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Abstract: Widely used in industrial applications, the induction machine is the subject of many
researches. Many are aimed at developing its performances, such torque ripples, current distortions
or even rotor speed response, by using different control strategies or even replacing two level
inverters in a field oriented control strategy with a new generation of inverters. This paper presents
an advanced asynchronous machine field-oriented control strategy with a three level neutral point
clamped inverter. The attractive performances of the field oriented control strategy using a three
level neutral point clamped inverter are experimentally tested. Both conventional and new field-
oriented control strategies are implemented in a dSPACE board induction machine. To highlight the
advantages of the new control strategy, conventional and improved strategies are studied in open
loop and closed loop conditions using integral proportional and proportional integral controllers, in
term of current distortions, torque and speed response.

Keywords: dSPACE; new field oriented control strategy; three levels neutral point clamped inverter

1. Introduction

Last decade, industries, including the railway traction and automotive industries, have
seen a wide improvement. In fact, the railways are one of the best energy-efficient means
of mass transportation [1–3]. However, locomotive performances have to be improved in
such a way as to meet customer requirements. Accordingly, a new generation of inverters
called multilevel inverters is being used to improve railway traction [4–9]. Two level and
multilevel inverters have been widely compared in the literature. By dint of the multilevel
inverter, efficiency is enhanced in classical driving cycles [10,11]; prices of the two systems
are compared in [8,10]. By dint of the reduced filter and battery price for a multilevel drive,
the total system is cheaper, even though the cost of a multilevel inverter is slightly higher
than a two level inverter. Thanks to multilevel inverters, railway traction can overcome
many obstacles, with enhanced performance and less vibration resulting in faster, more
pleasant and quieter journeys [12]. The previous researches have investigated topologies.
However, another aspect of multilevel traction drives needs to be studied, compared and
experimentally tested: performances of control strategies. The target of this work is to
present experimentally the enhancement of a standard field oriented control strategy (FOC),
and then to show induction machine performances in both steady state and transient
context after changing the conventional two level inverter (2 L) by a three level neutral
point clamped inverter (3L_NPC) controlled by space pulse width modulation (SPWM).
Using a dSPACE 1104 board for a 1.5 kw asynchronous machine, both the 2L_FOC and field
oriented control strategy(FOC) using a 3L_NPC (3L_FOC) are experimentally compared,
in term of torque ripples, current distortions and rotor speed response for medium and
small speeds using integral proportional (IP) and proportional integral controllers (IP). The
principles of FOC and 3L_NPC are also introduced.
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2. Principle of the Conventional and Improved FOC Strategy
2.1. Principle of the Conventional FOC Strategy

The aim of the FOC strategy is to have an independent control over the couple and the
flux similar to a separately excited DC machine [13–15]. To reach such decoupled control, a
FOC algorithm is required to obtain the rotor flux angular position, to correctly align the
stator correct vector. Hence, it is feasible to control torque and rotor flux in a DC machine
control fashion, by acting on two separated stator current components: isd and isq. Thanks
to the FOC strategy, an asynchronous machine can be used in high-dynamic performance
required where only a DC machine can be used

After making the rotor field rotation (Figure 1) ψ̂rd = ψ̂r and ψ̂rq = 0. As presented in
Equations (1) and (2) IM relations then becomes:

ψrd =
M

1 + pTr
isd, (1)

Te = np
M
Lr

ψrisq, (2)
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Figure 1. Orientation of the rotor field to d axis of the (d,q) reference.

Rotor field rotation is applied once the rotor flux angular position is known. Direct
field oriented control (DFOC) and Indirect field oriented control (IFOC) are both employed
to obtain this position. Manipulating Equations (3)–(7), ψ̂r and Tˆ

e are estimated using isd
and isq, respectively, and are compared to ψ∗r and T∗e . As shown in Figure 2, torque and flux
are directly controlled in DFOC.

vsd =

[
(Rs + pσLs)

(1 + Tr p)
M +

M
Lr p

]
ψrd − wsLsσisq, (3)

vsq = (Rs + pσLs)
Te

p M
Lr

ψrd
+ wsLsσisd + ws

M
Lr

ψr, (4)

ψ̂r =
M

1 + pTr
isd, (5)

θs =
∫
(npΩ +

M
Tr

i∗sq

ψ∗rd
)dtTˆ

e = np
M
Lr

ψrisq, (6)

Figure 2 presents the control strategy scheme of DFOC. This strategy is chosen for this
work and will be named the FOC strategy.

