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Abstract: The reliable and effective automation of biomedical therapies is the need of the hour for
medical professionals. A model predictive controller (MPC) has the ability to handle complex and
dynamic systems involving multiple inputs/outputs, such as biomedical systems. This article firstly
presents a literature review of MPCs followed by a survey of research reporting the MPC-enabled
automation of some biomedical therapies. The review of MPCs includes their evolution, architectures,
methodologies, advantages, limitations, categories and implementation software. The review of
biomedical conditions (and the applications of MPC in some of the associated therapies) includes type
1 diabetes (including artificial pancreas), anaesthesia, fibromyalgia, HIV, oncolytic viral treatment (for
cancer) and hyperthermia (for cancer). Closed-loop and hybrid cyber-physical healthcare systems
involving MPC-led automated anaesthesia have been discussed in relatively greater detail. This
study finds that much more research attention is required in the MPC-led automation of biomedical
therapies to reduce the workload of medical personnel. In particular, many more investigations are
required to explore the MPC-based automation of hyperthermia (cancer) and fibromyalgia therapies.

Keywords: model predictive controller; biomedical therapy automation; diabetes; anaesthesia;
artificial pancreas; hyperthermia; fibromyalgia; HIV; cancer; cyber-physical healthcare

1. Introduction

The idea of automated disease control is not new. Researchers have worked on it
since the creation of the first analytical models between 1960 and the early 1970s [1]. These
researchers’ goal was to explore newer and more effective mathematical models to aid
medical diagnostic procedures and therapeutic regimens. By nature, physiological systems
are innately nonlinear and time-varying, making them difficult to predict. Therefore, some
clinical researchers feel that a formal model-based approach is not suitable for effective
application in medication and that open-loop control architecture is the way ahead in
medicine administration. In spite of the fact that the assignment of mathematical model
variables to human test subjects appears ambitious, the establishment of feedback loop for
testing and controlling therapy is not only possible but also feasible. MPCs are a prominent
control solution that has been employed in therapeutic automation.

The main goal of this study is to firstly review the background, evolution, methodol-
ogy and salient features of MPCs followed by a review of MPC-led therapeutic automation
in some important medical conditions. The motivation behind this study is to promote
more research in this important field primarily because of two reasons—1. easing the
routine workload of medical personnel and 2. the capability of MPCs to effectively deal
with biomedical therapeutic closed-loop conditions. The first part of the literature search
included the basic MPC domain keywords of ‘model predictive control’, ‘model predictive
controller’, ‘mpc’, ‘mpc control’, ‘mpc controller’, ‘mpc architecture’ and ‘mpc model’
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individually and in conjunction with ‘review’ and ‘survey’. The second part of the litera-
ture search included the MPC domain keywords in conjunction with application-specific
keywords, such as ‘biomedical’, ‘therapy’, ‘biomedical therapy’, ‘automation’, ‘biomedical
therapy automation’, ‘therapeutic automation’, ‘automated disease control’, ‘diabetes’,
‘blood glucose level’, ‘BGL’, ‘anaesthesia’, ‘artificial pancreas’, ‘cancer’, ‘hyperthermia’,
‘fibromyalgia’, ‘HIV’, ‘AIDS’, ‘cyber physical healthcare’ and ‘cyber physical health system’.
For the historical review of MPCs and MPC algorithms, landmark papers published from
the 1960s to 1990s were considered. Papers published in the past two decades were primar-
ily considered for the review of various MPC architectures, advantages, limitations and
software. Although no specific time frame was decided upon to gather literature dealing
with MPC in the selected biomedical conditions and therapies, more papers were found
from the recent twenty years as compared to the previous decades. All papers were sourced
from Scopus, Sciencedirect and Web of Science databases.

MPC refers to a group of control methods that are employed in single-input single-
output (SISO) and multi-input multi-output (MIMO) systems. An MPC is capable of
managing MIMO systems that share complex system information between their inputs
and outputs [2]. Because of the complexity of these exchanges, it is extremely difficult
to construct MIMO systems using standard controllers such as proportional–integral–
derivative (PID) controllers. An MPC, on the other hand, is capable of controlling all of
the outputs while allowing online process input-output exchanges simultaneously. An
MPC is also capable of dealing with contradicting restrictions. The handling of constraints
is important because breaking them could result in unintended consequences. An MPC
has the ability to preview data and react accordingly. If the MPC controller is aware of
set point changes in advance, it will be able to better react to those changes and increase
its overall performance. An MPC fulfills the requirement of a dynamic process model to
reduce the discrepancy between the expected and actual plant outputs. The earliest MPCs
have been in use in process industries since the 1980s. MPCs can be applied to both basic
and complex processes. Because of the rising computational capability of microprocessors,
MPC applications have expanded to a variety of other disciplines, including the medical,
automotive and aerospace sectors.

The layout of this paper is as follows. The following subsections present a brief
overview of the background and evolution of MPC methodologies and algorithms, followed
by the general MPC methodology, its advantages and limitations. The Section 2 throws
light on the various types of MPCs in practice followed by information about some popular
software used to implement these MPCs. The Section 3 presents a research review of
MPC-enabled therapeutic automation in conditions such as type 1 diabetes, anaesthesia,
artificial pancreas, fibromyalgia, HIV and cancer. The Section 4 presents conclusions and
the future research scope. Table 1 shows the nomenclature of all the terms and acronyms
used in this study.

Table 1. Nomenclature of terms and acronyms used in the paper.

Notation Meaning Notation Meaning

AP Artificial Pancreas MPC Model Predictive Control
BGL Blood Glucose Level NMPC Nonlinear Model Predictive Control
BIS Bispectral Index OPC Optimum Predictive Control
BMM Bergman Minimal Model OVT Oncolytic Viral Therapy
CTLs Cytotoxic T Lymphocytes PCT Predictive Control Technology
CPHS Cyber-Physical Human System
DMC Dynamic Matrix Control PEG Polyethylene Glycol
DoA Depth of Anesthesia PI Protease Inhibitors
EEG Electroencephalogram PID Proportional-Integral Derivative
eMPC Explicit Model Predictive Control PWA Piece-wise Affine Function
FM Fibromyalgia QP Quadratic Programming
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Table 1. Cont.

Notation Meaning Notation Meaning

HAART Highly Active Antiretroviral Therapy RHM Receding Horizon Technique
hEKF Hybrid Extended Kalman Filter RMPCT Robust Model Predictive Control Technology
HIV Human Immunodeficiency Virus RPI Robust Positively Invariant
ICU Intensive Care Unit
ICS Impulsive Control System RTI Reverse Transcriptase Inhibitors
IDCOM Identification and Command SISO Single-Input and Single-Output
iNMPC Impulsive Nonlinear Model Predictive Control SNAPL Neuroscience and Pain Lab
LDN Low-Dose Naltrexone STIs Structured Interruptions
LQR Linear Quadratic Regulator T1D Type 1 Diabetes
LR Long Range T2D Type 2 Diabetes
LRPC Long-Range Predictive Control TCI Target Controlled Infusion
LRQP Long-Range Quadratic Programming TIVA Total Intravenous Anesthesia
MIMO Multi-Input Multi-Output VL Viral Load

1.1. Background of MPC

The term MPC refers to a category of computer control methods that generate explicit
models of plant processes to effectively predict the concerned responses. It is an effec-
tive means of dealing with multivariable constrained control problems. MPC was first
developed to control the transients of dynamic systems with multiple inputs and outputs
subjected to constraints for chemical process applications.

