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Abstract: Pathologists use histopathology to examine tissues or cells under a microscope to compare
healthy and abnormal tissue structures. Differentiating benign from malignant tumors is the most
critical aspect of cancer histopathology. Pathologists use a range of magnification factors, including
40x, 100x, 200x, and 400x, to identify abnormal tissue structures. It is a painful process because
specialists must spend much time sitting and gazing into the microscope lenses. Hence, pathologists
are more likely to make errors due to being overworked or fatigued. Automating cancer detection
in histopathology is the best way to mitigate humans’ erroneous diagnostics. Multiple approaches
in the literature suggest methods to automate the detection of breast cancer based on the use of
histopathological images. This work performs a comprehensive analysis to identify which magnifi-
cation factors, 40x, 100x, 200x, and 400x, induce higher prediction accuracy. This study found that
training Convolutional Neural Networks (CNNs) on 200x and 400x magnification factors increased
the prediction accuracy compared to training on 40x and 100x. More specifically, this study finds that
the CNN model performs better when trained on 200x than on 400x.

Keywords: breast cancer detection; histopathological image; machine learning; deep learning;
convolutional neural networks; feature extraction; image preprocessing

1. Introduction

The most common histopathological dye is hematoxylin and eosin (H&E). This stain
colors cell nuclei blue and cytoplasm pink. Cancer cells typically appear abnormal when
stained with H&E; the cell structure’s appearance helps the pathologist distinguish them
from normal cells. A biopsy or surgical excision is the most common source of a tissue
specimen. A needle is inserted into the tumor during a biopsy, and cells are extracted for
examination. Surgical excision is when the entire tumor or lesion is surgically removed
and sent to a pathologist for analysis. Pathology microscopes are equipped with different
magnification capabilities: low-power magnification ranges from 2x to 10x; medium-power
magnification ranges from 10x to 40x; and high-power magnification ranges from 40x to
400x, depending on the pathologist’s needs. By examining different magnification fac-
tors, the histopathologist can discover unique features of the deforming cells, which helps
diagnose whether the cells are malignant or benign. Microscopic tissue analysis assists
in determining the disease stage and guiding treatment decisions. While histopathology
is critical, it can also be prone to diagnostic error because histopathologists often look at
slides for a long time and become tired. However, errors can still occur with the utmost
care and precision. The most recent study on histopathologist error statistics found that
while pathologists make an estimated 1 in 10,000 mistakes when diagnosing actual can-
cer cells, errors rise to 1 in 3 when diagnosing earlier stages of cancer cells due to their
indistinct cancer cell features (Valenstein et al. [1]). The National Academy of Medicine
(NAM) [2] found that pathology mistakes account for up to 10 percent of hospital adverse
patient events. Many factors can contribute to pathology errors, including inadequate
training, poor communication among healthcare providers, and faulty equipment. Many
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experts believe that the number of actual errors committed is likely far higher than re-
ported due to underreporting by physicians and patients. With continued research into
new techniques and technologies, it is believed that Artificial Intelligence (AI) and Deep
Learning (DL) are promising technologies to help pathologists reduce diagnostic errors.
Convolution Neural Networks (CNNs) are a type of Machine Learning (ML) that uses
neural networks to comprehend how to identify patterns in images. CNNs have made
it possible to detect cell cancer biomarkers more accurately than ever. For example, one
study showed that CNN-based algorithms could correctly pinpoint breast cancer metas-
tases with a precision of 90% and above most of the time—significantly outperforming
human pathologists. Many ideas in the literature are based on using ML and histopatho-
logical images, combined with various data preprocessing techniques, to predict breast
cancer. Authors in Anjum et al. [3], Gupta et al. [4], Yadav et al. [5], Anwar et al. [6], and
Gultekin et al. [7] have applied Support Vector Machine (SVM), while the works by
Gultekin et al. [7] and Vo-Le et al. [8] utilize Logistic Regression (LR). The studies by An-
war et al. [6], Hohn et al. [9], Dabeer et al. [10], Wadhwa et al. [11], Khuriwal et al. [12],
Qi et al. [13], and El-Agouri et al. [14] predict breast cancer using CNNs. The study by
Da et al. [15] utilizes CNNs to predict a malignant tumor of the digestive system. Residual
Neural Networks (RNNs) are implemented in the work of Chatterjee et al. [16], the Ran-
dom Forest (RF) algorithm is applied in Carvalho et al. [17] and Anwar et al. [6]. Similarly,
fuzzy classification is used in Qidwai et al. [18]; K-means in Yadav et al. [5]; SENet DL
in Chen et al. [19]; the Naive Bayes (NB) and Decision Tree (DT) in Vo-Le et al. [8]. The
algorithms above are combined with other data preprocessing feature extraction techniques
such as DenseNet, Histograms of Oriented Gradient (HOG), Wavelet Packet Decomposition
(WPD), ResNet, Principal Component Analysis (PCA), Region of Interest (RoI) extraction,
VGG-16, and many others. Another approach was done by Foroughi et al. [20] to study
the biological features interpretation of histopathology to enhance the prediction accuracy
of CNNs. As stated in previous works, they utilize histopathological images and ML to
predict cancerous and non-cancerous tissues. Many studies have achieved higher accu-
racy, making breast cancer prediction using histopathological images and ML a promising
practice. Next, the research question analyzed in this paper is explained.

