
Citation: Jatti, V.S.; Dhabale, R.B.;

Mishra, A.; Khedkar, N.K.; Jatti, V.S.;

Jatti, A.V. Machine Learning Based

Predictive Modeling of Electrical

Discharge Machining of Cryo-Treated

NiTi, NiCu and BeCu Alloys. Appl.

Syst. Innov. 2022, 5, 107. https://

doi.org/10.3390/asi5060107

Academic Editors:

Giuseppe Mangioni and

Subhas Mukhopadhyay

Received: 11 September 2022

Accepted: 18 October 2022

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Machine Learning Based Predictive Modeling of Electrical
Discharge Machining of Cryo-Treated NiTi, NiCu and
BeCu Alloys
Vijaykumar S. Jatti 1,* , Rahul B. Dhabale 1 , Akshansh Mishra 2 , Nitin K. Khedkar 1,*, Vinaykumar S. Jatti 1

and Ashwini V. Jatti 1

1 Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India
2 School of Industrial and Information Engineering, Politecnico Di Milano, 20133 Milan, Italy
* Correspondence: vijaykumar.jatti@sitpune.edu.in (V.S.J.); dydirectoradministration@sitpune.edu.in (N.K.K.)

Abstract: The advancement in technology has attracted researchers to electric discharge machining
(EDM) for providing a practical solution for overcoming the limitations of conventional machining.
The current study focused on predicting the Material Removal Rate (MRR) using machine learning
(ML) approaches. The process parameters considered are namely, workpiece electrical conductivity,
gap current, gap voltage, pulse on time and pulse off time. Cryo-treated workpiece viz, Nickel-
Titanium (NiTi) alloys, Nickel Copper (NiCu) alloys, and Beryllium copper (BCu) alloys and cryo-
treated pure copper as tool electrode was considered. In the present research work, four supervised
machine learning regression and three supervised machine learning classification-based algorithms
are used for predicting the MRR. Machine learning result showed that gap current, gap voltage and
pulse on time are most significant parameters that effected MRR. It is observed from the results that
the Gradient boosting regression-based algorithm resulted in the highest coefficient of determination
value for predicting MRR while Random Forest classification based resulted in the highest F1-Score
for obtaining MRR.

Keywords: electrical discharge machine; nickel-titanium alloys; nickel copper alloys; beryllium
copper alloys; machine learning

1. Introduction

Newly developed materials namely, Nickel Titanium (NiTi) alloy, Nickel Copper
(NiCu) alloy, Beryllium Copper (BeCu) alloy have superior material properties including
high hardness, therefore these materials are difficult to machine by conventional machining
processes. Electrical discharge machining (EDM) is one of the practical solution methods
for machining hard materials [1–5]. The complexity of EDM process led the researchers
to take a lot of effort for finding the optimum process parameters [6–12]. The key point of
research has been to develop an efficient system that leads to a higher material removal
rate. On other occasions regarding using ML approaches, several techniques were used
to investigate the process output, such as MRR and predictive model of EDM operations.
Shukla and Priyadarshini [13] successfully used a gradient descent method as ML algorithm
simultaneously optimise surface roughness and kerf width. It was seen that pulse on and
off times and peak current significantly affect the roughness and width of the kerf. Ghosh
et al. [14] used four ML algorithms to comprehend and model the manufacturing process
of (EDM) equipment products to increase productivity. The Random Forest, Support Vector
Regression, Elastic Net, and Bagging have been adopted in this study. The results justified
using ML methods to deal with the research problem. Ulas et al. [15] modelled wire EDM
of aluminium alloy using several ML algorithms. The study indicated that the weighted
extreme learning machine (WELM) model achieved the best results with an R2 of more
than 97%. Ali et al. [16] studied the effect of EDM process parameters on MRR during
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machining of BeCu. They found peak current affected the most followed by pulse on time,
pulse off time and machine voltage had less effect on MRR. Selvakumar et al. [17] used RSM
experimental plan to investigate the effect of peak current, workpiece thickness, pulse on
time, and pulse frequency on MRR and SR during EDM of NiCu. Author’s found all process
parameters effect the MRR and SR. Kumar et al. [18] studied the effect of servo voltage,
pulse on time, pulse on time and discharge current on MRR and SR during machining of
NiCu. They have used RSM experimental plan and desirability concept for optimization.
Kumar and Babu [19] employed minimum quantity dielectric based EDM setup to machine
NiCu and investigated the effect of wire feed, water flow rate, pulse on time, pulse off time,
air inlet pressure on MRR and SR. Daneshmand et al. [20] studied the productivity and
surface integrity namely rate of tool wear, surface roughness, material removal rate and
relative electrode wear during EDM of NiTi by considering discharge current, discharge
voltage, pulse on time and pulse off time. MRR is effected by discharge current and pulse
on time. Tool wear rate increases with increase in pulse on time upto threshold and then
decreases. Surface roughness increases with increase in discharge current. MRR and SR
decreases with increase in pulse off time. Gangele et al. [21] investigated the effect of EDM
process parameters on SR while machining of NiTi. They found that pulse off time has
more positive effect in decreasing SR. Daneshmand et al. [22] during EDM of NiTi-60 SMA
studied the effect of tool rotation, Al2O3, voltage, current, pulse on time and pulse off time
on MRR and SR. MRR decreases with voltage & pulse off time and MRR increases with
current and pulse on time. TWR and SR are effect by all process parameters. Pogrebnjak
et al. [23] discussed the review of ion implantation of superplastic NiTi shape memory
alloys to enhance the surface properties. There are very few articles or research activities
which focused on the implementation of Machine Learning algorithms in EDM process
for predicting the Material Removal Rate. The present study combined experimental data
obtained from the assessment of material removal rate during EDM of NiTi alloy, NiCu
alloy & BeCu alloy and exposed them to supervised machine learning classification and
regression-based methods.