Figure 1 depicts a few landmark articles marking the advancements in MPC research
over the past decades. One of the founders of modern industrial control strategies was
Kalman, who developed the linear quadratic regulator (LQR) in the early 1960s. The LQR
was designed to minimize the unconstrained objective functions composed of multiple
inputs and states. The LQR had powerful stabilising properties due to an infinite state
horizon. However, the LQR did not result in widespread control applications in the process
industries of that time. This was mostly due to the prevalent indifference of the industrial
process control personnel of that time towards optimal control strategies. Moreover, the
LQR did not have a suitable provision for constraints in its formulation and was not per-
ceived as being capable of handling real-world nonlinear systems. Consequently, the early
proponents of MPCs worked in isolation on sparse industrial applications [3]. A compara-
tive study of self-adaptive long-range predictive control (LRPC) methods keeping focus on
robustness with respect to unmodeled dynamics, parameter variations, process noise and
varying dead-time was presented by Keyser et al. in 1988 [4]. Garcia et al. [3] published a
survey article highlighting the design and implementations of linear quadratic MPC control
structures. Scattolini and Bittanti (1990) [5] provided insights into the proper selection
of the prediction horizon with regards to the impulse/plant step responses. Clarke and
Scattolini [6] showed that general linear plants could be stabilized by optimizing quadratic
functions over a costing horizon using constrained predictive control methodology. The
authors found that computation was more complex for finite-horizon methods, which
tended to be numerically sensitive. A summary of commercially existing MPC technology
was presented by Qin and Badgwell [7]. Bemporad and Morari [8] compiled a summary of
robustness in MPCs and suggested methods for constraint-handling, stability and perfor-
mance. Sandoz et al. [9] proposed techniques of quadratic programming (QP), long range
(LR) and long-range quadratic programming (LRQP) to effectively manage dynamic system
constraints and the related constraint violations. The authors employed QP and LRQP to
integrate output constraints and handle the input constraints, respectively. They also found
that LR performance was robust, computationally efficient and reliable. Grim et al. [10]
reported asymptotic instability in nonlinear systems due to the optimization algorithm
managing constraints in shorter horizons. Warren and Thomas [11] formulated an MPC
architecture that calculated closed-loop uncertainties of input constraints off-line to main-
tain steady-state input constraints, thus ensuring robust process outputs. Li et al. [12]
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found that set-point tracking of controllers could be improved by employing infinite con-
trol horizons. They also discovered that steady-state constraints lead to set point offsets
in controller responses. Other researchers reviewed robust MPC methodologies based
on model and disturbance uncertainties [8] and compared different predictive controller
performances [13].

Figure 1. MPC development milestones [6,13–18].

1.2. Evolution of MPC Algorithms

MPC technology is presently used across a range of industries, such as aerospace,
petrochemicals, automotive manufacturing, food processing, and many more. Figure 2
displays the evolution of the major industrial MPC algorithms since the 1960s. These
evolutionary MPC algorithms are discussed below.

1. Linear quadratic Gaussian (LQG): The linear quadratic gaussian (LQG) approach
determines appropriate control for a stochastic system that minimises a performance
metric. LQG helps to address some of the most difficult control problems in stochastic
systems. As a result, it can be viewed as the stochastic counterpart to the deterministic LQR
problem. In order to apply the LQG formulation, it is prudent to first construct a solution
to the deterministic LQR problem and then develop a Kalman filter to deal with the LQG
stochastic problem [14,19].

2. Identification and command (IDCOM): This differs from the previous approach
in that it analyses the plant’s impulse response model, which includes linear inputs or
internal variables. The model’s performance objective is quadratic with respect to the
input variables across a finite prediction horizon. A reference trajectory as well as input
and output restrictions are included to the formulation to characterise future plant output
behaviour. An iterative heuristic strategy (the polar opposite of identification) is used to
calculate the ideal inputs [15,20].

3. Dynamic matrix control (DMC): A linear step response model for the plant is
linked with a quadratic performance target across a finite prediction horizon in the DMC
control strategy. The plant’s future output behaviour is characterised by the plant’s attempt
to match the set point as closely as feasible in the future output behaviour. The least-squares
problem is used to determine which inputs are the most effective/significant [16,21].

4. Quadratic dynamic matrix control (QDMC)- The original IDCOM and DMC al-
gorithms were particularly effective in regulating non-limited multivariable processes.
Constraint handling, on the other hand, remained unpredictable. The Shell Oil corporation
solved this issue by applying a quadratic programming technique to achieve the DMC
technique using well-defined input/output constraints in QDMC [22,23].
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Figure 2. Industry-wide evolution of MPC algorithms.

5. IDCOM-M or hierarchical constraint (HIECON): The IDCOM-M algorithm, also
known as the hierarchical constraint (HIECON) algorithm, differs from previous algorithms
in that it employs two separate objective functions for determining outputs and inputs
with higher degrees of freedom. Prior to minimising an output objective function, a strict
set of input constraints is imposed. The inputs drive the outputs as close to the anticipated
value as possible at the coincidence point [24].

6. Setpoint multivariable control architecture (SMCA): Setpoint’s developers com-
bined identification, simulation, configuration, and control technologies to create the
setpoint multivariable control architecture (SMCA). This numerical solution engine auto-
matically accommodated a large number of ranking objectives and constraints by solving a
sequence of discrete steady-state goal optimizations.

7. Shell Multivariable Optimizing Controller (SMOC): In the late 1980s, engineers
at Shell Research in France created the Shell multivariable optimizing controller (SMOC),
presented as a bridge between state space and multivariable optimization approaches.
The engineers merged MPC’s constraint-handling capabilities with state-space methods’
feedback architecture to attain better control characteristics [25,26].

8. Tech mergers and acquisitions—DMC-plus (dynamic matrix control-plus) and
RMPCT (robust model predictive control technology): Increased competition among
MPC manufacturers, as well as mergers of numerous MPC companies, resulted in signifi-
cant changes in the industrial MPC ecosystem. Honeywell Hi-Spec Solutions was founded
in 1995 as a result of Honeywell’s acquisition of Profimatics, Inc. Eventually, Honeywell
launched the RMPCT product, which is based on Honeywell’s RMPC algorithm and Profi-
matics’ PCT controller. In a similar fashion, Setpoint Inc. and the DMC Corporation were
purchased by Aspen Technology Inc. in the first quarter of 1996. Thereafter, Aspen Tech-
nologies created the current DMC-plus product on the market by combining SMCA and
DMC technologies. In a continuation of tech mergers, Treiber Controls was acquired by
Aspen Technologies in 1998.

1.3. MPC Methodology

Expressed in its simplest form, the MPC predicts future output values based on current
input and output values, as well as the future controller action and state variables (Figure 3).
Every MPC is comprised of three interconnected elements: a process model, an objective
function that employs the receding horizon technique (RHM), and a control rule.
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Figure 3. Basic structure of MPC.

The model of the process describes the dynamics of the inputs and outputs as they oc-
cur during the process. An MPC can employ feed-forward, feed-backward and disturbance
models, among other techniques. The objective function is sometimes referred to as the
cost function in some circles. Specifically, MPC methodology aims to achieve the following
objectives [27]:

• Anticipate the outcome of a process over a future time horizon via the explicit applica-
tion of a system model;

• Calculate and optimizate the control sequence;
• Implement a receding horizon strategy in which the horizon is moved towards the

future at each step while applying the control sequence for that step.

The following steps (schematically depicted in Figure 4) broadly describe the general-
ized MPC tuning methodology followed to attain the above-listed objectives:

Step 1: In the first step, the initial process model is utilised to generate future outputs
y(t + k|t), k = 1, · · · , N (where N is the number of samples) at all time instants t within
the prediction horizon. Future predictions of the system states are calculated consider-
ing the previous system inputs and corresponding outputs, the current output (initial
condition) y(t), and the required control signals u(t + k|t) so that the desired output is
reached/maintained.

Step 2: A control sequence is computed to maximise a performance objective, which is
frequently updated to minimise the error between the reference trajectory and the expected
process output. Typically, the effort required to maintain control is incorporated in the
performance criterion.

Step 3: A single control signal u(t|t) is transmitted to the process at this point in the
process. After that, y(t + 1) is measured, and step 1 is repeated, with all sequences being
brought up to date at the end of that sampling period. This is accomplished by employing
the concept of a receding horizon, in which the prediction horizon is maintained at the
same level but is step-wise incremented by one sample interval u(t + 1|t + 1).

The receding horizon method (RHM) predicts the behaviour of a preset range or
horizon by using a mathematical formula. Consideration is given to the present and future
limitations, and calculations are made for all values occurring inside the horizon beginning
at time t. Those values are then forwarded to the controller, which allows all values greater
than t to be refused. The control law is a mathematical formula that is utilised by the
controller to determine the objective functions and the process model. The controller
monitors the value calculated for the horizon from the objective function and rejects all
values other than those occurring at the specified time t in the objective function. Thereafter,



Appl. Syst. Innov. 2022, 5, 118 7 of 30

a signal is sent to the controlled variables, and the entire procedure is repeated, with
new outputs calculated based on the newly introduced inputs, outputs, and restrictions.
Subsequently, the controller rejects all values with the exception of those at time t + 1. Such
repetitions/iterations are carried out until the end of the predetermined horizon has been
reached. An objective function and constraints are used in the process model optimization
process. Projected outputs are compared to the reference trajectories in order to reduce
deviations/mistakes. Updated outputs are sent to the process, and in this way, the entire
system process is repeated for each future output.