Problem Statement

Different magnification factors, such as low, medium, and high magnification power,
are a crucial part of the histopathology study. Low-power microscopes offer a wide field of
view and can be used to examine significant areas of tissue quickly. However, they provide
little detail and cannot be used to identify individual cells or structures. Medium-power
microscopes offer more detail than low-power microscopes but cannot cover as large an
area as high-power microscopes. They are ideal for identifying small structures within
tissue samples. High-power microscopes offer the most significant level of detail but can
only examine minimal areas at a time. High-power microscopes are ideal for identifying
individual cells or structures within tissue samples. Pathologists benefit from different
magnification factors to see different cell representations and spot abnormalities. The
information gleaned from the various magnification levels is typically used by pathologists
to develop a general understanding of the health status of the histopathological image
under study. Similar to a pathologist, this study examines how well the learning algorithm
apprehends information from the various magnification levels of histopathological images.
Using the most appropriate magnification factor that achieves the highest learning rate
is crucial to improving the model’s accuracy. Inappropriate magnification factors may be
considered noisy, which degrades the model’s accuracy. Hence, the questions this study
endeavors to address are: Do machine learning algorithms also benefit from the existence
of different magnification factors? Which magnification factor represents high-quality
data, and which one represents noisy data? The above questions are answered utilizing
the BreakHis [21] dataset, which contains four magnification factors, i.e., 40x, 100x, 200x
and 400x.
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The remainder of this work is organized as follows: Section 2 reviews related works in
the literature and contrasts their conclusions with the findings of this work. The background
information required to understand the context of this work is explained in Section 3. Section 4
describes the methodology employed in this research paper in detail. Detailed result analysis
and an explanation of this work’s findings are provided in Section 5. Section 6 reweighs the
conclusions of this work to those presented in the literature review. Finally, closing remarks are
given in Section 7.

