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Abstract: Human eyes generally perform product defect inspection in Indonesian industrial produc-
tion lines; resulting in low efficiency and a high margin of error due to eye tiredness. Automated
quality assessment systems for mass production can utilize deep learning connected to cameras for
more efficient defect detection. However, employing deep learning on multiple high frame rate
cameras (HFRC) causes the need for much computation and decreases deep learning performance,
especially in the real-time inspection of moving objects. This paper proposes optimizing computa-
tional resources for real-time product quality assessment on moving cylindrical shell objects using
deep learning with multiple HFRC Sensors. Two application frameworks embedded with several
deep learning models were compared and tested to produce robust and powerful applications to
assess the quality of production results on rotating objects. Based on the experiment results using
three HFRC Sensors, a web-based application with tensorflow.js framework outperformed desktop
applications in computation. Moreover, MobileNet v1 delivers the highest performance compared
to other models. This result reveals an opportunity for a web-based application as a lightweight
framework for quality assessment using multiple HFRC and deep learning.

Keywords: real-time assessment; deep learning; image classification; image sensor processing; deep
learning for industry

1. Introduction

Industries rely heavily on human inspection for product quality assessment, which is
time-consuming and costly [1]. For example, a factory operating 24 h a day with three shifts
would require at least three people to inspect product quality. Additionally, inspection
accuracy can also be affected by new employees lacking experience and fatigue issues. An
automatic inspection system [2] can provide a solution by reducing costs and time and
providing a direct correlation between operational information and product quality [3].
An automatic inspection system for identifying defects has several benefits, including
operating continuously for extended periods, producing consistent results, and functioning
in harsh conditions such as high temperatures and dusty environments [4]. The use of AI
in the industrial field has increased in recent years due to advancements in AI methods,
open-source frameworks, and decreased development costs; this also eliminates the need
for physical computer storage by using the cloud [5,6]. The COVID-19 pandemic has
also contributed to the shift towards automation as it forced a reduction in the number of
employees in factories [7].
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Deep learning is a popular trend in AI for an automatic inspection system in defect
inspection [8]. It is considered a valuable aspect of AI due to its superiority over tradi-
tional machine learning methods. Defect inspection using deep learning can effectively
identify and classify defects in various materials and products. Deep learning models, par-
ticularly convolutional neural networks (CNNs) [9,10], are particularly effective at image
classification tasks and can be trained to recognize and classify defects based on visual
characteristics [11]. One advantage of using deep learning for defect inspection is that it is
more accurate and consistent than traditional methods [12]. However, some challenges and
limitations to using deep learning for defect inspection exist. One of the main challenges
is obtaining a large and diverse enough dataset of labeled defects for training the model.
Additionally, deep learning models can be computationally expensive to train and deploy,
particularly for real-time inspection applications, especially in the real-time inspection of
cylindrical shell moving objects [13,14].

One of the main challenges in the defect inspection of moving cylindrical shell objects
is that the object is in motion during the inspection process [13]. This can make it difficult to
acquire high-quality images or sensor data that can be used for defect detection. Some spe-
cific problems include Image blur: When the object is moving, the images captured during
the inspection process may be blurred, making it difficult to detect defects accurately [15].
Sensor data variability: The sensor data collected from a moving object may be more
variable than from a stationary object, making it more challenging to train a deep learning
model for defect detection [16]. Occlusion: Moving parts of the object may occlude defects,
making them difficult to detect. Vibration: The object’s vibration during the inspection
process can make it difficult to acquire high-quality images or sensor data [17]. Alignment:
The object may not be aligned with the sensor during an inspection, making it challenging
to acquire accurate images or sensor data. Researchers have proposed various methods to
overcome these problems, such as using multiple High-Frame Rate Camera Sensors [18]
and advanced deep-learning architectures [19].

Fast-speed cameras can be used in the defect inspection of moving cylindrical shell
objects by capturing high-speed images of the object as it moves [20]. These images can
then be analyzed to detect defects on the object’s surface. One way to use fast-speed
cameras for defect inspection is to capture images of the object at a high frame rate and
then use image processing techniques to extract features from the images. These features
can then be used to train a deep learning model for defect detection. Another way to use
fast-speed cameras for defect inspection is to capture images of the object at a high frame
rate and then use motion compensation algorithms to align the images and reduce blur.
This can help improve image quality and make it easier to detect defects. Additionally,
fast-speed cameras can capture images of the object at multiple angles, which can help to
improve the accuracy of defect detection by providing more information about the object’s
surface. In summary, fast-speed cameras can be used to capture high-speed images of
moving cylindrical shell objects and then use image processing and motion compensation
techniques to improve the image quality and detect defects on the object’s surface, and also
help to improve the accuracy of the detection by providing more information about the
object’s surface. However, employing deep learning on multiple high frame rate cameras
(HFRC) causes the need for much computation and decreases deep learning performance,
especially in the real-time inspection of moving objects.