Figure 4. Generalized MPC tuning methodology.

1.4. Advantages and Limitations of MPC

The MPCs are now applicable to more dynamic processes instead of being restricted to
slower and more stable processes because of advancements in the computation technologies.
Aside from the fact that it handles constraints effectively, an MPC is also very easy to
modify and customise. An MPC makes it possible to place constraints on the output of
controlled processes (control variable) as well as on the control signals that are inputs to
the controlled processes (manipulated variables). Input restrictions can also take the form
of rate constraints, such as valves and other actuators with a limited range of slew rates.
Model predictive control is also extremely adaptable, and it may be applied in practically
any situation. An MPC is used to reduce the amount of error between the set-point and
the actual trajectory. It also outperforms conventional controllers when the process has
many constraints and/or nonlinear constraints. An MPC can also assist with optimization
objectives, since the MPC cost function minimization serves as an optimization tool as well.
Furthermore, an MPC is well suited for systems with dead time and slow dynamics since it
automatically accounts for dead time. The following are some of the reasons why MPCs
are being applied widely across various industries :

• Multi-variable control problems can be naturally handled by MPCs;
• Actuator limitations can be taken into account by MPCs;
• MPCs permit operations nearer to constraints, resulting in higher performance;
• Structural changes can be handled by MPCs;
• MPCs have sufficient capability for online calculations;
• Unstable processes and non-minimal phases can be handled by MPCs;
• MPCs can be easily tuned.

Despite the fact that there are numerous advantages to using MPCs, there are also a
few limitations. Although MPCs can be employed when there are constraints in the system,
the control rule is derived in a complex manner, and the difficulty of its derivation increases
with the number of constraints in the system. This kind of process control may result



Appl. Syst. Innov. 2022, 5, 118 8 of 30

in suboptimal optimization, which is undesirable. As a result of the software package’s
objective to complete the optimization process as quickly as possible, the MPC may be
forced to produce erroneous results. The final problem of the dynamic system modeling is
its instability, which is caused by its dependence on time. As a result, while utilising MPCs,
it may become difficult to maintain/ensure system stability.

2. MPC Implementation

MPC implementation demands current process data, its dynamic parameters, output
setpoint targets as well as specified tolerances to estimate the upcoming deviations in the
dependent variables [3,28]. An MPC corrects the parameters in accordance with the model
constraints for both the dependent and the independent variables. It implements changes
in independent variables for the current iteration before commencing calculations for the
next set of changes. This section covers major varieties of MPCs employed for different
applications followed by a note on the prominent software used in MPC implementation.

MPC models are intended to capture the behaviour of complex dynamical systems
with reasonable accuracy. Hence, complex MPC control architectures are seldom required
for basic systems for which the generic PID controllers prove to be sufficient. Setpoints
(for pressure, flow, temperature, and other variables) and the final control element in a
processing plant are generally independent parameters that the PID controller can ma-
nipulate (such as valves and dampers). On the other hand, changes in the independent
variables result in related changes in the dependent variables of an MPC-controlled system.
Disturbances are variables that are not controlled by the PID controller and cannot be
changed by it. Large time delays and higher-order dynamics are two of the most common
problems that PID controllers face when it comes to controlling dynamic characteristics.
The following subsections give details of the major MPC architectures used in industries.
Broadly, MPCs can be classified into two main categories: linear and nonlinear [29]. Other
classes of MPCs include explicit and various kinds of robust MPC designs.

2.1. Linear MPC

Most of the real-world processes are nonlinear by nature. However, for a limited
working range of values, they frequently resemble linear behaviour. Linear MPC tech-
niques include corrections of independent variables on the basis of the feedback received
regarding the mismatch between the predicted and actual process outputs. The influence of
changes in a large number of independent variables can be integrated in order to forecast
the response of the dependent variables in MPCs that are purely based on linear models.
The control problem is thus reduced to a series of quick and dependable linear matrix
algebra calculations. There are several approaches that can be used when linear models
are insufficiently precise to describe real-world nonlinearities. For instance, some process
variables can be corrected after generating the linear MPC model to account for the non-
linear system behaviors. On the other hand, nonlinear MPC models can be utilised to
effectively control such processes directly. Such nonlinear MPC models could be based on
energy and mass balance fundamentals, or they could be empirical relations based on the
information/data available (e.g., artificial neural networks). Moreover, a nonlinear model
can also be linearized to yield a linear MPC or a Kalman filter. Table 2 displays the basic
differences between the linear and nonlinear MPC configurations.

Table 2. Linear and Non Linear MPCs.

Linear MPC Nonlinear MPC

Uses linear model x = Ax + Bu Nonlinear model—x = f (x; u)
Quadratic cost function F = xTQx + uTRu Cost function can be nonquadratic F = (x; u)
Linear constraints Hx + Gu < 0 Nonlinear constraints h(x; u) < 0
Quadratic program Nonlinear program
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According to El-Gherwi et al. [30], following a dual-mode MPC approach can drasti-
cally reduce online calculations while maintaining performance comparable to the isolated
implementation of the same algorithm. By utilising information exchange among dual
controllers, the authors proposed an information-sharing-based parallel solution approach
to effectively solve complex optimization problems.

2.2. Nonlinear MPC

Nonlinear techniques are unavoidable in complex systems because linear model
predictive control applications do not always result in acceptable performance [31]. This is
one of the reasons why nonlinear model predictive control (NMPC) has received a lot of
attention in the last several decades, with many recent breakthroughs in both academia
and industry. The term NMPC refers to MPCs that employ a nonlinear dynamic model
and nonlinear constraints, resulting in increased complexity. Nonlinear model predictive
control (NMPC) uses nonlinear system models to estimate the dynamic state of the plant.
Nonlinear MPC, as with linear MPC, requires multiple iterations within the prescribed
prediction horizon to arrive at optimal control parameters. Unlike linear MPCs, the control
problems are not always convex in the case of nonlinear MPCs due to the way the nonlinear
MPC solves them [32,33]. The NMPC usually employs Newton-like optimization methods
to arrive at optimal solutions viz. direct collocation and direct single/multiple shooting.
The NMPC algorithms are generally designed on the basis of the inherent similarity of
the successive optimal control problems. The previously obtained optimal solution can
be utilised to efficiently initialise the Newton-type solution technique, saving significant
time in the computation process. As a result, path-following algorithms (also known as
“real-time iterations”) capitalise ever more on the similarity of subsequent problems. Thus,
such algorithms do not directly iterate towards the convergence of the given optimization
problem; instead, they iterate to solve recent problems before starting with the current
NMPC problem with a more effectively selected initialization [34].

NMPC models have been typically implemented in the industrial processes involving
slow sampling rates or distributed parameter systems. However, recent advancements
in computational algorithms as well as in controller hardware have made it possible
for large-scale implementations of NMPCs in high-sampling-rate applications such as
the automotive manufacturing processes, or even when the states are distributed over a
large space [35]. Recent applications of NMPC include optimal terrain path and obstacle
avoidance trajectory following in varied real-time aerospace applications [36,37].

2.3. Explicit MPC

In contrast to online MPCs, some systems benefit from explicit MPCs (eMPCs), which
allow for a more rapid evaluation of the control rule. In this method, the explicit MPC
parametric programming configuration is preceded by an offline pre-computation of the
optimization problem [38]. This offline pre-computed solution is represented by a piecewise
affine function (PWA). The eMPC controller selectively saves the coefficients of the piece-
wise affine function for the state spaces wherein the said function is constant. The eMPC
also saves the parametric coefficients of such state spaces for further processing.

Every state space region in a linear MPC is a geometrically convex polytope with
each of its faces having a respective individual coefficient. All such linear MPC face-
regions are firstly examined for their quantization accuracies [39]. The optimal control
action is decided by initially selecting the state space area representing the current state
and then evaluating PWA using the PWA coefficients that were previously saved for
all state spaces. Unlike an online MPC, the eMPC implementation does not require a
significant investment of computer resources for processes wherein the total number of
state spaces is small, making it particularly well suited for control systems with a high
dynamic range and speed [40]. However, in cases wherein the total number of control
regions is huge, especially when a greater number of system parameters are considered,
the eMPC demands much more memory for searching the current control region. In such
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cases, the eMPC invariably becomes computationally intensive. An explicit MPC involves
parametric programming that pre-computes solutions to the explicit control law expressed
as optimization problem(s) (Figure 5). Bacic et al. [41] explored the role of pre-computed
terminal sets in MPC interpolation. However, some researchers found that the prediction
and optimization cycles of an MPC over a receding horizon yielded more optimal solutions
as compared to the precomputed control regimes [42].