2. Literature Review

Numerous methods have been proposed in the literature that aim to predict breast can-
cer using ML, histopathological images, and various data preprocessing approaches. Some
researchers believe data preprocessing techniques are essential for accurately predicting
disease states from medical images. Others believe ML algorithms can be used effectively
without any preprocessing steps. Still, others think combining data preprocessing and
ML may produce the most accurate predictions possible. All of the papers chosen for
this study’s literature review use histopathological images and ML algorithms to identify
cancerous tissue, mainly in the breast. The work by Chatterjee et al. [16] detects Invasive
Ductal Carcinoma (IDC) (a type of breast cancer) using Residual Convolution Networks
(RCNs) to classify the IDC-affected histopathological images from the normal images. First,
the microscopic RGB images are converted into a seven-channel image matrix, then fed to
RCNs. The work claims that the proposed model produces an accuracy of over 90%. The
study by Anjum et al. [3] emphasizes that feature extraction from images plays a prominent
role in image processing. Their study applies a combination of histograms of oriented
gradient and Canny Edge Detection (CED) techniques for extracting features. Then they
use PCA to reduce the dimensionality of the extracted features. PCA output is input for
SVM and LR. The experiment shows 94% correct detection of malignant patients. The
authors in Hohn et al. [9] investigated whether combining histopathological images with
commonly available patient data (such as age, sex, and anatomical site of the lesion) could
increase the performance compared with CNNs alone, referred to as standard CNNs. Their
results showed that standard CNNs achieve better accuracy in most cases than patient
data integration with the image. The authors in Carvalho et al. [17] introduce an approach
to quantify and classify breast tissue samples based on features extracted from the inten-
sity histogram, co-occurrence matrix, Shannon, Renyi, Tsallis, and Kapoor entropies. The
obtained feature vector is used as input to the RF and Sequential Minimal Optimization
(SMO) algorithms. The study by Carvalho et al. [17] claims to achieve significant results
in the Area Under the Curve (AUC) performance measurements. The authors in Gupta
et al. [4] employ two ML algorithms for comparative analysis: SVM and LR. The model is
trained separately for various image magnification factors, i.e., 40x, 100x, 200x and 400x.
The findings of Gupta et al. [4] demonstrate that the ResNet50 has achieved maximum
accuracy for LR compared to SVM in magnification factor. In addition, results show that
the performance of CNNs+LR is slightly better than CNNs+SVM for classifying benign
and malignant classes. The work by Dabeer et al. [10] utilizes CNNs to extract the features
and create a model. The Fuzzy Classifier is utilized in Qidwai et al. [18] to quantify and
classify cancerous cells based on color. The color analysis is based on various colors, such
as Hue Saturation Value (HSV), rather than specific color values. Their findings can also
be used in the morphological processing of the classified binary image to locate, count,
and confirm particular kinds of regions and tissues in the biopsy sample. The study by
Wadhwa et al. [11] exploits DenseNet-201 as a feature extraction method. Their study
achieves above 90% accuracy while the precision and recall, ML performance metrics, are
0.90 and 0.99, respectively; the F1-score is reported to be 89%. The authors in Yadav et al. [5]
apply two procedures: first, they use ML algorithms for image classification; second, they
use segmentation algorithms for detecting tumorous cells; and afterward, they use SVM
and CNNs algorithms for tumorous classification. The classifiers are examined based on
sensitivity, specificity, accuracy, precision, and F1-score parameters. The resulting images
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are further used as an input for image segmentation utilizing Genetic Algorithms (GA) and
K-Means. The proposed methodology in Anwar et al. [6] consists of four stages: image
preprocessing; feature extraction (using ResNet); feature reduction (using PCA); and last
classification using SVM, RL, and Quadratic Discriminate Analysis (QDA). The authors
in Hirra et al. [22] employ Deep Belief Networks (DBNs) for histopathological image
classification. Features are extracted through an unsupervised pre-training and supervised
fine-tuning phase. The features extracted from the patches are fed to the model as input.
The model presents the result as a probability matrix, either a positive sample (cancer) or a
negative sample (background). The authors in Vo-Le et al. [8] employ a combined feature
extraction algorithm: VGG-16, GoogLeNet, or ResNet-50. For the classification, they use
NB, DT. The findings demonstrate that using VGG-16 as feature extraction helps the model
achieve slightly higher accuracy. The study by Mohalder et al. [23] predicted lung cancer
by using CatBoost, DT, LR, and Linear Discriminant Analysis (LDA); Catboost achieved the
highest prediction accuracy. The authors of Khuriwal et al. [12], Haija et al. [24], and Jan-
nesari et al. [25] utilize the CNNs algorithm for cancer classification. However, they apply
different feature extraction techniques; the authors in Khuriwal et al. [12] use the Entropy
function, while the authors of Haija et al. [24] and Jannesari et al. [25] employ ResNet-50
and ResNet-152, respectively. The work in Madduri et al. [26] and Cetindag et al. [27]
compare employing standard CNNs versus CNNs combined with Local Binary Pattern
(LBP) ( for feature extraction). Das et al. [28] introduced a Deep Multiple Instance (DMI)
learning-based CNNs framework, representing the slide as a bag of extracted patches; only
the bag label is used for training. An image is labeled as benign if all its patches are benign,
and similarly, malignant if all its patches are malignant. The study by Sun et al. [29] aims to
predict labels of small patches cropped out of a histopathological whole-slide image. Next
is a sliding window method to produce a Ductal Carcinoma In Situ (DCIS) probability map.
Finally, given the probability map, a tumor border of DCIS is produced and delineated with
marching cubes to facilitate pathologists’ review and assessment. The work in Qi et al. [13]
employs active learning to select unlabeled samples for annotation and a deep learning
model to update the increasing training set iteratively. The primary purpose of their work is
to alleviate the burden of large-scale annotation for such image classification. The work in
El-Agouri et al. [14] used CNNs to predict breast cancer; they collected their private dataset
and applied ResNet50 for feature extraction. The work by Gultekin et al. [7] applies a
two-tier tissue decomposition method for defining a set of multi-typed objects in an image.
These objects are defined by combining texture, shape, and size information, and they
may correspond to individual histological tissue components and local tissue subregions
of different characteristics. The authors also define a metric called the “dominant blob
scale” to characterize the shape and size of an object with a single scalar value. The study
by Chen et al. [19] trains SENet deep learning model on histopathology of the liver to
classify the different types of liver cancers. The study compared their results with four
deep learning models: VGG16, ResNet50, ResNet-CBAM, and SKNet. While the work by
Da et al. [15] try to quantify the morphological characteristics and atypia of Signet Ring Cell
Carcinoma (SRCC), a malignant tumor of the digestive system, using CNNs. The work by
Foroughi et al. [20] studies the ability to understand biological features and interpret them
to enhance the prediction accuracy of CNNs. The authors, Boktor et al. [30] propose virtual
histological staining to reduce the time needed to prepare histopathological images. The
study by Djouima et al. [31] applies Deep Convolution Generative Adversarial Network
(DCGAN) to classify breast cancer tumors; for feature extraction, they use DensNet201;
they conclude that DCGAN is an efficient prediction for breast cancer image classification.