In this study, we developed deep learning to assess the quality of cylindrical shell
products produced by PT Pindad, Indonesia. The deep learning model received input
from three high frame rate camera sensors. The three cameras captured the position of the
cylindrical shell objects from the top, longitudinal side, and bottom. High frame rate camera
sensors are used because the cameras will capture rotating objects, so the cameras must be
able to capture all parts of the object accurately. High frame rate cameras, of course, must
be combined with a fast system with minimal delay in terms of hardware and software.
Several CNN-based deep learning models were utilized, such as VGG, ResNet, MobileNet
v1, MobileNet v2, EfficientNet v1, and EfficientNet v2, to obtain the best performance
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suitable for the high frame rate camera, high accuracy, and low computation resource for
decreasing delay. The deep learning model in this study tested two types of applications,
web- and desktop-based, to obtain the lowest computation resources.

2. Materials and Methods

This study proposes a lightweight computing resource framework for high frame
rate camera input to obtain high accuracy in the defect inspection of moving cylinder
shell objects. The entire process in our system is summarized in Figure 1. In the initial
process, the target object is rolled in a circular motion that requires more than one frame for
360-degree rotation in a conveyor belt. Therefore, it needs more than one frame for each
side of the camera. The three high FPS cameras captured all parts of the object with the
positions of the top, longitudinal/sides, and bottom of the target. As the conveyor machine
moves, the software will process every frame captured by the camera with a built-in deep
learning model. The initial stages of processing each frame are image preprocessing, a
four-deep learning model, and quality decision-making of rotating objects. In the last
conveyor belt, an actuator for filtering a product based on the model results was connected
to the decision-making system.

Figure 1. The framework of the proposed method.

The image preprocessing stage begins with splitting the frame captured by each
camera into several parts. The frame captured by the top and bottom cameras was divided
into two pieces, while the longitudinal side was divided into four parts. The purpose of the
division was to make a square size of frame that can help the deep learning model produce
optimal accuracy. The feature extraction stage is performed by the deep learning model
automatically. The feature extraction stage aims to capture important information in the
input image. After the data from the input image has been obtained, the next step is that
the deep learning model generates information on the quality of rotating objects from each
frame. For each model frame, two classes of images were applied in this study, i.e., good
and defective. The final stage is decision-making based on the quality of the information
in each frame. If more than five frames of images on one of the cameras were analyzed as
having defective quality, then the cylinder shell object was classified as a defective product.
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2.1. Dataset

The cylindrical shell object is made of brass and may have defects on the surface and
dent on the edges of the holes, as shown in Figure 2. Therefore, it requires three positioned
cameras to find the dent on the surface for the defect class as shown in Figure 2c left sides.
The good cylindrical shell class was a product without any dent in the surface as shown
in Figure 2c right sides. The dataset is not publicly available, and it is recorded directly
using a camera with a maximum capacity of 210 FPS to capture each side of a rotating
object. The cameras capture the cylinder’s top, longitudinal/side, and bottom sides. The
overall position of the camera is on a two-dimensional plane so that it can capture the entire
sides simultaneously.

(a) Top side (b) Bottom side (c) longitudinal/side top

(d) longitudinal/side bottom

Figure 2. The sample dataset of the rotating object using three high frame rate camera sensors.

Every movement of the object was captured in a high-quality sensor, which avoided
the problem of blurring, occlusion, vibration, and alignment. The movement of the rotating
object was driven using a conveyor chain with a speed of 2.5 cm/s. Figure 2 shows sample
datasets from the top, bottom, and longitudinal sides. The object’s color tends to be bluish
even though the light around the object is given a white lamp. This occurrence is because
we use a camera sensor with a high frame rate that can take 120 FPS. In this study, we
used image input with a resolution of 224 × 224 for each frame. The dataset was divided
into three parts, namely 80% training data, 20% test data, and 10% validation data from
training data.

2.2. Deep Learning Model

In this study, several developed deep learning models were tested, namely VGG,
ResNet, MobileNet v1, MobileNet v2, EfficientNet v1, and EfficientNet v2 to find out which
model has the best performance. The best of the models is selected as an essential part of
the application to serve as the image processing model.