Figure 5. Explicit (pre-computed) MPC [43].

2.4. Robust MPC

MPC architectures can be specifically designed to ensure robust performances for set
bounded disturbances within the expected state constraints [44]. The following are some of
the most commonly used strategies for ensuring robust control performance:

• Min-max: The min/max MPC approach essentially converts a “min” optimization
problem into “min-max” optimization by decreasing the worst-case objective func-
tions and maximising them across all feasible points in the uncertainty set [45]. In this
formulation, optimization is performed with respect to all possible disturbance evolu-
tions. The min-max MPC has been proven to be the most effective for solving linear
robust control applications. However, it is also relatively computationally expensive.

• Constraint tightening: In this approach, the state constraints are widened by a cer-
tain amount to ensure that a trajectory is discovered regardless of the disturbance
evolution [46].

• Tube: The tube method employs a separate nominal system model and a feedback
controller for converging the active state to the nominal state as quickly as possible [47].
This MPC collects all possible state deviations due to disturbances in a robust positively
invariant (RPI) set, which are then used to determine the degree of separation of the
states from the set of constraints.

• Multi-stage: The multi-stage approach accommodates different control decisions at
every stage. It is non-conservative in nature due to the availability of measurement
information at each time step in the forecast as well as the fact that it can be used to
mitigate the effects of uncertainties. The inherent disadvantage of this strategy is that
the complexity of the control problem increases as the number of uncertainties and
the time between predictions increases [48,49].

• Tube-enhanced multi-stage: This approach combines the advantages of tube-based
and multi-stage MPC architectures to furnish more options for optimality versus sim-
plicity trade-offs. This method has been found to be quite useful in system forecasting
using various control and uncertainty principles [50,51].
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2.5. Other MPCs

• Decentralized and distributed MPC: Each controller in a decentralised and/or dis-
tributed control system simply monitors and regulates local outputs and inputs. De-
centralization has profound benefits for controller implementation and maintenance.
During maintenance, some functional aspects of the overall process are interrupted,
but the remainder of the components continue to function uninterrupted with lo-
cal controllers in a closed-loop, as against total shutdown in the case of centralised
control architectures. Similarly, redesigning a part of the process does not imply
complete remodeling of the entire controller architecture, as would happen in the case
of centralised control. Under decentralization, it is important to specify the applicable
conditions for which the local closed-loop controller laws are capable of keeping the
entire system stabilized. In the process industries, MPC techniques are generally
utilised to solve large-scale multivariable control problems. An MPC formulates the
control problem in the form of an optimization problem in which several (possibly
competing) goals and constraints (state- and control-related) can be specified. Due to
scalability and model maintenance issues, a centralised MPC is typically inadequate
for large-scale networked systems. In light of the above, it makes sense to envisage
decentralised model predictive control (DeMPC) and distributed model predictive
control (DMPC) algorithms, which involve compartmentalizing a big optimization ob-
jective into multiple smaller units that iterate independently (DeMPC) or cooperatively
(DMPC) to ultimately attain the overall system objective. The primary distinction
between “decentralised” and “distributed” is the way information is shared among
control regions. In DeMPC, local controllers make independent decisions. Prior con-
trol choices and measurements can only be provided before and after a decision is
made. Communication considerations such as network delays and packet loss have
no effect on the decision-making time for local control actions. Figure 6 depicts a
DeMPC architecture wherein five distinct control regions are controlled individually
by local MPC controllers. On the other hand, Figure 7 shows a corresponding DMPC
layout wherein candidate control decisions may be exchanged and iterated during the
decision-making process until local controllers agree on a stopping condition [52].

• Feedback and feedforward MPCs: Feedback correction is an inherent feature of
MPCs, along with rolling optimization and predictive modeling characteristics [18].
The combination of MPC and feedback linearization (FL) has been popular among
researchers for many years due to the ease of controllability of FL plants using linear
MPCs [53]. For instance, Parekh et al. [54] applied a state feedback linearization
(SFL)-enabled MPC to effectively control a pharmaceutical coolant temperature appli-
cation. However, some researchers [55] have supported MPC architectures inclusive
of feedback as well as feedforward control signals. This architecture overcomes the
inherent drawback of purely feedback control loops with regards to the detection of
system deviations after they have occurred. The feedforward and feedback loops act
together to eliminate all measured and unmeasured system disturbances (Figure 8).
Kayacan et al. [55] also proposed linear MPC architectures with feedback as well as
feedforward loops for multi-input and multi-output mobile robot systems. Sbarciog
et al. [56] designed cascaded linearized feedback controllers to control animal cell
concentrations and nutrients in a cultivation plant. Wang et al. [57] incorporated
a feedforward-feedback regulation regime to effectively control disturbances in a
multiple-effect falling film evaporator system. Zhao et al. [18] applied active feedback
correction in a trajectory-tracking controller for an unmanned vehicle to overcome
system interference and uncertainties. Table 3 furnishes a featured summary of the
above-discussed MPC variants.
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Figure 6. Decentralized MPC.

Table 3. Variations of MPC.

Class of MPC Features

Linear MPC [30] Corrects independent variables on the basis of the plant feedback
Nonlinear MPC [31] Employs nonlinear dynamic model and nonlinear constraints, resulting in increased

complexity
Explict MPC [38] Allows for a more rapid evaluation of the control rule
Robust MPC [45] Ensures viability and long-term stability
Decentralized and distributed MPC [52] Monitors and regulates local outputs and inputs
Feedback and feedforward MPC [18] Reduces contraction of the feasible solution region
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Figure 7. Distributed MPC.

Figure 8. Feedback and feedforward MPC [55].

2.6. MPC Softwares

This subsection gives a brief introduction to some of the important software used to
implement MPC architectures.
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• MATLAB: The model predictive control toolbox of Matlab includes application, func-
tion and Simulink blocks for designing and simulating linear and nonlinear model
predictive control (MPC) controllers [58]. This toolbox allows users to specify plant
model parameters, horizons, constraints and weights. Closed-loop simulations can
be used to assess controller performance. Controller weights and constraints can
be changed during runtime to update output behaviour. In addition to deployable
solvers, control designers can employ a custom optimizer from the toolbox. Nonlinear,
gain-scheduled and adaptive MPCs can be used to control nonlinear plants. For
applications with high sample rates, this toolbox can generate explicit MPCs from
regular controllers to approximate feasible solutions.

• Oravec’s MUP: This software uses the MATLAB/Simulink toolbox to implement a
robust MPC in the LMI (linear matrix inequalities) framework online [59]. The MUP
toolbox is a practical and user-friendly solution for MPC control engineering. It is
also an excellent choice for educational purposes. The MUP package is provided “as
is,” with no warranties of any kind. YALMIP (yet another LMI parser and SeDuMi
(self dual minimization)) are the required MUP dependencies, with Mosek as the
recommended solver. These are not included in the MUP toolbox.

• do-MPC: do-MPC is an open-source toolbox used for moving horizon and parameter
estimation to develop robust multi-stage MPC architectures. do-MPC includes special-
ized tools to deal with time discretization and system uncertainties. Its modular layout
easily accommodates different combinations of control, estimation and simulation
components in seamless integration for various applications. do-MPC is widely used
for nonlinear system modeling, estimation and simulations. It supports differential
algebraic equations as well [60].

Table 4 lists a summary representation of the above-discussed commercial MPC
softwares, including a brief mention of their respective owners/creators, methodologies,
model types, tuning and applications.

Table 4. MPC Commercial Softwares.

Software MATLAB MUP do-MPC

Year 2004 2012 2017

Developed/created by Mathworks Bakosov’a, M. and Oravec, J S. Lucia, A. Tatulea-Codrean, C.
Schoppmeyer, and S. Engell

Methodology _
MATLAB/Simulink toolbox
for online robust MPC design
in LMI-framework

Comprehensive open-source
toolbox for robust model predictive
control (MPC) and moving horizon
estimation (MHE)

Model type Continuous and discrete
model Linear matrix inequalities Differential algebraic equations

(DAE)

Approach
Calculates the sequence of
control actions based on
current state of the plant

Optimally and robustly
stabilizes state-feedback
control law

Efficient formulation and solution
of control and estimation problems
for nonlinear systems

Tuning Prediction, control horizon,
constraints _ Horizon state and parameter

estimation

Usage

Design of implicit, explicit,
adaptive, and gain-scheduled
MPC. For nonlinear problems,
single and multi-stage
nonlinear MPCs can be
implemented

Practical and user-friendly
solution for MPC control
engineering; also an excellent
choice for educational
purposes.