3. Preliminaries

This section provides background information about the techniques and technologies
used in this document.
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3.1. Convolutional Neural Networks (CNNs)

CNNs are deep learning algorithms that process visual data (images). CNNs com-
prises several layers: input, hidden, and output. CNNs have been used for various tasks,
including object recognition, facial recognition, and automatic labeling of images. CNNs
tolerates errors or noise in input data. The CNNs have two phases: the feature extraction
phase and the learning phase, as shown in Figure 1. The feature extraction phase is where
the network extracts features from the input data. In the learning phase, the network learns
how to use those features to classify images correctly.

SoftMax

Benign

Malignant Flatten

Fully Connected 
layer

Convolution + 
ReLUConvolution + 

ReLUConvolution + 
ReLU

Feature Extraction phase Probabilistic 
predictionLearning

Pooling Pooling Pooling

Kernel

input
 

Figure 1. Convolutional Neural Networks (CNNs).

The first step in extracting features is to divide the image into small squares, or
“kernels”. The kernels then scan across the image, and at each location, they calculate a set
of values that correspond to essential characteristics of the image. The first layer extracts
basic features from the input image, such as edges and corners. The second layer builds on
these features to create more complex features such as shapes, edges, and textures. This set
of extracted features is then used as input to the learning phase, where it is used to train
the model. Once the model is created, it can be used to predict new samples that it has not
seen before.

3.2. Measurement and Performance Evaluation Methods

There are various measurement techniques available, each with its strengths and
weaknesses. The following evaluation metrics are used for this work:

3.2.1. Area Under ROC Curve

One of the most important evaluation metrics for assessing the effectiveness of any
classification model is the AU-ROC/AUC curve. ROC (Receiver Operating Characteristic)
is a probability curve, and AUC (Area Under the Curve) represents the degree or measure
of separability. It demonstrates how much the model is capable of differentiating between
classes. The higher the AUC, the better the model is at predicting Class 0 as 0 and Class 1
as 1. The classification performance areas are shown in Figure 2.

It is usually computed from the ROC curve, which plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) for different cutoff points. The AUC can be interpreted
as the probability that a randomly chosen positive example is more likely to be from true
positives than false positives.
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Figure 2. Receiver Operating Characteristic (ROC) Curve.

3.2.2. Training and Validation Loss

There are two types of losses in ML: training loss and validation loss. The training
loss is the amount of error that the algorithm experiences while learning from the data. It
provides information on how well our model parameters fit the data. However, it does not
tell us how well our model performs on a new data point. The validation loss gauges how
close our model comes to correctly predicting labels on a different dataset. In other words,
it indicates whether the model has an overfitting or underfitting problem.

3.2.3. Precision, Recall, and F1-score Performance Measure

Precision measures how many of the predictions made by the model are correct. The
following formula computes the model’s precision,

Precision =
Tp

Tp + Fp
(1)

In contrast, recall measures how many of all actual target values are correctly predicted
by the model. The following formula calculates the recall value of the model,

Recall =
Tp

Tp + Fn
(2)

These two metrics are then used to calculate an F1-score, which provides an overall
measure of how effective the model is at identifying and predicting target values from a
given dataset. The following formula computes the F-score value of the model,

F-score = 2
(

Precision ∗ Recall
Precision + Recall

)
, (3)

where Tp refers to True Positive, Tn refers to True Negative, Fp refers to False Positive, and
Fn refers to a False Negative.

3.2.4. Confusion Matrix

A confusion matrix is a table that helps to identify the accuracy of a classification
algorithm by identifying the number of correct and incorrect classifications. The table
consists of two dimensions: actual values and predicted values, as shown in Figure 3. The
term “Actually” refers to the correct classifications, while the term “predicted” relates to
the value guessed by the algorithm. The numbers in each cell indicate how many times
that particular combination occurred.
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Figure 3. Confusion matrix.

4. Methodology
4.1. Dataset Description

This work uses Breast Cancer Histopathological Image Classification (BreakHis),
a publicly available dataset at [21]. As shown in Table 1, the dataset is composed of
7909 microscopic images of breast tumor tissue collected from 82 patients using different
magnifying factors: 40x, 100x, 200x and 400x. The dataset contains 2480 benign and
5429 malignant; it has two image sizes: (700 × 460) or (700 × 456) pixels; images are
3-channels, i.e., RGB and 8-bit depth in each channel, using PNG format. The BreaKHis
dataset is divided into two main groups: benign and malignant tumors, where benign
refers to noncancerous lesions, and malignant refers to cancer lesions. The BreakHis dataset
was collected using the Suical Open Biopsy (SOB) method.