2.2.1. VGG

The VGG architecture is a deep learning model inspired by ConvNets [21]. VGG
consists of several ConvNets compiled by increasing the number of ConvNets as shown
in Figure 3. The combination of ConvNets and fully connected layers are arranged from
11 to 19 layers [22]. In VGG-16, the first two convolutional layers consist of 64 numbers
of filters, followed by the two, three, and three convolutional layers having 128, 256, and
512 filters, consecutively.
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Figure 3. The VGG16 Network

2.2.2. ResNet

One solution to improve deep learning capabilities is to multiply layers. However,
this method has the shortcoming of being easier to lose information with the increased
depth of the layers. In addition, other problems that arise are gradients and complexity.
Deep learning models that are trained deeper will require longer computational time.

The presence of ResNet in 2015, introduced by [23] is a deep learning model solu-
tion with many layers. ResNet comes with a skip connection that aims to maintain the
information or features generated in the previous convolutional layer. In 2022, Saini and
Rawat [24] conducted a study comparing the capabilities of deep learning models using
skip connection and without skip connection. Based on the research, ResNet provides
higher accuracy, but the arrangement developed does not have too many blocks.

¨y = F(x, Wi) + WsX (1)

where y is the resulting value of the summation operation between the output results of
two layers.

ResNet is a deep learning model for image classification. This deep learning model
is often used as a backbone in various models that are being developed today, such as
the backbone for image segmentation models, image classification, detection of objects
on images, and others. ResNet is the model with the latest in the form of residual or
skip connection. The connection serves to maintain the feature information that has been
obtained on the previous layer. The residual network formula is depicted in Figure 4.
ResNet consists of various versions: ResNet consisting of 34 Layers, ResNet consisting of
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50 Layers, and ResNet consisting of 101 Layers. According to Sun’s research results, the
version of ResNet with a total of 50 layers produces the best performance [25]. Based on
this research, in this study, the pre-trained ResNet model was used as the backbone model
of the bottle-neck attention module.

Figure 4. Residual Network.

2.2.3. MobileNet

MobileNet was developed by Andrew G. Howard. It is built with depthwise separable
convolutions and 1 × 1 pointwise convolution architecture. The purpose of using these
two layers in this model is to make the deep learning model light and to speed up the
convolution process. These two types of layers cause MobileNet to be used in mobile
applications or embedded systems. The two types of layers also make the MobileNet
architecture have a smaller number of parameters than other deep learning models but still
have good performance [26]. The MobileNet v1 network is depicted in Figure 5.

2.2.4. MobileNet v2

Depthwise separable convolution is still the main focus of MobileNet v2 as shown
in Figure 6. The novelty of MobileNet v2 is the addition of layers for extracting features
such as linear bottlenecks and residual connections. The bottleneck layer consists of three
operations, namely 1 × 1 convolution, 3 × 3 depthwise convolution, and 1 × 1 pointwise
convolution. In the first 1 × 1 image convolution, the number of channels is expanded to
obtain a complete feature image. The second convolution is the depthwise convolution
which serves to filter data. The last convolution is a pointwise convolution that functions
to reduce the number of channels but has obtained important information acquired in the
previous layer. Each layer in the bottleneck is followed by batch normalization and ReLU6;
however, in the last convolution, ReLU6 is not followed because it can eliminate important
information. Residual connection aims to preserve the previous layer’s information so that
it retains important information [27].
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Figure 5. The MobileNet v1 Network.
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Figure 6. The MobileNet v2 Network.

2.2.5. EfficientNet

The problem of deep learning is inseparable from the problem of speed and accuracy.
EfficientNet is a deep learning architecture inspired by MobileNet [26] and ResNet [23]. The
architecture is developed using a compound model scaling scheme, as shown in Figure 7.
Using a compound scaling model, the efficient net is expanded in the depth, width, and
resolution sections. The depth is a model that has a deeper architecture. The width aims to
allow the model to capture important information from the inputs, but a wider model will
have difficulty capturing high-level information, so a deeper architectural design is needed.
Resolution scaling is used so that the model can receive input with a larger resolution so
that it can capture high-level information more easily [28].
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Figure 7. The EfficientNet B0 Network.

2.2.6. EfficientNet v2

EfficientNet v2 is a development of EfficientNet B0 as shown in Figure 8. The design of
this latest architecture has faster training times and better parameter efficiency [29]. Using
the latest architecture, EfficientNet has 6.8x fewer parameters than its predecessor and is
3x-9x faster during training. In this architecture, EfficientNet uses a new layer design, i.e.,
Fused MBConv [30]. The EfficientNet v2 model was designed using NAS Search to obtain
the appropriate architecture combination. In the study, there were 1000 model combinations
of MBConv and Fused MBConv.
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Figure 8. The EfficienNet v2 Network.