2. Understanding Supervised Machine Learning Algorithms

A training set is used in supervised learning to instruct models to produce the desired
results. This training dataset has both the right inputs and outputs, enabling the model
to develop over time. The loss function serves as a gauge for the algorithm’s correctness,
and iterations are made until the error is sufficiently reduced. When using data mining,
supervised learning may be divided into two categories of issues: classification and re-
gression. In order to accurately classify test data into different categories, classification
uses an algorithm. It identifies particular entities in the dataset and makes an effort to
determine how those things should be defined or labeled. Linear classifiers, support vector
machines (SVM), decision trees, k-nearest neighbor, and random forests are examples of
common classification algorithms. To comprehend the relationship between independent
and dependent variables, regression is used. It is frequently used to produce estimates,
including those for a company’s sales revenue. Popular regression algorithms include
linear regression, logistical regression, and polynomial regression.

The bagging method serves as the foundation for Random Forest, which employs
ensemble learning. The outcome of all the trees is combined once as many trees as possible
have been created on the subset of data. In doing so, it lessens the issue of overfitting in
decision trees, as well as lowering variance and raising accuracy. In contrast to decision
trees, which only build one tree, Random Forest creates many trees and integrates their
results. It builds 100 trees in the Python Sklearn module by default. This algorithm needs
a lot more resources and computing power to accomplish this. The decision tree, on the
other hand, is straightforward and doesn’t need as much computing power. Compared to
decision trees, Random Forest requires much more time to train since it generates many
trees (instead of just one tree) and bases decisions on the majority of votes.
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Although decision trees do not simultaneously take into consideration numerous
weighted combinations, they have the benefit of not requiring any feature modification
when working with non-linear data. One of the quickest ways to determine the most
important factors and relationships connecting a group of variables is to use a decision
tree. We can add new variables or features to the result variable more effectively using
decision trees. Because there is no outside influence or impact from missing data in a tree
node when using a decision tree, less data is needed. The time complexity for performing
this operation is extremely high and keeps rising as the number of records rises. Training a
decision tree with numerical variables can take a long time. Overfitting of data is typically
required for decision trees. The output variance in the overfitting problem is extremely
high, which causes numerous errors in the final estimation and can result in output that is
extremely inaccurate. Obtaining zero bias will result in large variance (overfitting). Small
alterations in the data in a decision tree may result in the generation of a complicated
new tree. In the decision tree, this is referred to as variance, and it can be reduced using
techniques like bagging and boosting.

The gradient boosting trees and random forests differ from one another primarily in
two ways. We train the former in a systematic manner, correcting the mistakes of the prior
trees with each new tree. In contrast, we independently build each tree in a random forest.
As a result, we are unable to train the gradient-boosting trees in parallel whereas we can
train a forest.