Table 1. Histopathological images dataset from BreakHis.

Magnification Factor Used Benign Malignant Total

40x 652 1370 1995

100x 644 1437 2081

200x 623 1390 2013

400x 588 1232 1820

Total of images 2480 5429 7909

4.2. Dataset Preprocessing

Data preprocessing is a critical part of any ML algorithm. Obtrusive or pointless
features must be removed, and the data must be formatted in a way that the algorithm can
understand. This study applies the following data operations:

Skew Data

Data skewing happens when the distribution of data points in a dataset is not consistent,
meaning that some values are more common than others. Skewing can cause problems when
creating prediction models because it can give an inaccurate insight into what is happening.
As displayed in Table 1, the BreakHis dataset has 5429 malignant and 2480 benign images,
which might indicate a data skewing risk. In order to avoid data skewing, this work uses
the whole dataset from benign, that is, 2480 images, and randomly selects 2780 images out
of 5429 in the malignant dataset. In total, the used dataset from benign and malignant is
5260 samples divided into training, validating, and testing, with the following ratio: 60% for
training, 10% for validation, and 30% for testing. The following data preprocessing pipeline
steps are applied to the dataset:

4.3. Image Scaling

There are two different image sizes in the BreakHis dataset collection, i.e., (700 × 460) or
(700 × 456) pixels. This work resizes the images to be the same size, i.e., (700 × 460) pixels.
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4.4. The Dataset Splitting

The dataset is sampled in the following proportions: 60% for training, 10% for valida-
tion, and 30% for testing.

4.5. Data Transformation

Data transformation is the process of converting data from one format to another. The
following augmentation parameters are used for the training dataset:

• Horizontal flipping = 0.4
• Vertical flipping = 0.4
• Image rotation = 20
• For RGB channel normalization, the following values for mean and standard deviation

are used: (0.5, 0.5, 0.5) and (0.5, 0.5, 0.5), respectively.

The following data transformations are used for the testing dataset:

• Image resizing = (700 × 460) pixels
• For image normalization, the following values for mean and standard deviation are

used: (0.5, 0.5, 0.5) and (0.5, 0.5, 0.5), respectively.

4.6. Feature Extraction Phase

Feature extraction is the extraction of meaningful information from data. The first step
in extracting features is to divide the image into small squares, or “kernels”. The kernels
move across the image, and at each location, they calculate values corresponding to the
image’s important characteristics. The feature extraction goes through layers; the first layer
extracts basic features from the input image, such as edges and corners. The second layer
builds on these features to create more complex features such as shapes and textures. This
process continues until the final layer recognizes a unique feature in the image. Figure 4
shows the feature configuration settings for each layer used in this work. 
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Figure 4. Configurations of the feature extraction phase of CNNs.

4.7. Classification Phase

As depicted in Figure 1 the classification learning is the second phase of CNNs. The
flattened features of the preceding phase are used as input to the learning phase. The ReLU
function is the most commonly used activation function in neural network units. For this
work, the dropout value is set to 0.4. The last layer of CNNs is a mathematical function called
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the softmax, which converts a vector of numbers into a vector of probabilities. The fully
connected neural network with the configuration used in this study is shown in Figure 5.

Features
512 x 21 x 14

1024 units
512 units

Softmax

512 x 21 x 14
units

Benign

Malignant 

 

 

 

 

 

 

 

 

   

 

 

Figure 5. Configuration of learning phase.

The model has 156,227,329 trainable parameters. BCELOSs is the loss function that
measures the Binary Cross Entropy between the target and input probabilities. The Adam
optimization function is selected to apply stochastic optimization. The batch size is 12, and
the epoch number equals 15. The model is trained using the GPU.

5. Results
5.1. AU-ROC/AUC Curve

As illustrated in Section 3.2.1 AU-ROC/AUC measures the ability of a classifier to
separate two classes. On the AU-ROC/AUC curve, as shown in Figure 6A, the model
scored more than 0.93 out of 1 where 1 being the maximum value. 

 

 

   

 

 

 

 

 

 

(A) (B)

Figure 6. Model performance. (A) ROC. (B) Training and validation loss.

5.2. Training Loss and Validation Loss

As described in Section 3.2.2, the training and validation loss function is usually
used to evaluate the performance of a model on a hold-out set (validation portion). The
created model has low training and validation loss, as shown in Figure 6B. Small training
and validation losses indicate that the model has a soft overfitting problem and can be
generalized to predict future events (cases) with acceptable accuracy.

As stated earlier, 1736 samples are used for performance evaluation (testing). After
applying image preprocessing, the testing sample was randomly selected from the BreakHis
dataset. The selected sample contains 792 benign and 944 malignant cases. Using the results
from the testing phase, the model was also evaluated using precision, recall, and F1-score
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performance metrics, as shown in Table 2. The model scores slightly better at predicting
cancerous cases than when predicting normal ones. The calculations of these performance
matrices are introduced in Section 3.2.3.