2.3. Tensorflow

Tensorflow is an open-source library that is widely known for solving the problem of
deep learning development. The library was released by Google in November 2015 and
was developed using the Python programming language [31]. This library has various deep
learning functions to express different deep neural network algorithms. Tensorflow has the
advantage of being able to run on multiple platforms, such as desktop, web, mobile, and
even embedded systems. TensorFlow can be used for computer vision, speech recognition,
information retrieval, and much more research. Tensorflow library processing can be
performed using a CPU or GPU.

2.4. OpenCV

OpenCV is an open-source library developed in C++ and Python for image and video
analysis, initially introduced by Intel [32]. The library serves to process images from
inputs, processing, and outputs. Information can come from a video file or a camera for
streaming. The processing part is used to process images such as object detection, edge
detection, or processing images in the form of arrays so that they can be used as input for
deep learning libraries such as TensorFlow. The output section displays the results of the
OpenCV processing library, and the output can be text or other objects. OpenCV is usually
used to process images as input for deep learning models in desktop-based applications.

2.5. Hyperparameter Setting

Each model was divided into three parts: the model for the upper camera sensor,
the longitudinal side camera sensor, and the bottom camera sensor. This division was set
because the model recognized data patterns more specifically to reduce the occurrence of
prediction errors. Based on the division of these models, 18 deep learning models would
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be formed. The loss function used in this study was categorical cross-entropy, and the
cross-entropy loss equation can be seen in Equation (2).

¨
LCE = −

n

∑
i=1

tilog(pi) (2)

where ti is the label corresponding to the dataset, pi is the predicted result of the Softmax
activation function, and n is the number of classes.

In this study, training was conducted using as many as five epochs and a learning rate
of 0.001. To accelerate convergence and more efficient computing, in this study we used
ADAM optimizers. ADAM stands for adaptive moment estimation, which is the combined
result of momentum optimization and RMSProp [33]. The selection of ADAM was because
it could reduce the time for hyper-parameter tuning because ADAM is an adaptive learning
rate algorithm [34,35]. ADAM can be represented in Equation (3).

¨
θt+1 = θt +

η√
s + ε

+ m (3)

where θt+1 is the weight after the optimization process, θt is the weight before the opti-
mization process, η is the learning rate, m momentum optimization and s is the equation of
RMSProp.

2.6. Metric Evaluation

We used metric evaluation in the form of accuracy. The metric evaluation was used as
the benchmark of 6 models. Accuracy was used because it was easier to understand than
other evaluation metrics. There were 83.1% of all studies using accuracy as an evaluation
metric, which made accuracy the most widely used evaluation metric in the case of image
classification [36]. A simple interpretation of accuracy is the correct overall sum when the
prediction of the data is divided by the total amount of test data. The metric evaluation
equation can be seen in Equation (4).

¨
Accuracy =

TP + TN
TP + TN + FP + FN

(4)

2.7. Deep Learning Application

In this study, we developed an application to test the quality of cylindrical shells in
the form of web-based and desktop-based applications and compared their performance.
Web-based applications were developed using Javascripts combined with Tensorflow.js,
specifically designed for deep learning applications using the web. The web-based appli-
cation was connected to 3 high frame rate camera sensors in real time. The web-based
application development did not require additional libraries because Javascripts could
access the camera directly. Unlike the web-based application, the desktop-based applica-
tion ran on the desktop but could not connect directly with the camera, so it required the
OpenCV library to connect to the three cameras.

3. Results and Discussion

In this study, we trained six deep learning models to determine the quality of cylindri-
cal shells. The model conducted the assessment process in real time, so a fast and accurate
model was needed. Figures 9 and 10 provide information on the accuracy gained from the
entire model during the non-real-time testing process. Based on Figures 9 and 10, it can be
seen that deep learning models obtained excellent accuracy when tested with testing data.
VGG and ResNet, the predecessors of the deep learning model, obtained very satisfactory
results. In contrast, MobileNet v2, the lightest model, produced the lowest accuracy for
both the longitudinal and the bottom sides. This low accuracy was due to the MobileNet
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v2 architecture having the lowest number of parameters in performing high-level feature
extraction properly [37].

Figure 9. Bottom Model Performance Results.

Figure 10. Longitudinal Side Model Performance Results.