The simplest definition of artificial neural networks (ANN) is a model of the human
brain made up of neurons. The human brain contains roughly 100 billion neurons. Between
1000 to 100,000 connections exist between each neuron. Information is distributed stored
in the human brain, allowing us to simultaneously access multiple pieces of information
from memory as needed. The statement that a human brain is composed of thousands of
extremely potent parallel processors is accurate. Following ANN training, the data may
still produce output with missing information. The degree to which the performance is lost
here depends on how critical the missing data is. Determining the examples and teaching
the network in accordance with the desired output by providing it with these examples is
important for ANN to be able to learn. The network’s performance is directly correlated
with the instances chosen, and if the network is unable to see an event from all angles, it may
offer inaccurate results. According to their structure, artificial neural networks demand
processors with parallel processing power. The equipment’s actualization is therefore
dependent on this. For choosing the structure of artificial neural networks, there is no
set rule. Experience and trial-and-error are required to arrive at an appropriate network
structure. ANNs are capable of processing numerical data. Prior to using ANN, problems
must be converted into numerical numbers. The network’s performance will be directly
impacted by the display mechanism chosen in this case. This is based on the user’s skill.

3. Materials and Methods

Experiments were carried out on a die sink type electrical discharge machine, of
Electronica Machine Tool Limited (Pune, India), model C400x250. Commercial grade EDM
oil was used as dielectric fluid with side-wise flushing and 0.5 kg/cm2 flushing pressure.
NiTi alloy and NiCu alloy of Ø20 mm and length of 20 mm were used whereas BeCu of size
20 × 20 × 30 mm3 were used. The tool material selected for experimentation was electrolytic
copper due to its high electrical conductivity of 6 mm diameter and 90 mm length. Prior
to conducting the experiments, both the workpiece and tool were cryogenically treated.
Experimental layout was design as per Taguchi L18 orthogonal array for conduction of
experiments. Table 1 depicts the thermal and electrical conductivity of workpiece and tool
electrode before and after cryogenic treatment. Table 2 shows the Taguchi L18 orthogonal
array and obtained experimental results.



Appl. Syst. Innov. 2022, 5, 107 4 of 11

Table 1. Thermal and electrical conductivity of workpiece and tool.

Properties
NiTi Alloy NiCu Alloy BeCu Alloy Copper Electrode

Untreated Treated Untreated Treated Untreated Treated Untreated Treated

Thermal
conductivity (k),

W/mk
10 12.9 21.8 22.2 130 135.9 391.1

Electrical
conductivity (σ),

S/mm
3.268 4.219 5.515 5.625 5.645 5.902 10 26.316

Table 2. Experimental Layout with trial conditions and observed value.

Workpiece
Name and
Treatment

Workpiece
Electrical

Conductivity
(S/m)

Gap
Current

(A)

Gap
Voltage

(V)

Pulse On
Time (µs)

Pulse Off
Time (µs)

Material
Removal

Rate
(mm3/min)

NiTi Untreated 3268 8 40 13 5 2.09
NiTi Untreated 3268 12 55 26 7 4.56
NiTi Untreated 3268 16 70 38 9 7.11

NiTi Treated 4219 8 40 26 7 3.96
NiTi Treated 4219 12 55 38 9 6.5
NiTi Treated 4219 16 70 13 5 4.16

NiCu
Untreated 5515 8 55 13 9 2.76

NiCu
Untreated 5515 12 70 26 5 3.33

NiCu
Untreated 5515 16 40 38 7 9

NiCu Treated 5625 8 70 38 7 3.1
NiCu Treated 5625 12 40 13 9 5.98
NiCu Treated 5625 16 55 26 5 6.26

BeCu
Untreated 5645 8 55 38 5 3.41

BeCu
Untreated 5645 12 70 13 7 3.08

BeCu
Untreated 5645 16 40 26 9 9.08

BeCu Treated 5902 8 70 26 9 2.8
BeCu Treated 5902 12 40 38 5 6.7
BeCu Treated 5902 16 55 13 7 6.03

Material removal rate (MRR) is computed using Equation (1). Weighing is done before
and after machining of the workpiece. This is done by utilizing a digital weighing balance
of model- GR-300 with an accuracy of 0.0001 g.

MRR =
∆W

ρw × tm
(1)

where ∆W is change in weight of work piece in grams, ρw is work piece density, gm/cm3,
tm is machining time in mins.