Table 2. Normal and cancer prediction accuracy using various classification matrices.

Precision Recall F1-Score

Normal 0.88 0.9 0.89

Cancer 0.91 0.9 0.9

Figure 7A depicts the number of times the model predicts correctly and incorrectly.
Based on the results shown in Figure 7A, the model has a 90% accuracy level as it correctly
predicts 1558 out of 1736 testing samples.

Predicted correct Predicted wrong
predicted classes
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Cancer
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 la
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98 846
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800

(A) (B)

Figure 7. Overall prediction accuracy. (A) Cancerous class prediction. (B) Confusion matrix.

The confusion matrix, depicted in Figure 7B, exhibits greater detail about model
performance; it indicates the number of correct and incorrect classifications and the number
of times each class was confused with another. From the confusion matrix, 80 normal
samples were predicted as cancerous, and 98 cancerous samples were predicted as normal.
It also shows that the prediction accuracy percentage, in terms of normal predictions, is
712
792

= 0.89, while, in terms of cancerous predictions, it is
846
944

= 0.89.
As remarked throughout this study, the aim is to study the impact of distinct magnifi-

cation factors of the histopathological image on model accuracy. The aim is to decide which
magnification factor assists the model in achieving the best learning rate. The number of
histopathological images for the testing dataset and the combined training and validation
dataset is shown in Figure 8A,B. The numbers from Figure 8A,B indicate that no skewing
problem is present and that the model is equally exposed to almost comparable numbers
of magnification factors during the training and testing phases. The goal at this point is
to determine which magnification factor helped the model understand the structure of
cancerous or non-cancerous cells more clearly. Which magnification factor, in other words,
is characterized as good data, and which one represents noisy data? As accuracy will
increase if we only train on the one with more informative features, it is advantageous to
use the proper magnification factor that has the most informative features.
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Figure 8. Number of magnification factors in the training and testing datesets. (A) Training dataset.
(B) Testing dataset.

After prediction, the testing dataset is separated into four distinct datasets, each repre-
senting one magnification factor; one dataset for each magnification factor. The confusion
matrices for the four distinct magnification factor datasets are shown in Figure 9. From the
shown results, it is clear that, at magnifications of 200x and 400x factors, the model performed
better in achieving fewer false-positive and false-negative detections.
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Figure 9. Confusion matrix for the four different magnification factors. (A) 40x. (B) 100x. (C) 200x.
(D) 400x.
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Figure 10 shows that the model achieves the highest accuracy when using 200x mag-
nification, followed by a 400x magnification factor. The model performs worse when
employing 100x and 40x magnification factors. This conclusion shows that the model learns
more effectively from 200x and 400x magnification factors than from 100x and 40x.
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Figure 10. Benign or malignant prediction accuracy for the various magnification factors.

Precision, recall, and F1-scare metrics are used to further emphasize the differences
in prediction performance among the four magnification factors. The model performs
better using 200x and 400x magnification factors, as shown in precision, recall, and F-score
measurements, as shown in Figure 11. Noticeably, 200x slightly outperforms 400x in all of
the used performance metrics. Furthermore, it is crucial to note that the model performs
better at predicting cancerous cells than healthy cells.

Figure 12 displays the weighted average accuracy difference among the various mag-
nification factors. The model achieves high accuracy by using a 200x magnification factor
followed by a 400x magnification factor. These findings imply that the model accomplishes
a higher learning rate from 200x and 400x magnifications factors.
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Figure 11. Cont.
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Figure 11. Accuracy difference using precision, recall, and F1-score. (A) Precision. (B) Recall.
(C) F1-score.
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Figure 12. Weighted average accuracy difference.

The softmax function at the CNNs’ output layer predicts a class (i.e., benign or ma-
lignant) with a specified probability value. Table 3, for example, displays the prediction
probability values for samples chosen at random from the testing pool. For instance, rows
3, 4, and 6 are predicted correctly as cancerous samples with a high probability, i.e., 0.8,
0.94, and 0.99, respectively. Similarly, the sample in row 9 is correctly predicted but with
a probability of 0.53. The samples in rows 3, 4, and 6 have higher prediction probability
values than those in row 9. In other words, the model is more certain about the former than
the latter.

The model’s prediction probabilities at various magnification factors are highlighted
(via using Kernel Density Estimator (KDE) ) to assess the model performance difference
at various magnification factors. KDE is a method to estimate the Probability Density
Function (PDF) from a finite dataset. KDE is a non-parametric method used ( in this study)
to display the prediction probability across all magnification factors. KDE is similar to
histograms but utilizes other properties such as smoothness or continuity by using the
right kernel. Figure 13 shows the KDE of the four magnification factors.
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Table 3. Prediction probabilities for randomly selected samples from testing dataset.