Contains simulation, estimation
and control components that can be
easily extended and combined to fit
many different applications
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3. MPC in Biomedical Applications

Over the last several decades, control and system identification techniques have been
applied in biological and biotechnological systems. As interest in the field of disease control
grew in the 1960s–70s, researchers had a strong desire to develop mathematical frameworks
for supporting medical operations and developing novel healing protocols [1]. Although
control systems have been intertwined with medical applications for decades, their impact
on medical devices and applications became apparent in the literature only recently [61].
Nowadays, ever more researchers are combining the principles of biomedical control
engineering with the insights of molecular life sciences to solve modern problems through
the measurement and modelling of biological systems. These researchers are developing
biological-based/inspired technologies that will be useful in a variety of different industries,
including manufacturing, defence, agriculture, and environmental and human health. From
the point of view of the variety of issues being addressed and related real-time applications,
the field of biological systems can still be considered to be in its infancy.

Hence, there is a vast scope to develop closed-loop controls for biomedical systems
in a way that they can be translated into workable and scalable technologies. It is still a
challenge in the design of control and sensor systems to translate meaningful clinical health
results of the patient body into quantitative control parameters. In this scenario, the MPC’s
receding horizon control concepts are particularly suited for effective medication delivery
control. Hence, MPCs are being used in medical applications, as these controllers have
been useful in overcoming signal disturbances and generating robust performances [1,62].
The latest advances in MPC designs ensure robust and offset-free control definitions to
address inherent vulnerabilities in the system models. The following subsections present
MPC biomedical applications in therapies addressing type 1 diabetes (including artificial
pancreas), anaesthesia, cancer (including hyperthermia and oncolytic viral treatments),
fibromyalgia, and HIV.

3.1. Type-1 Diabetes

The blood glucose level (BGL) of a healthy person fluctuates within a healthy range of
70–110 mg/dL. The glucose-regulating process in the body is comprised of two regulating
inputs, glucagon and insulin, which are used to control blood glucose output into the blood
stream. BGL is reduced by insulin and increased by glucagon. Type 2 diabetes (T2D) and
type 1 diabetes (T1D) are both caused by the failure of the pancreas to release insulin, either
partially or completely. T1D is the most frequent of the four types of diabetes, and it is
primarily caused by pancreatic dysfunction [63]. Long-term anxiety and stress, as well
as a lack of physical activity, contribute to the development of type 1 diabetes. In these
patients, long-term hyperglycaemia (deviation from the normal BGL to a higher value)
leads to multiple complications, such as cardiovascular disease, kidney failure, neuropathy,
and retinopathy. On the other hand, hypoglycaemia (deviation from the normal BGL to
a lower value) causes complications such as tachycardia and nausea. Even coma (at BGL
of 50–70 mg/dL) is a likely complication of disrupted BGL regulation [64–66]. Insulin
injections (subcutaneous, intravenous, or intraperitoneal) are recommended as common
therapy for pancreatic cell death in non-automated clinical procedures [65].

BGL regulation is a tough control task in T1D patients, complicated by severe non-
linearities, complex dynamics and unexpected disruptions. Control algorithms for blood
glucose control in type 1 diabetes patients should be capable of successfully dealing with
fluctuations in everyday living. Furthermore, careful consideration must be given to the
design of the controller in order to deliver insulin safely and avoid hypoglycemia. Hypo-
glycemia can arise as a result of fasting or excessive physical exercise. Overeating or being
exposed to stressful situations contribute towards hyperglycemia. In general, physicians
determine exogenous insulin dosage for a patient through an experimental procedure based
on measured blood glucose levels. This procedure can be automated by designing a closed-
loop automatic BGL control framework that determines the amount of applicable injectable
insulin, taking into account various T1D condition parameters. Several researchers have
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attempted to create dynamic models characterising the human blood glucose relationship
in recent decades. Nath et al. [66] presented an overview of the major glucose-insulin mod-
els developed for type 1 diabetes. The well-known Bergman minimal model (BMM) has
been reported to be the most preferred among BGL control researchers [67,68]. There are
many options for dealing with type 1 diabetes when it comes to control methods. Herein,
proportional–integral–derivative (PID) control is the most prevalent traditional control
system. For BGL regulation, intelligent techniques such as artificial neural networks and
metaheuristic algorithms [69] are frequently used. The backstepping technique and robust
H control [70,71] have also been used in some studies [72,73].

Among all blood glucose control approaches, MPC is one of the most well-known
and widely applied methods. MPC is an effective control algorithm for BGL regulation
since it can readily combine the dynamics of glucose–insulin, meal information and insulin
injection constraints. MPC is one of the most suited approaches for designing control
systems that are subjected to a variety of restrictions, since constraints are intrinsically
incorporated into the control design procedure [74]. Several studies have described MPC-
based blood glucose regulation using both linear [75] and nonlinear techniques [76]. The
nonlinear model predictive control (NMPC) technique is one of the most effective methods
of dealing with disturbances in the modelling of a T1D patient and reaching/maintaining
the ideal blood glucose level. An appropriate insulin pattern is generated using the NMPC
algorithm in conjunction with essential injection restrictions as well as hyperglycemia and
hypoglycemia constraints. The algorithm’s goal is to minimise a quadratic function of blood
glucose deviation from the normal range and insulin dosage. It has been demonstrated
that the performance of the NMPC controller is relatively robust against random minor
disturbances, such as exercise, stress and fatigue, among other conditions [63].

Artificial Pancreas

MPC is also used to operate artificial pancreas (AP) devices, which automatically
deliver the appropriate amount of insulin dosage to type 1 diabetes patients in order to
keep their blood glucose levels within acceptable limits [77,78]. Inside an AP, a control
algorithm determines the appropriate dosage under a variety of different daily living
conditions and for a variety of patient populations. Although linear MPC models yield
computationally efficient control algorithms, such generalized models prove insufficient
for effective control because physiological variables vary greatly between individuals and
also dramatically within individuals over time. Customized and recursive identification
algorithms can be used to overcome this limitation and better characterise the time-varying
nonlinear dynamics of AP-related biological processes [79].

A study [79] presented a new adaptive MPC approach for modeling complex biological
systems characterized by transient dynamics. This approach firstly involved the recursive
system identification of metabolic process parameters associated with diabetes. Thereafter,
the identified system model was employed to develop an adaptive MPC algorithm to
control insulin delivery in the blood. Glucose levels were monitored using a feature
extraction protocol in order to quickly react to deviations from the target setpoint caused by
metabolic events. Subsequently, the constraints of the optimization problem were updated
to negotiate between the controller’s aggressiveness and robustness in order to recommend
the appropriate amount of insulin to be delivered.

3.2. Anaesthesia

Anaesthesia is widely employed in various applications, particularly in the medical
field, including in operations requiring incisions, dental surgeries and intensive care.
The fundamental goal of anaesthesia is to provide a painless experience to a patient
undergoing surgery by putting him or her into an unconscious condition. The entire
functional scenario of anaesthesia can be divided into three temporal phases: induction,
maintenance and emergence. The opioid drug propofol is commonly used in conjunction
with other fast-acting opioids during the induction of general anaesthesia. An under-dosage
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of anaesthetic medicines might result in the patient being aware of the operating situation
or insufficient analgesia administration. On the other hand, a patient receiving more
medication than necessary can also face detrimental effects. Therefore, the major concern
in anaesthesia administration is to maintain the optimum level of sedation during and
after induction, which is one of the most difficult tasks in the medical field. Complications
may arise following surgery as a result of post-operative pain medication or due to the
administration of insufficient intra-operative anaesthetics. Considering the large number
of individuals who undergo surgeries every day around the globe, automated regulation
of total intravenous anaesthesia (TIVA) is of paramount importance. A higher clinical
workload, the wide variety of anaesthesia infusion practices to cater to large inter-patient
variability (correlated with doctors’ expertise) and the repeated use of a constant drug
infusion rate (slightly over-dosing) are pertinent issues that need to be addressed. Recently,
the pandemic outbreak of COVID-19 brought to light specific dangers such as acute cardiac
damage and arrhythmia associated with infected patients that required special attention
during anaesthesia [80].