For this study, sensitivity for anti-arc and servo motors was set at 50% and 25%,
respectively. Depending on the favourable machining conditions, the workpiece and the
tool were used as the negative and positive electrodes, respectively. Therefore, reverse
polarity is considered in all experiments. The formulation of operational ranges for process
parameters is based on literature review, favourable machining conditions, and sparks
existence. In the study, instead of keeping the machining time as constant, each experiment
was performed till 5 mm depth was achieved on the work piece.
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In this study the experimental layout was considered as per Taguchi method. There
are five input parameters namely workpiece electrical conductivity with six level and
other parameters at three levels viz, gap current, gap voltage, pulse on time and pulse
off time. The nearest orthogonal array that will satisfies the criterion of selecting the
orthogonal array is mixed L18 (61 × 34) orthogonal array having seventeen degrees of
freedom. The experimental results obtained as per Taguchi Experimental layout was used
in Machine learning as dataset for prediction of material removal rate based on regressor
and classification based approaches.

The present study utilized four supervised machine learning regression-based algo-
rithms i.e., Random Forest, Decision Tree, Gradient Boosting and Artificial Neural Network
developed by Python programming for predicting the Material Removal Rate. In the
present study, three supervised machine learning classification-based algorithms i.e., Deci-
sion Tree algorithm, Random Forest Algorithm, and AdaBoost algorithms are employed
for classification of Material Removal Rate. If Material Removal Rate is below 5 mm3/min
then it is labeled as ‘0’ and vice versa. Figure 1a represents the flowchart for implementing
the Supervised Machine Learning algorithms on the dataset. The dataset was split into
two parts i.e., the training set and testing set out of which 80% of dataset points were used
for training purposes and 20% of dataset points were used for testing purposes. In the
ANN model, the number of epochs employed was 2000. Figure 1b shows the feature impor-
tance graph. It is observed from the graph that one of the experimental input parameters
i.e., Pulse off Time and Workpiece Electrical Conductivity were not contributing to the
output parameter. So, in the present study, the main contributing input parameters are
Gap Current, Gap Voltage, and Pulse On time, while Material Removal Rate is the output
parameter. Figure 1c shows the heatmap plot of the experimental dataset. A heatmap uses
a warm-to-cool color combination to graphically represent visitor behavior data as hot and
cold regions. Light color is the location with the maximum visitor contact, and warm colors
point to those areas, dark colors denote those areas with the least visitor interaction.
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Figure 1. Cont.
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Figure 1. (a) Implementation of Machine Learning algorithms on the dataset; (b) Feature Importance
Plot; (c) Heatmap representation.

4. Results

Python programming language was implemented for developing these regressions
and classification-based algorithms. Metric features such as Mean Square Error (MSE),
Mean Absolute Error (MAE), and coefficient of determination (R2) are used for measuring
the performance of the employed supervised machine learning algorithms. Figure 2a shows
the plot of loss function of Artificial Neural Network model with increasing number of
epochs. While evaluating the performance of classification-based algorithms, the F1-Score
and area under curve (AUC) scores of each algorithm are evaluated. Equation (2) is used
for the calculation of the F1-Score value.

F1-Score = 2 × precision × recall
precision + recall

(2)

Tables 3 and 4 shows the obtained results for Supervised Machine learning based
regression and classification algorithms.

Table 3. Metrics features of Regression Based Algorithms.

Algorithms Mean Square Error Mean Absolute Error R2

Random Forest 0.745 0.764 0.856
Decision Tree 0.965 0.792 0.814

Gradient Boosting 0.360 0.529 0.930
Artificial Neural

Network 0.255 0.098 0.749
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Figure 2. Cont.



Appl. Syst. Innov. 2022, 5, 107 9 of 11

Figure 2. (a) Variation of Loss function with respect to number of epochs; (b) Decision Tree Classifi-
cation Plot; (c) Confusion Matrix plot (i) Decision Tree (ii) Random Forest (iii) Ada-Boost; (d) ACU
Curve (i) Decision Tree (ii) Random Forest (iii) Ada-Boost.

Table 4. Metrics features of Classification Based Algorithms.