# Histopahological Image Name T Label Pred. Label Pred. Probability

1 SOB_B_F-14-23060AB-40-011.png 0 0 0.064793758

2 SOB_B_F-14-9133-200-038.png 0 0 0.111493707

3 SOB_M_DC-14-13412-100-004.png 1 1 0.802534401

4 SOB_M_PC-14-15704-200-024.png 1 1 0.945152342

5 SOB_B_F-14-9133-200-017.png 0 0 0.069869727

6 SOB_M_DC-14-11520-100-008.png 1 1 0.998456001

7 SOB_B_TA-14-19854C-200-016.png 0 0 0.020913977

8 SOB_B_F-14-25197-400-034.png 0 1 0.631648719

9 SOB_M_DC-14-11031-40-010.png 1 1 0.534332812

10 SOB_M_PC-14-19440-400-028.png 1 1 0.998934567
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Figure 13. KDE of the four magnification factors. (A) 40x. (B) 100x. (C) 200x. (D) 400x.

The gray area in the figures represents the area where there is a confusion, benign
tumors are mistaken for malignant tumors or vice versa, resulting in inaccurate predictions.
Those samples on the left of the border line are predicted non-cancerous cells while they
are cancerous; those samples on the right of the border line are denoted as cancerous cells
while they are not. Comparing the confusion areas of the different magnifcation factors
(displayed in Figure 13A–D, the magnification factor of 200x has a minor area followed by
a 400x magnification factor. It is evident that the prediction probability of cancerous cells
is higher than those of non-cancerous cells; this is shown in all magnification factors of
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Figure 13A–D. Figure 13C for 200x has the highest probability density level, indicating that
the model is more confident when learning and predicting from this magnification pool.

The shaded area shrinks as the prediction accuracy increases until it reaches zero
when there are no prediction errors. Figure 14A,B show the PDF overlap of the four
magnification factors, where Figure 14B is just a zoomed-in view of the confusion area
shown in Figure 14A. The shaded area is where the model does not have a very high
prediction probability of whether a cell is cancerous or non-cancerous. Figure 14A,B clearly
show that 200x and 400x have fewer shaded areas in the confusion area; this indicates that
the model achieved a higher learning rate from magnifications of 200x and 400x factors
compared with 40x and 100x magnification factors.
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Figure 14. Model’s confusion area for the four magnification factors. (A) Confusion area.
(B) Confusion area zoomed in.

To prove the stated conclusion reached from Figure 14A,B, the count of samples from
all magnification factors is calculated in the confusion area, as illustrated in Figure 15. To
perform the counting, the confusion area limits is defined as the range of the prediction
probability between 0.3 and 0.7. Figure 15 shows that magnification factors of 200x and
400x have the lowest number of samples in the confusion area. The magnification factor of
200x has fewer sample counts in the confusion area.
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Figure 15. Samples count per magnification factor in the confusion area.
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6. Discussion

The histopathologist uses different magnification factors to capture the unique mani-
festation of cell deformation. This is because every magnification factor reveals distinctive
features of the tissue under investigation. For instance, high-power magnification factors
are beneficial for examining tissues in great detail. On the other hand, using low-power
magnification helps understand the tissues’ overall structure. The disadvantage is that it
can be difficult to distinguish between normal and abnormal tissues. Histopathologists
usually use different magnification factors to gain information from each level to construct
a conclusion. The justification mentioned above holds for human histopathologists, but
does it also hold for machine learning algorithms? In particular, do CNNs benefit from
training at various magnification levels? The work in this paper studies the impact of
the magnification factor on the learning rate. The paper tries to answer: what is the best
magnification factor so that the model achieves high prediction accuracy? Table 4 lists
the work done in the literature about breast cancer classification using histopathological
images. Except for the work in [6,17], the literature did not discuss the effects of various
magnification factors on the model’s prediction accuracy. The authors in [17] show the
accuracy difference among different magnification factors without describing their findings
and providing a conclusion. The impact of various magnification factors on learning rate
is not the focus of [17] compared to the work done in this paper. A study of the effects of
various feature extraction, magnification factors, and classifiers is presented in [6]. The lat-
ter work aims not to study which magnification factors achieve a better learning rate; their
focus is to evaluate the overall performance as there is no in-depth analysis or conclusion
of which magnification factor is the best.