The solution to the difficulties associated with anaesthesia is three-pronged: (i) robust-
ness to disturbances (such as noise in the measured variables and nonreceptive stimuli);
(ii) preventing overdosage by the minimization of the control effort; and (iii) dosage man-
agement to control pharmacokinetic and pharmacodynamic drug interactions. MPC is a
proven methodology that can be used to deliver such multifaceted solution approaches.
A wide range of hypnotic and analgesic medications, such as propofol and remifentanil,
are suitable anaesthetic actuators. These medications can be delivered through computer-
controlled automated perfusion syringes, which are suitable for intravenous anaesthesia
and pain relief. There are several indicators available to measure the depth of anaesthesia,
including the BIS index, EEG signal entropy measures, and auditory evoked potentials [81].
In [81], researchers designed a control loop based on an in situ model and used it for the
delivery of an opioid analgesic (remifentanil) and an anaesthetic (propofol). The authors
simulated the patients’ bio-responses (in situ), such as heart rate, arterial pressure and
bispectral index, using a pharmacokinetic-dynamic model. This methodology allowed for
predicting the bio-responses of the patients as would occur in a real-life scenario. The au-
thors’ simulation of the induction phase of anaesthesia was successful in terms of obtaining
a rapid and risk-free response from the patient. This was accomplished by designating the
arterial pressure and the bispectral index as controlled variables, as well as by imposing
appropriate bounds on the plasma concentration and the controlled variables. Overdosing
and underdosing are both potentially dangerous outcomes during intravenous anaesthesia,
so it is important to find the right pace of delivering anaesthetic medicines to the pa-
tients. The connection between the dose of anaesthetic given to a patient and the hypnotic
effects it has on that patient has been studied by researchers using a pharmacokinetic–
pharmacodynamic (PK/PD) model built specifically for this purpose [82]. In this study [82],
the authors designed a linear MPC to control intravenous anaesthesia based on a single
input (rate of propofol infusion) and single output (bispectral index). The effectiveness
of the developed LMPC in tracking the BIS reference, while also accommodating for re-
strictions, disturbances, and noise in the measured variables, was investigated. Taking into
account closed-loop time delays, the performance of this method in comparison to that of a
traditional proportional–integral -derivative (PID) controller was evaluated. The results of
the simulations demonstrated that the suggested linear MPC is superior to the standard
PID controller in such applications.

Figure 9 shows an NMPC control loop architecture for anaesthetic applications. This
NMPC attains and maintains the desired level of patient bispectral index (BIS). Anaesthetic
dosage is administered to the patient by the control loop as follows. Initially, the state
observer estimates the future state vector of the system (level of anaesthesia of the patient).
The NMPC controller takes this state vector estimate as an input and computes the optimal
anaesthetic dosage to be administered to the patient. In the subsequent time steps, the
state observer advances the state vector estimate to the next horizon, which is followed
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by the controller to compute and deliver optimal dosages to the patient at those discrete
time instants [83]. Researchers [17] also attempted closed-loop modeling and control of
volatile anaesthesia through a traditional online MPC as well as a multi-parametric MPC. A
Kalman filter was employed to determine the dynamic status of anaesthesia on the basis of
end-tidal concentrations measured by an online estimator integrated in the closed loop. The
authors demonstrated simulations for anaesthetic induction as well as disturbances arising
during the course of anaesthesia, along with online parameter estimation of an explicit
MPC controller architecture [17]. In a similar work, Patel et al. [84] attempted automated
anaesthesia using the BIS signal obtained from the electroencephalogram (EEG) to control
the infusion of the hypnotic drug propofol during surgery in order to prevent adverse
effects and reduce post-operative recovery duration. The authors found that the low quality
of the EEG data caused interruptions in the BIS signals generated during the operation.
Hence, they proposed a fault-tolerant MPC architecture to prevent faulty propofol dosages
leading to intraoperative patient arousal due to breaks in the BIS signals received by the
MPC.

Figure 9. NMPC closed-loop structure in anaesthesia.

A patient undergoing ambulatory surgery must obtain the appropriate dose of anaes-
thetic medicines to reduce the likelihood of adverse responses after release. In order to
create more effective anaesthesia, a hypnotic control system was developed by Sawaguchi
et al. [85]. The authors measured EEG-derived BIS as an indicator of the patient’s hypnotic
state. Their system primarily consisted of three components: (1) an MPC-based feedback
controller with a time-delay-handling functionality; (2) a function to estimate MPC pa-
rameters; and (3) a function to prevent intraoperative risks such as the overinfusion of
the anaesthetic drug and/or patient agitation due to underdosage. Computer-controlled
infusion systems play a vital role in maintaining the positive balance in such situations,
wherein medicine and engineering work together to achieve the optimal results [86]. Med-
ical specialists can concentrate on high-value jobs, while computer-based drug delivery
manages regular tasks such as anaesthesia and heamodynamic maintenance. Patient safety
is the driving force behind the wider implementation of automation in clinical anaesthetic
delivery. The following are some of the multifaceted advantages of automated anaesthetic
delivery systems:

• Optimization of drug dose regimen;
• Better efficiency as compared to manual control;
• Chances of unintended under- or over-dosing are reduced;
• Clinicians can receive early alerts in case a crucial event occurs with the patient,

allowing the clinician to intervene as soon as possible;
• Decision support is provided to the anaesthesiologist in the form of a recommended

optimal drug infusion determined using context-aware methods;
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• Reduction of the workload of clinicians while increasing the effectiveness and vigilance
of anesthesiologists. This allows the physician to devote more attention to decisions
that demand human expertise;

• Effectiveness in terms of cost, including the avoidance of repetitive treatment and
saving costs by achieving accurately targeted drug delivery.

Cyber Physical Human Systems

Figure 10 depicts a schematic representation of a cyber-physical-human system in
healthcare. For the anaesthesiologist, an intelligent control architecture can be designed
to avoid repetitive tasks, such as constantly monitoring the state of the patient or adher-
ing to well-defined international standards. There are also new issues arising from the
COVID-19 pandemic, such as sudden cardiac arrest and arrhythmias, which need to be
addressed [87]. With the smart controllers handling routine anaesthesia tasks with satisfac-
tory effectiveness, medical personnel have more time to attend to other vital obligations.
In this way, the automation of general sedation regulation may be realised in operation
theatres and intensive care units (ICU) alike. While administering anaesthesia, the patient’s
condition is constantly monitored, and the dosage of drug is adjusted accordingly. When
it comes to administering medication by computer, open-loop target-controlled infusion
systems (TCI) are used as a first step. Using pharmacokinetics principles, TCIs keep the
anaesthetic infusion within predefined limits [88]. To be extra certain, the anaesthesiologist
is made a part of the closed-loop control by setting the initial dosage set point targets and
then manipulating them in accordance with the patient’s state of anaesthesia and health
parameters. Patients’ responses to medications are predicted by doctors based on data from
monitoring equipment, clinical judgement and prior experience. Closed-loop automated
control systems, on the other hand, automatically adjust drug infusion rates based on
measurements of anaesthesia depth taken from the patient directly. The controller receives
constant feedback from the patient’s measured bio-responses. This upgrades the role of
anaesthesiologists to a higher level, such as the monitoring of patient-specific physiological
parameters and/or responding to emergency situations for special drug delivery cases.

NMB

Anesthesia Safety 
Standards

Patient’s state 
assessment

Affiliated Knowledge

Conditions unique to
COVID-19

E
X
T
R
A 

W
O
R
K

Overworked Anesthesiologist

Anesthesiologist concentrating on complex task

Figure 10. The potential of a cyber-physical-human system (CPHS) in anaesthesia [86].
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Figure 11 presents an anaesthesia process schematic including manual as well as com-
puterised closed-loop control and optimization. The automated closed-loop control system
monitors the effect of the drug via measured bio-parameters (multi-outputs) of the patient
and regulates multiple drug infusions (multi-inputs). By actively operating on patients
as needed in order to keep medication delivery systems running well, anaesthesiologists
have a direct impact on the system. Patient dynamics, surgeon’s actions, anaesthetist
actions, syringe pump outputs, sensor data collection, and syringe pump actuators are all
components of the anaesthesia system that can be modelled in a control loop. Using these
components, the entire process can be simulated, allowing surgeons and anaesthesiologists
to better understand and control their patients’ medical hypnosis. Clinical expertise and
automatic closed-loop control and optimization can be interlinked to ensure optimal drug
delivery to the patients.