Algorithms Precision
Value of ‘0’

Precision
Value of ‘1’

Recall Value
of ‘0’

Recall Value
of ‘1’

Overall
F1-Score

Decision Tree 1.00 0.67 0.50 1.00 0.75
Random

Forest 1.00 1.00 1.00 1.00 1.00

AdaBoost 1.00 0.67 0.50 1.00 0.75

In the Decision Tree classification-based algorithm, entropy is used as a criterion which
is calculated by Equation (3). Entropy is a unit of measurement for information that depicts
the unpredictability of the target’s features. The feature with the lowest entropy selects
the optimal split, just like the Gini Index does. A node is pure when the entropy has its
lowest value, which is zero, and it reaches its largest value when the probabilities of the
two classes are equal. Figure 2b represents the obtained Decision Tree plot of the present
work.

Entropy = −∑j pj·log2·pj (3)

where pj stands for class j probability.

5. Discussion

From Figure 1b it is observed from the graph that one of the experimental input
parameters i.e., Pulse off Time and Workpiece Electrical Conductivity were not contributing
to the output parameter. So, in the present study, the main contributing input parameters
are Gap Current, Gap Voltage, and Pulse On time on Material Removal Rate.

With an increase in gap current, MRR increases regardless of whether or not the work
piece is cryogenically treated. Increasing the gap current will increase the effective energy
available in the machining area. A high gap current is reported to give a high current
density. Furthermore, the expansion of the dielectric medium causes an increase in the
impulsive force, allowing the working materials to melt and evaporate. Positive ions attack
the workpiece surface more readily when the gap current increases. Consequently, the
surface temperature of the workpiece rises, melting or evaporating the material. As a result,
the crater size increases leading to a higher MRR. With an increase in gap current, the MRR
also increases, and cryogenic treatment can further enhance the MRR value.

When the gap voltage is lower, the inter electrode spark gap will be smaller. If debris
accumulates at the interface between the tool and the work piece, it will cause damage.
This leads to arcing, which results in the electrodes becoming corroded. Gap voltage affects
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spark energy, which is well known. Low gap voltage reduces spark energy and results in a
lower material removal rate.

The MRR is typically directly related to the discharge energy, which is determined by
pulse duration. Increasing pulse duration will lead to greater discharge energy. A greater
number of positive ions from the plasma channel strike the work surface. As a result of the
bombardment of ions, the surface temperature of the work piece increases. Hence, the rise
in temperature melts work material and increases MRR.

From Table 2 it is observed that the Gradient boosting algorithms yields a lower value
of MSE and MAE value with a highest value of the coefficient of determination (R2) i.e.,
0.93. In light of this, it can be observed that Gradient Boosting algorithm can provide more
accurate results than Random Forests. They can detect intricate patterns in the data since
we train them to rectify each other’s error values. Random forests may not be as accurate
as gradient enhancing trees. They can detect intricate patterns in the data because we train
them to correct each other’s mistakes. The boosted trees may overfit and begin modeling
the noise if the data are noisy, though. The way they produce decisions is the other key
distinction. A random forest’s trees can choose their outputs in any order because each tree
is independent. Then, we combine all of the individual forecasts into a single prediction,
which is either the average value in regression issues or the majority class in classification
questions. On the other hand, the order in which the gradient boosting trees run is set and
cannot be altered. They only accept sequential assessment as a result.

From Table 3 it is observed that Random Forest classification-based algorithm results
in the highest F1-Score of 1.00. Similarly, it is observed from the AUC curve as shown in
Figure 2d, Random Forest has highest AUC score of 1.00. Figure 2c shows the confusion
matrix of each classification-based algorithms. With the addition of separating on a random
subset of characteristics, random forest outperforms bagging by decorrelating the trees. As
a result, the model only takes into account a small subset of its properties at each branch
in the tree rather than all of them. That is, a subset of the m features are randomly chosen
from the set of n features that are available. This is crucial in order to average out volatility.

6. Conclusions

This paper presents a machine learning models for predicting the material removal
rate of alloys NiTi, NiCu, and BeCu during EDM. The obtained experimental results were
trained and tested on the supervised machine learning algorithms which were based on
classification and regression models for predicting the material removal rate with higher
accuracy. It is observed from the results that the Gradient boosting regression-based
algorithm resulted in the highest coefficient of determination value while Random Forest
classification based resulted in the highest F1-Score. Based on the analysis of results,
it’s found that pulse off time and workpiece electrical conductivity are least significant
parameters. The most significant parameters that effect material removal rate are pulse
on time, gap current and gap voltage. The future scope of this work is to integrate these
machine learning models with the metaheuristics algorithms for the improvement in
accuracy scores.
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