Other issues must be considered when using deep learning in the real-world setting,
namely the computational time and resources requirement. The computational time of a
deep learning model can be seen through the number of parameters each model has [38].
Table 1 provides information about the parameters of each model. Based on Table 1, the
model with the least number of parameters is MobileNet v2 and the one with the most
is VGG.

Table 1. Parameters of each deep learning model.

Deep Learning Model Parameter

VGG [22] 138 M
ResNet [25] 25 M

MobileNet [26] 4.2 M
MobileNet v2 [27] 3.4 M

EfficientNet-B0 [28] 5.2 M
EfficientNetV2S [29] 22 M
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The model selection used in the application is based on the resulting accuracy and the
number of parameters. Of the overall models we use, the most recent model is Efficient-
NetV2. The model provides excellent accuracy, but in terms of the number of parameters,
the model is not suitable for use because it has the third largest parameter. MobileNet v2
is claimed to be the lightest model, but this affects the accuracy produced. The resulting
accuracy of MobileNet v2 is the lowest.

In this study, we selected the MobileNet v1 model because it did not differ significantly
from MobileNet v2, and the number of parameters was between Mobilenet v2 and Efficient-
Net. In addition, MobileNet v1 also had equally good accuracy when assessing the quality
of cylindrical shells. However, when conducting quality assessments on the longitudinal
side, the accuracy was lower than that of VGG, ResNet, and EfficientNetV2S. Although
VGG, ResNet, and EfficientNetV2S have stable accuracy, the number of parameters is a
constraint when implementing in the real world.

The web and desktop-based application user interface we built can be seen in Figure 11.
In Figure 11, there are eight frames. The eight frames display the captured results from the
high frame rate camera sensor. Each camera has two frames for the top and bottom sides,
while the longitudinal side consists of four frames. The longitudinal side is divided into
four frames because the captured object is a cylindrical shell object.

Figure 11. User Interface Web-based Application.

Each left and right side frame represents the part of the frame captured by the high
frame rate camera sensor. Moreover, we split into two frames (for the top and bottom sides)
and four frames specifically for the longitudinal side to optimize the image size processed
by the deep learning model. This procedure was performed because the deep learning
model used has been designed to accept inputs of the same size.

In this study, we focused on the web-based application because it is more straightfor-
ward to use. A web-based application is simpler because it can be created centrally. This
feature is preferred because if there is a resource replacement, only the existing link needs
to be accessed. The use of a web-based application can also be performed locally. In this
study, we used a web-based application and placed a web server locally.
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Before implementing the web-based application, we tried to develop a desktop-based
application. Desktop-based development is more complex and inflexible. In order to use
the desktop-based application, the application must first be installed, with a concomitant
increase in CPU usage. In the desktop-based that we developed, when taking imagery
through the high frame rate camera sensor, there was a very long delay, causing the assess-
ment process to be sub-optimal and many frames to be missed. The image capture was only
performed on one sensor camera. The delay became much longer when multiple sensor
cameras were used. This longer delay occurred because the desktop-based application
used the OpenCV library, which took time to capture imagery from the camera and convert
it into an array format so that deep learning models could be used.

Figure 12 provides an overview of CPU usage in web-based and desktop-based
applications. Figure 12 shows that the use of a desktop-based CPU when using a high
frame rate camera sensor already shows a graph with a reasonably high percentage. Unlike
desktop-based, the web-based application provided much better results. This is because, in
the web-based application, we used Javascripts that could directly capture images from the
camera sensor and convert them into data types that deep learning models could process.
The use of Javascripts certainly sped up the image retrieval process because it no longer
used other libraries, as must be performed when developing a desktop-based application.

Figure 12. CPU Usage of Web-based Application (top) and CPU Usage of Desktop-based Application
(bottom).

4. Conclusions

We propose optimizing computational resources for real-time product quality assess-
ment on moving cylindrical shell objects using deep learning with multiple high frame
rate camera sensors. The MobileNet v1 deep learning model was found to be the most
suitable for real-time defect inspection compared to other deep learning models: VGG,
ResNet, MobileNet v1, MobileNet v2, EfficientNet v1, and EfficientNet v2. The model is
selected due to MobileNet v1 having a smaller number of parameters when compared to
other deep learning models. More parameters will cause the training and testing process to
be slow. The combination of interface and deep learning model is when MobileNet v1 is
combined with a web-based application. The web-based application performs much better
when compared to the desktop-based application. GPU and CPU resource usage when
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using the web-based application tended to be low, making the web-based application more
suitable for most desktop computers. In addition, the web-based application can be placed
centrally so that it is more flexible and can be accessed using a browser, so there is no need
to carry out a complicated installation process.
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