Figure 11. Closed-loop scheme for anesthesia automation in clinical practice [86].

3.3. Fibromyalgia

Fibromyalgia is a disorder characterized by widespread musculoskeletal pain accom-
panied by fatigue, bowel abnormalities, sleep irregularities, anxiety, mood swings and
memory issues [89,90]. There seem to be no specific diagnostic tests to confirm fibromyalgia.
Since the causes of fibromyalgia are yet to be precisely determined, it is difficult to process
a specific treatment for the condition [91]. Naltrexone is one of the most tried and effective
medications against fibromyalgia. This drug (in low dosages) acts in a neuroprotective
capacity and is a tolerable and cost-effective solution [92–94]. Moreover, researchers have
explored improvised techniques to deal with such chronic relapsing conditions [95]. In
particular, adaptive interventions have been found to exhibit profound efficacy in these
treatments. In adaptive interventions, the treatment dosage is modified in accordance with
the current condition of the patient. In this regard, control system engineering helps to
obtain optimal dosage solutions to maximise the efficacy of such strategies [96–99]. This
approach also minimizes waste and overcomes the limitations of conventional therapies.
Conventional treatments tend to be based on standard protocols devised for standard
responses, which may not account for individual patient characteristics.

Hence, investigators implemented the MPC-led adaptive intervention-based treatment
of fibromyalgia using naltrexone dosages [93,100]. Their studies included daily patient
reports consisting of self-assessment of treatment outcomes. This self-assessment served
as the framework for applying the MPC architecture to naltrexone dosage control. It
consisted of overall feedback of the current level of fibromyalgia symptoms, followed
by specific questions related to fatigue, stress, sadness, mood, pain, sleep and gastric
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conditions. The study modeled these symptoms as system outputs. The drug dosage
and the placebo were considered as the system inputs. In this way, the problem was
identified from a systems and controls perspective, and system identification techniques
were used to develop models from regular self-assessment reports of the participants.
These dynamical systems models were used as the basis for applying model predictive
algorithms to determine the dosage, taking the external disturbances into consideration.
Hybrid model predictive control (HMPC) techniques were also explored due to the discrete
nature of the dosage. Additionally, a multiple-degrees-of-freedom technique was used
to tune the controller instead of conventional weight matrix tuning. This methodology
enabled the independent alteration of set-point tracking as well as measured/unmeasured
disturbance rejections in the closed-loop system [101,102].

3.4. HIV

Pharmaceutical treatment for HIV infection increases the patient’s life expectancy
and enhances the patient’s overall quality of life. Research studies have explored therapy
regimens that stimulate HIV-specific immune responses in order to avoid side effects
and drug resistance associated with long-term drug administration [103]. With current
medicines, it is almost impossible to completely eradicate the virus from the body because
of the presence of hidden reservoirs of the virus that have a longer half-life (from months
to years). For instance, a decrease in specific cytotoxic T lymphocytes (CTLs) has been
linked to HIV progression; however, patients with slow disease progression exhibit high
CTLs as compared to those with rapid disease progression. Reverse transcriptase and
protease inhibitors are two types of highly active antiretroviral medications that restrict
the formation of virions by blocking the creation of viral protein precursors and protease
inhibitors. However, the effectiveness of such highly active antiretroviral therapy (HAART)
has been found to be restricted. To mitigate the severe side effects and development of drug
resistance associated with long-term medication administration, recent research efforts
have focussed on designing therapy regimens that can increase HIV-specific immune
responses [103,104]. Structured treatment interruptions (STIs) have been shown to be
beneficial in enhancing HIV immunity in a number of clinical investigations, particularly
when conducted immediately after infection [105]. STIs have been found in a number of
studies to increase immunological responses to the HIV virus. STD (sexually transmitted
disease) treatment is helpful when begun within the first few weeks of HIV infection but
tends to be ineffective when begun later in infection [106–111]. The qualitative influence
of medication side effects on HIV dynamics has also been detailed in a number of clinical
investigations, establishing the significance of feedback control systems in such cases.

MPCs have emerged as one of the best solutions for the optimal control of STI among
different control strategies, owing to their inherent resistance to noise, uncertainty in their
model shape and their capacity to successfully deal with dynamic constraints. Appropriate
model selection is of paramount importance in the development of an STI MPC application.
Researchers have chosen the Wodarz and Nowak models [105,112,113] for this purpose
since these models most closely resemble the natural evolution of HIV as hypothesised
in [114]. Investigators have also proposed that two MPC algorithms be used to calculate
the “optimal” doses of PI and RTI medications over a common prediction horizon. In
this methodology, the simulation results of both algorithms are reviewed and compared
to one another [110]. In this approach, all state variables were tested weekly, but only
CD4+ T concentration and VL (virus level in the plasma) were measured once a month.
CD4+ T helper cells are white blood cells that are an essential part of the human immune
system. They are often referred to as CD4 cells, T-helper cells or T4 cells. Their main role
is to send signals to other types of immune cells, including CD8 killer cells, which then
destroy the infectious particle. Rather than employing a correction strategy in the presence
of model flaws, the above-mentioned method maintained control variables within their
prescribed ranges by augmenting the system states over successive iterations. As per [110],
the HIV therapy can be adjusted using the MPC algorithm to produce the “safe” stable
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state that exists even when no therapy is applied. Hence, the immune system can achieve
a stable state even in the absence of therapy. However, the internal model is unable to
reach a perfect stable state because it is unable to zero the last state-variable derivative. The
traditional technique of calculating stage costs has been carried out in terms of departures
from a steady-state; however, that method is not relevant in this case. Another feature of
the model presented in this research is that it does not allow for the discontinuation of
therapy permanently. This is supported by the fact that there is currently no definitive cure
for HIV. In conclusion, the stage cost of the model presented by [110] is linear for drug
uptake and quadratic for state variation when there are no output constraints considered.
In order to incorporate the impact of medication uptake and output constraint breaches, a
linear stage cost approach was employed in this study.

3.5. Cancer
3.5.1. Oncolytic Viral Therapy

Oncolytic viral therapy (OVT) is an emerging cancer treatment in which genetically
modified viruses are employed to cure cancer in such a way that the healthy cells are
not harmed or infected in any way [115,116]. To infect and kill cancer cells, the OVT
either induces immunological responses against them or produces lysis, which involves
rupturing cancer cell membranes by extensively replicating the oncolytic virus within
them. Virus particles that are released as a result of OVT are disseminated to spread the
infection to tumour cells that are vulnerable [115–117]. Considering its numerous positive
effects on tumour reduction, OVT is widely recognised as an acceptable cancer therapy
that can be safely applied in association with other treatments, such as surgeries. OVT
treatment can also be applied on its own without any associated therapies to shrink tumors.
However, a number of technical, biochemical, immunological, and clinical factors impede
OVT performance. The process of selecting the most effective oncolytic virus for a certain
malignancy, determining and controlling the virus dosage supplied to the cancer cells
as well as developing suitable protocols is time-consuming and challenging. Progress in
virus engineering has benefited OVT by furnishing newer variants of genetically modified
oncolytic viruses to act against target tumor cells while remaining neutral against healthy
cells [115,116]. Researchers have explored various modifications to boost virus survivability
when confronted with the immune system. For instance, a study [116] reported that the
ADPEGHER virus was generated by coating a naked adenovirus with a non-immunogenic
polymer such as polyethylene glycol (PEG), together with the antibody herceptin. In
comparison to the earlier version, this modified adenovirus improved infection, tumour
regression, and caused no harm to healthy cells.

It is crucial to maximise the infectivity and anti-tumor activity of the oncolytic viruses.
In order to reach this goal, OVT effectiveness enhancement has been investigated using
mathematical modelling. Model-based investigations have revealed mechanistic insights
into the multifarious cancer cell dynamics and oncolytic virus actions within the host,
both in the presence and absence of immune responses [118–120]. Researchers [118] also
studied the effects of OVT in mice using mathematical modeling. Their model provided an
excellent fit to the temporal data of tumour given in a previous study [116]. A viable in
silico platform and exact biological parameters were reported by other investigators [118],
which can be used to further investigate potential OVT protocols.