To secure decoupled control for torque and flux, compensation terms femd and femq
Equations (7) and (8) are added to obtain d and q axes completely independently.

femd = wsLsσisq (7)

femq = wsLsσisd + ws
M
Lr

ψr (8)
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Figure 2. DFOC strategy scheme of asynchronous machine using 2 L.

Equation (2) presents how position θs and voltages vsq, vsd arecalculated. Using
park position θs, vsq, and vsd are changed and injected to the 2 L. The latter is controlled
by SPWM. To obtain two voltage levels, SPWM is obtained by comparing a sinusoidal
reference signal and triangular carrier. Thereby, the inverter’s switches are controlled
through pulses obtained by this comparison, as shown in Figure 3. The following Figure 4
shows an experimental result of the two level output voltage inverter implemented using
dSPACE 1104 where we observed the two voltage levels.
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2.2. Principle of the Improved FOC Strategy

Thanks to multilevel conversion structures, medium voltage high-power drives as
railway traction drives are improved; the price of semiconductor devices is augmented.
Multilevel topologies decrease voltage stress, which compensates for the rising number of
devices [16,17]. Additionally, these structures reduce the total harmonic content, and then
present the benefit of lowering the volume of the output filter [18]. Thereby, torque ripples
will be decreased for motor drive applications. The NPC inverter is the multilevel inverter
selected to replace the 2 L [19,20].

2.2.1. Principle of 3L_NPC Inverter

As presented in Figure 5, six clamped diodes and four vertical IGBTs form each leg of
the 3L_NPC inverter. As given in Table 1, switching states gives switches that generate five
voltage levels. Figure 6 presents the SPWM control strategy using a NPC inverter [21,22].
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The following Figure 7 shows an experimental result of the output voltages of a
3L_NPC inverter implemented using dSPACE 1104 where three voltage levels are observed.
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2.2.2. Amelioration of FOC Strategy Using 3L_NPC Inverter

To enhance the transient and steady state performances of the FOC strategy for an
asynchronous machine, and to decrease voltage stress in semi conductors, particularly for
high power applications, with a suitable SPWM control strategy, a 3L_NPC inverter can
replace a 2 L inverter. As Figure 8 shows, all the other blocks of the FOC strategy scheme
are still the same [23].
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The rotor speed closed loop DFOC system is shown in Figure 9. The PI and IP
controller scheme are, respectively, given in Figures 10 and 11.
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To show an aperiodic representation of the previous presented system, we find follow-
ing Equations (9) and (10):

Kiip =
1

4gτ
, Kpip =

J − τ f
τ

, (9)

τ =
J

Kpip + f
, g =

Kp

Kpip + f
, (10)

In order to have an aperiodic representation of the above presented system, we find
for the PI speed controller the following (Equation (11)).

Kipi = Jω2
0, Kppi = 2Jω0− f Jω2

0 , (11)

Values of all those coefficients are given in Table 2.
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Table 2. Experimental and machine parameters.

Parameters Signification

IM parameters

Rs = 5.63 Stator Resistance (Ω)
Rr = 2.62 Rotor Resistance (Ω)
M = 0.364 Mutual inductance (H)
Ls = 0.382 Stator inductance (H)
Lr = 0.382 Rotor inductance (H)
J = 0.023 Factor of inertia(Kg·m2)

Experimental
parameters

f = 0.00155 Coefficient of friction
p = 2 Number of pole pairs

p = 1.5 Rated power (KW)
Vdc = 150 DC bus voltage (V)

Fpwm = 2000 Pulse width modulation
frequency (Hz)

