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Abstract: Additive manufacturing (AM) technologies are growing more and more in the manu-
facturing industry; the increase in world energy consumption encourages the quantification and
optimization of energy use in additive manufacturing processes. Orientation of the part to be printed
is very important for reducing energy consumption. Our work focuses on defining the most ap-
propriate direction for minimizing energy consumption. In this paper, twelve machine learning
(ML) algorithms are applied to model energy consumption in the fused deposition modelling (FDM)
process using a database of the FDM 3D printing of isovolumetric mechanical components. The
adequate predicted model was selected using four performance criteria: mean absolute error (MAE),
root mean squared error (RMSE), R-squared (R2), and explained variance score (EVS). It was clearly
seen that the Gaussian process regressor (GPR) model estimates the energy consumption in FDM
process with high accuracy: R2 > 99%, EVS > 99%, MAE < 3.89, and RMSE < 5.8.

Keywords: additive manufacturing (AM); fused deposition modelling (FDM); machine learning;
energy use; Gaussian process regression

1. Introduction

Additive manufacturing, or 3D printing, is defined as the material deposition process
from computer-aided design (CAD) models, usually layer upon layer [1–3].

Additive manufacturing (AM) is widely applied in a broad spectrum of domains,
including architecture, mechanics, aeronautics, chemical industry, education, food, social
culture, and medicine [4,5]. Indeed, the importance of additive manufacturing importance
has grown during the COVID-19 pandemic; several medical tools have been created to
mitigate disruptions in the global medical field [6].

AM is a generic term for a group of processes which can be classified according to
machine architecture into seven categories [7,8], Table 1 summarized the different AM
processes and associated technologies and materials.

As is evident, the range of techniques and materials is very wide. This subsector
of additive manufacturing is growing rapidly in the industrial world, with compound
annual growth rates of 24.5% [9,10], because additive manufacturing methods are more
efficient and more flexible than conventional manufacturing methods, such as subtractive
manufacturing and formative manufacturing. Therefore, attention is increasingly focused
on the energy consumption of additive manufacturing (AM) systems. Much research has
been conducted on energy consumption modeling for the AM process [10–12]. However,
an efficient model for predicting energy consumption in the FDM process is still absent, in
particular regarding the usage of machine learning (ML) for estimating energy use in the
FDM process based on part orientation.
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Table 1. Brief description of different additive manufacturing processes [7,8].

AM Process Type Brief Description Material Used Technologies

Vat
photopolymerization

photopolymers are
exposed to repeated
forms of radiation
corresponding to

cross sections of the
part under

construction.

Photopolymers
Stereolithography,

digital light
processing (DLP)

Powder bed fusion

Thermal energy
selectively merges the
regions of a powder

bed.

Metals, polymers

Electron beam
melting (EBM),
selective laser

sintering
(SLS),selective heat

sintering (SHS), direct
metal laser

sintering(DMLS)

Material extrusion
The melted material
is selected through a

nozzle.
Polymers Fused deposition

modelling (FDM)

Material jetting
Droplets of build

material are placed
selectively.

Polymers, waxes Multi-jet modelling
(MJM)

Binder jetting

A binder is printed
onto a powder bed to
form the part’s cross

section.

Polymers, foundry
sand, metals

Powder bed and
inkjet head (PBIH),
plaster-based 3D

printing (PP)

Sheet lamination

Sheets of materials
are cut, stacked, and
bonded to form an

object.

Paper, metals

Laminated object
manufacturing

(LOM), ultrasonic
consolidation (UC)

Direct energy
deposition

Thermal energy is
used to merge

materials by melting
as the material is
being deposited.

Metals

Laser metal
deposition (LMD),

electron beam metal
deposition,

wire arc additive
manufacturing

(WAAM)

In this work, we mainly focus on energy consumption prediction in the fused de-
position modelling (FDM) process. This process is one of the most frequently applied
additive manufacturing methods. In fact, FDM printers largely simplify and accelerate the
production process, providing users with an efficient manufacturing environment with
better material utilization and reduced time consumption. The FDM principle is based on
the extrusion of molten thermoplastic filaments layer by layer to form three-dimensional
parts [13]. The FDM method includes numerous printing parameters, such as percentage
infill, infill style, layer thickness, printing speed, and printing temperature, which affect the
quality of the final product [14–16].

The aim of the current study is to model the experimental results of energy consump-
tion for the FDM 3D printing of isovolumetric mechanical components using several ML
algorithms. The simulation results provide the expected results and demonstrate the pre-
dictive accuracy of the Gaussian process regressor (GPR) method versus other ML methods
used. With our developed GPR model, we can select the appropriate orientation of the
part to be printed in order to reduce energy consumption. This prediction can be used to
encourage engineers as they develop intuition for novel designs with FDM technology.
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In this paper, the Section 2 presents a literature overview on energy consumption
estimation in 3D printing. The Section 3 is devoted to the presentation of experimental data
extracted from [11]. The Section 4 is dedicated to the methodologies of the ML algorithms
used to model the energy consumption use of 3D printing isovolumetric mechanical
components, while the prediction results and discussion are presented in the Sections 5
and 6. The Section 7 presents conclusions.

2. Literature Review

A significant number of research studies investigated the estimation and the opti-
mization of energy use in AM Processes by following various modeling approaches, such
as mathematical and mechanical modeling, based on the process’s physics and artificial
intelligence modeling.

A prediction model of energy consumption and printing time based on the working
states of machine components and process parameters was proposed [17].The proposed
model has certain limitations in the printing phase; the prediction model did not take into
account the time needed for the empty travel, acceleration, and deceleration of the nozzle
movement.