Recent developments in the modelling of OVT dynamics and viral genetic engineering
made it possible to estimate the ideal viral dosages that should be provided in order
to maximise the efficacy of the therapeutic interventions. However, OVT has not been
substantially investigated in the context of control theory. Particularly in the context of
model predictive control (MPC), the ideal sequence of inputs is determined by minimising a
cost function over the course of a prediction horizon while also meeting system limitations.
The virus input and the positivity of states both serve as restrictions in OVT. Moreover,
because the input is of limited duration in terms of sampling time, the OVT therapy may
be considered as a form of impulsive control system (ICS) [121]. As a result, a continuous
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or discrete virus injection estimate tends to be less accurate than a corresponding impulsive
representation [121,122]. Impulsive control solutions have been developed for a variety of
biomedical applications such as influenza [123,124], type 1 diabetes therapy [125], HIV [126]
and many more. There have been several studies on ICS in the MPC environments [127]. In
order to compensate for the effects of plant-model mismatch, researchers [128] created an
impulsive offset-free MPC that was not dependent on the plant model. Figure 12 depicts a
nonlinear MPC framework incroporating an impulsive control system for cancer tumor
eradication using oncolytic virses.

Similar research [129] has explored such nonlinear modelling for real-time OVT esti-
mation and control. This model represented virus injection in the form of an impulse. In
order to correlate with the sampling time for tumour volume measurements, this impulse
was initially generated every two days. The subject’s state was estimated by feeding this
discrete measurement into a hybrid extended Kalman filter (hEKF). This was followed
by an impulsive nonlinear MPC (iNMPC) design to determine the optimal virus dosage
for minimizing the number of tumour cells. The findings of this impulsive nonlinear
MPC approach were compared to those obtained from prior studies [116,121]. To calculate
optimal viral doses, the suggested system employed a mathematical model that produced
better and faster tumour regression than previous protocols. This model’s effectiveness
was also examined under different system uncertainties, such as dynamic biological param-
eters. This technique provided individualised therapy that was resilient to parameter and
modelling uncertainties.

The purpose of oncolytic virus treatment is to treat cancer by using viruses as therapeu-
tic agents. There are several clinical difficulties that must be addressed before this potential
therapy may be used, including dose issues, toxicity, and unknown tumour dynamics.
In order to increase the knowledge of treatment outcomes and build better therapeutics,
mathematical models can be employed to characterise the interactions between oncolytic
viruses and cancer cells. As a result of the pressing need to enhance clinical results, a non-
linear estimate and control method based on impulsive control theory has been presented
by the studies (discussed above) for determining the appropriate/optimal doses of viral
injections.

MPC

Total number of tumor

cells in the therapeutic 

target (T)

Virus Particle 

(VP)
Tumor size

Virus Injection Subject’s Tumor

Caliper and Converter

Personalized 

dosage of Virus

T measurement (Tmed )

Figure 12. Tumor eradication by the employment of oncolytic viruses in conjunction with an impul-
sive nonlinear estimating and predictive control strategy.

3.5.2. Hyperthermia Therapy

Mild hyperthermia is a non-toxic therapy process for the treatment of cancer cells.
The process involves heating specific targeted tissues of the body, usually consisting of
the surroundings of the tumor cells, to temperatures of 39 to 45 degree Celsius for up
to 90 min. The rest of the patient body is kept at the normal functioning temperature.
Various research trials have established hyperthermia as an effective cancer therapy [130].
For instance, hyperthermal therapy displayed a complete response in cervical cancer-
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diagnosed human subjects under randomized Phase III trials [131]. In fact, the results
of these trials showed an approximately double complete-response rate in comparison
to that of radiation therapy. Hyperthermia therapy has proven effective in attaining
higher control of metastatic or recurrent malignant melanoma [132] and other tumors
as well [133]. Hyperthermic treatment involves the temporal cumulative application of
elevated temperatures on the target tissues. In this therapy, the relationship between
time and temperatures is established using the relationship given by Arrhenius [134]. In-
treatment temperatures are typically monitored using catheterized point-wise temperature
sensors placed at certain discrete points of/around the tumor [135,136]. Non-invasive
magnetic resonance temperature measurements are employed to obtain a more detailed
spatial temperature distribution [13,137].

However, extended hyperthermic treatments cause patient discomfort, leading to non-
sustained temperature levels. Moreover, during these treatments, maintaining the desired
thermal dose is challenging due to unknown and altering body fluid rates and other various
factors not taken into consideration. One of the solutions to these issues is to apply higher
temperature (about 57 degree Celsius) for a shorter duration [138–141]. Such high-power,
short-duration therapies include high-temperature hyperthermia, coagulation necrosis and
thermal ablation therapy. Magnetic resonance-guided high-intensity focused ultrasound
(MR- HIFU) is one of the most prominent technologies deployed for such treatments.
Appropriate feedback controllers are needed to maintain the desired thermal distribution
over the duration of the therapy despite unknown disturbances and plant-model mismatch.
Therefore, MR-HIFU implementations include feedback controller-assisted temperature
control schemes. These control schemes typically include binary strategies to regulate the
sonic intensities and radiation durations using PID-based models. The major drawbacks
associated with these controllers are their default constraints and incapacity to consider the
future thermal behavior of the patient body. Hence, proportional, multipoint adaptive and
linear quadratic regulator control systems have also been used for simulating temperature
control during hyperthermia treatments [142]. However, these control systems are typically
designed around standard hyperthermia treatments. In a real-life scenario, a tissue at a high
temperature continues to acquire thermal dosage even after the radiation is switched off.
This indicates an integral relationship between temperature and dose. Hence, the control
mechanism should consider predicting future temperature values to prevent overdose.

In this regard, MPCs can provide optimum control in hyperthermal treatments. Re-
searchers have suggested MPCs as a superior scheme to control thermal dose parameters
while considering multiple heating locations and intensities simultaneously [130]. The
contributing variables make it difficult to sustain a specified temperature in the spatial
distribution of the target tissue. Hence, the solution to the problem is to reduce the number
of control parameters using an MPC. Investigators [142] developed a model-based thermal
dose controller for hyperthermia treatment explicitly based on a dynamic patient model
that predicted the future thermal dosage. This model also computed optimum corrective
actions to minimize output errors and control costs. Precise temperature control in the
target tissue is the major factor affecting the quality of treatment in the case of local hy-
perthermia. Researchers [143] have explored an MPC algorithm providing voxel-level
temperature control in MR-HIFU hyperthermal treatment. In this method, the system state
variables, i.e., voxel temperatures, were measured at all sampling instants. Appropriate
control actions were determined for the subsequent instants based on the system state
variables of the previous instant. These control actions were aimed to minimize deviations
from the desired temperatures of the target region voxels. More investigations are needed
to further improve the efficacy of MPC-led automated hyperthermia therapies.

4. Conclusions and Future Scope

The present study presents a brief review of published research reporting MPC-led
therapeutic automation in some biomedical conditions such as type 1 diabetes (including
artificial pancreas), anaesthesia, fibromyalgia, HIV, and cancer (including oncolytic viral
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treatment and hyperthermia). A detailed review of MPC evolution, architectures, method-
ology, advantages, limitations, categories, implementation and softwares has also been
presented. Automated therapeutic systems are sorely needed by medical professionals
worldwide for the following reasons:

• Better efficiency over manual monitoring and control;
• Automated and optimized drug delivery based on dynamic monitoring of therapeutic

and patients’ bio-parameters;
• Minimization of unintended under- or over-dosing;
• Real-time data-based decision support to medical personnel;
• Routine workload reduction of medical personnel;
• Cost effectiveness by minimizing repetitive treatments.

Patient safety is the driving force behind the need for the wider implementation of
automation in clinical therapeutic delivery. Medical specialists can concentrate on high-
value jobs while computer-based drug delivery can manage routine tasks.

Over the past few decades, researchers have explored MPC-led blood glucose level reg-
ulation, the automation of insulin delivery in blood, target controlled aneasthesia infusion,
impulsive oncolytic viral therapy for treating cancer, structured treatment interruptions
to increase immunological responses to HIV, and more. However, from the point of view
of the variety of issues being addressed and related to real-time applications, the field of
automated biological therapeutic systems is still in its infancy. Hence, there is a vast scope
to develop closed-loop control for biomedical therapy systems in a way that they can be
translated into workable and scalable technologies. In this scenario, the MPC’s receding
horizon control concepts are particularly suited for effective medication delivery control.
In particular, there is a large research scope in the MPC-based effective automation of
hyperthermia therapy for cancer treatment, as well as that of adaptive intervention therapy
for fibromyalgia. Currently, there is very limited research literature available that addresses
these niche topics. Hence, this future scope is open to all MPC and biomedical therapeutic
automation researchers.
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