This study thoroughly examines how different magnification factors affect the model’s
ability to predict classes, i.e., benign versus malignant. The results of this work showed that
the model achieved a higher accuracy (learning rate) when using 200x and 400x magnification
factors. The latter conclusion is noticeably clear when using the following performance
matrices: precision, recall, F-Score, confusion matrix, and weighted average accuracy. The
kernel density estimator shows that the model predicts higher probability values when
using 200x and 400x magnification factors. This assures that the model finds satisfying
features that make the model easy to learn and predict. The model has fewer predictions in
the confusion area when learning from 200x and 400x magnification factors, as shown in
Figure 15. The conclusion of this study is that it is advisable to use magnification factors
of 200x to train and predict. It is worth trying to consider 200x as the center value of the
magnification factors and using a magnification factor range (for example, n factor values
less and higher than the center); the range is centered around 200x. This will be the future
work of this paper.

Table 4. Literature review for BC prediction using ML trained on histopathological images.

Auth. Dataset Modality Methodology Preprocessing Objective

[3] Kaggle invasive ductal
carcinoma

HI SVM and LR Feature reduction us-
ing PCA and HOG and
Canny edge detection

BC classification, i.e., B
or M

[4] BreakHis [21] HI SVM and LR CNN (for feature extrac-
tion) + SVM (for classifi-
cation) or CNN (for fea-
ture extraction) + LR (for
classification)

BC classification, i.e., B
or M

[5] Kaggle dataset HI SVM and CNN for feature
extraction and K-means
for tumor extraction.

Segmentation algorithm
GA and K-means

locate and extract tumor
cells
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Table 4. Cont.

Auth. Dataset Modality Methodology Preprocessing Objective

[6] BreakHis [21] HI SVM, CNN, RF, QDA HOG, WPT, ResNet, and
PCA for feature extrac-
tion

BC classification, i.e., B
or M

[7] locally prepared HI SVM Tissue decomposition to
locate multityped ob-
jects

image decomposition to-
ward colon cancer clas-
sification

[8] Vietnamese Dataset VB-
Can

HI SVM, LR, NB, DT, RF For feature extrac-
tion they use VGG16,
ResNet50, GoogleNet

BC classification, i.e., B
or M

[9] 430 patients collected
from two laboratories

HI + age, sex, lesion site CNNs Fusion of patient infor-
mation with an image

BC classification, i.e., B
or M

[10] BreakHis [21] HI CNNs Using original CNN ar-
chitecture

BC classification, i.e., B
or M

[11] BreakHis [21] HI CNNs Feature extraction using
DenseNet-201

BC classification, i.e., B
or M

[12] MIAS mammograms HI CNN Feature extraction using
the Entropy Function

BC classification, i.e., B
or M

[13] BreakHis [21] HI Active learning image labeling using
Entropy-based query
strategy

BC labeling

[16] Kaggle BC HI HI Deep RNNs Convert RGB image to 7
channels

BC classification, i.e., B
or M

[17] BreakHis [21] HI RF, SMO Intensity Histogram Co-
occurrence matrix

BC classification, i.e., B
or M

[18] —– HI Fussy classification Geometric transforma-
tion from RGB to HSV

Cancer Cells classifica-
tion, i.e., B or M

[22] Hospital of the Univer-
sity of Pennsylvania

HI DBNs + LR Applying RoI extraction BC classification, i.e., B
or M

[24] BreakHis [21] HI CNN Feature extraction using
ResNet50

BC classification, i.e., B
or M

[25] Tissue Micro Array
database and BreakHis
[21]

HI CNN Feature extraction using
ResNet152

BC classification, i.e., B
or M

[26] 100 images from un-
known source

HI Origin CNN or CNN +
LBP (feature extraction)

First RGB to gray conver-
sion followed by LBP

BC classification, i.e., B
or M

[28] BreakHis [21] HI DMI based on CNN images reduced to bag of
labels

BC classification, i.e., B
or M

[29] —- HI AlexNet + CNN, VGG-11
+ CNN, and ResNet-18 +
CNN

RoI annotation then ex-
tract image patches

predict and localize tu-
mour tissue region

7. Conclusions

This study conducts a thorough analysis to determine which magnification factors,
i.e., 40x, 100x, 200x and 400x, are desirable and produce the highest prediction accuracy.
This study showed that, in comparison to 40x and 100x, using 200x and 400x magnification
factors during training and testing improved the CNNs model’s prediction accuracy. More
specifically, this study finds that the CNNs model performs better when trained and tested
on 200x than it does on 400x. The kernel density estimator demonstrates that the model
predicts higher probability values when 200x and 400x magnification factors are used. The
results also illustrated that the model has fewer predictions in the confusion area when
learning from 200x and 400x magnification factors. The study’s findings support the usage
of 200x magnification factors for training and prediction.

For the future scope of this study, is considering 200x as the center value of the mag-
nification factors. Then a range of magnification factors, around the magnification center
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(200x), is used; for example, using n factor values less and higher than the magnification
center to train and test the model.
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