F = 10 Sampling frequency (KHz)
Kppi = 0.59,
Kipi = 2.3

Integral and proportional
coefficients for PI controller

Kpip = 0.297,
Kiip = 6.01

Integral and proportional
coefficients for IP controller

3. Experimental Results
Presentation of the Experimental Platform

Structure and photography of the experimental platform are presented in Figures 12
and 13, respectively, and contain: a 3L_NPC inverter, the 1.5 KW asynchronous machine
(coupled in star) is driven under load using the help of a DC generator mechanically
coupled to the motor with the following parameters: 1 KW, 220 V, 6.5 A, 2520 rpm. The
latter furnishes a 4KW resistive bank to give a number of load torques, a dSPACE 1104
board founded on a 250 MHz 603-PowerPC- 64-bit processor and a slave-DSP based
on a 20 MHz TMS320F240-16-bit microcontroller are employed. The dSPACE operates
on a MATLAB/SimulinkR2013b platform. The dSPACE board is working with Control
Desk software which realizes the record of the results more easily [24–27], ameliorates the
controller and automates the experiments. Using dSPACE 1104, the drive can be designed
in MATLAB/SimulinkR2013b and converted to real-time codes using Real-Time Workshop
(RTW); for the speed sensor (15 V for 1500 rpm) a tachymeter is used [28–32].
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To show the performances of the 3L_FOC, different experiments were made with
parameters presented in Table 2.

4. Experimental Results and Discussion
4.1. Open Loop Conditions

As presented in Figure 14, at open loop conditions both 2L_FOC and 3L_FOC torques
follow perfectly their references; however, the 2L_FOC presents more torque ripples,
traduced by important audible noise and important current distortions (Figure 15), which
is totally eliminated in the 3L_FOC.Moreover, as shown in Figure 16, the 3L_FOC has better
current THD than the 2L_FOC.
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Figure 14. Comparison between (a) 2L_FOC and (b) 3L_FOC in open and closed loop conditions in
terms of Torque ripple.
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Figure 15. Comparison between (a) 2L_FOC and (b) 3L_FOC in open and closed loop conditions in
terms of Current distortions.
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Figure 16. Comparison between 2L_FOC and 3L_FOC in open and closed loop conditions in terms
of: (a) Current THD for 2L_FOC; (b) Current THD for 2L_FOC.

4.2. Closed Loop Conditions

As presented in Figure 16, at closed loop conditions using a PI and an IP controller,
practical tests are made for the 3L_FOC for medium speed with changing direction as
shown in Figure 17a,b, with injecting a perturbation as presented in Figure 17c,d, for small
speed with changing direction as shown in Figure 17e,f, with injecting a perturbation as
presented in Figure 18a,b.Those tests shows that the speed of the 3L_FOC has excellent
performances in term of pursuit and rejection of perturbation. However, the 3L_FOC using
an IP controller is still better in term of speed pursuit than a PI controller the latter also
presents a peak, absent in the case of the IP controller.
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Figure 17. Comparison between 3L_FOC in closed loop conditions using PI and IP controller in
terms of: (a,b) Medium speed response with changing direction; (c,d) Medium speed response with
injecting perturbation; (e,f) Small speed response with changing direction.
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5. Conclusions

Implementation and detailed investigation of an advanced FOC of IM have been
presented in this work, using a 3L_NPC. DSPACE hardware has been used to obtain
experimental results. Those results validate interesting performances of 3L_FOC in open
loop conditions, in terms of current distortions and torque ripple which is clearly traduced
by the absence of noise in a 3L_FOC. In closed loop conditions, a detailed investigation is
also presented and shows excellent performances of the 3L_FOC in terms of speed pursuit
and rejection of perturbation for both a PI and an IP controller, even if the IP controller
is still better in terms of speed pursuit. Thus, a 3L_FOC can widely improve overall a
railway traction system and make passengers’ journeys better. Thereby, in the near future
the developed system could be integrated into a new generation of locomotives.

To provide perspective for this work, a higher level multilevel inverter could be used
for better performance, eventually controlled by a space vector modulation (SVM).
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