
were not indicated.

From the study, the following conclusions can be drawn:
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• SHAP and LIME methods are comparable in terms of accuracy of explanation.A
study was conducted, using these metrics, which determined the degradation in the
explanation quality of the SHAP and LIME methods with increasing correlation in the
input data;

• The completeness of explanations of both methods is satisfactory, but the weights of
each feature separately, as well as the order of increasing weights, largely depend on
the input data and the machine learning model;

• Both methods provide less accurate explanations as the correlation coefficient of
features in the input data increases, with a correlation of >0.5, the explanations of the
methods are unstable and may be questioned;

• Both methods provide less accurate explanations when applied to decision tree models
than when applied to linear regression models;

• The SHAP method shows comparable explanatory accuracy with a linear and non-linear
marker function, while the LIME method is less accurate with a non-linear function;

• The execution time of the LIME method is more than 10 times the execution time of
the SHAP method.

Further research on the basis of the developed tool for calculating metrics for evaluat-
ing the methods of explainable artificial intelligence can be aimed at:

• Expansion of the list of XAI methods, for example, methods MAPLE, ER-SHAP, Breakdown;
• Study of evaluation metrics of XAI methods when applied to classification models;
• Study of dependence of SHAP method evaluation metrics on kernel parameters;
• Expansion of the list of machine learning models, for example, models of autoencoder,

deep neural network, vector machines, convolutional neural network.
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