A data fusion method was suggested based on the convolutional neural network and
long short-term memory CNN-LSTM model for AM energy consumption prediction [18].
For validating the proposed model, a case study was carried out using an SLS system. The
CNN-LSTM-developed model does not predict accurately; this may be due to a significant
loss of information during the convolution feature extraction process because the sliced
images are less informative.

An energy consumption prediction model for AM systems was developed that incor-
porates clustering techniques and deep learning to integrate the multi-source data collected
using the Internet of Things [19]. For validating the approach, a case study is conducted on
the basis of actual data collected on the SLS process, which demonstrated the merits of the
proposed approach.

In [20], authors presented the implementation of a tool to predict the energy flows
occurring in direct metal laser sintering. A model for assessing energy and material
consumption for binder jetting was developed [21]. A comparative study on energy
consumption made at the process level for conventional and additive manufacturing
processes was presented [22].

In [23], authors developed an approach based on the NC codes to estimate the material
usage, time, and energy consumption of 3D-printed models. They validated their approach
with two experiments, both of which present deviations of around 9% and 11% from the
theoretical values.

A deep learning algorithm (ANN) was applied to predict the part mass, support
material mass, and build time of voxelized objects for an AM process [24]. The results of
the model were compared to results generated afterwards. This prediction model had low
accuracy, with determination coefficients of 46.8% for part mass, 30.1% for support material
mass, and 22.5% for build time.

A model and an energy profiler was developed to simulate the energy cost of the
printing process [11]. From the obtained results, they suggested a cross-layer energy
optimization solution, called 3DGates; it was assessed over 338 benchmarks on a 3D printer
and realized a 25% reduction in energy consumption.

In [25], researchers built an energy consumption model and calculated the amount
of energy used in wire-based additive–subtractive hybrid manufacturing and powder-
based hybrid additive–subtractive manufacturing. They observed that the wire-based and
powder-based methods used similar amounts of energy.

Potential environmental implications of AM were described in [26], such as energy
use, waste, lifecycle impact, and occupational health, noting that AM technologies use
more energy than conventional manufacturing technologies.



Appl. Syst. Innov. 2022, 5, 86 4 of 16

A mathematical model was developed for estimating the energy consumption of
stereolithography processes [2].The obtained results were validated experimentally, the
effects of different parameters on the total energy consumption was studied, and an
optimization method was proposed to minimize energy consumption based on an optimal
combination of parameters.

In [27], the operating procedure was analyzed and the impact of printing parameters
on the energy consumption and particulates emissions was studied. The power profile anal-
ysis illustrated that print bed heating and temperature maintenance consume significant
amount of energy during the FDM process.

Based on the abovementioned works, it is evident that a large amount of research
has been performed on the estimation and optimization of the energy consumption of 3D
printing processes. However, little work has been done to develop an efficient model based
on part orientation to predict and minimize energy use in the FDM process. In this work,
12 ML models are used to select the most efficient model for obtaining the best prediction
of energy consumption.

This paper has three main aims:

1. Predict the energy use of FDM printed parts;
2. Assess the impact of printing parameters on energy consumption;
3. Optimize energy consumption based on the orientation of the part to be printed.

3. Design of Experiment Data

The data used in this research were retrieved from the experiment reported in [16]. We
applied the machine learning algorithms to predict the energy consumption and compared
it with the actual experimental results reported by the authors in [16]. The experiment was
conducted using a Prusa i3 MK3S 3D printer. Electrical energy consumption was assessed
for printing 68 different isovolumetric mechanical components with multiple orientations
(total of 184 model files); these components were selected from Mechanical Components
Benchmark (MCB) [28]. The experimental setup included four Adafruit INA260 sensors to
measure the current consumption of the 3D printer, Arduino MKR WiFi 1010 to collect the
electric current data from the current sensors, and a Raspberry Pi board to read the serial
data coming from the Arduino board.

Many parameters affect the energy consumption in FDM 3D printing, including
printing orientation of the model, stl surface area, number of facets, extrusion speed,
extrusion temperature, sliced X’, sliced Y’, sliced Z’, sliced volume, sliced volume including
support, total filament, percentage infill (20%), layer thickness, expected print time, and
number of layers.

Extrusion speed and temperature are among the most important parameters affecting
FDM printing; they have been used as recommended by the manufacturer [16]. Since
extrusion speed, extrusion temperature, percentage infill, and layer thickness are constant
parameters, they do not affect the learning phase, so we will not take these as input data.

The range of input parameters used is shown in Table 2 [28].

Table 2. Input parameters interval values.

Input Parameters Intervals

Orientation [0–180]

stl surface area [1533.85–10,850.92]

Number of facets [40–9368]

Sliced X [3.23–153.87]

Sliced Y [8.45–67.27]

Sliced Z [3.23–153.87]
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Table 2. Cont.

Input Parameters Intervals

Sliced volume [2142.39–5852.08]

Sliced volume including support [2171.28–11,376.59]

Total Filament [2.76–14.45]

Expected print time [0.4166–4.033]

Number of layers [21–1629]

The experimental data are used in this research to train machine learning algorithms
to predict energy consumption in the FDM process.

4. Methodology

In this work, we aim to propose a model for predicting energy consumption in the FDM
process. For this, before training the different algorithms that we will present afterwards, it
is necessary to prepare and perform some processing on the dataset:

- The first step is data cleaning, in which we eliminate the useless information to keep
only the input and output parameters used in our study, which are shown in Table 2.

- In the second step, we will transform the data into a format or structure that would be
more appropriate for model development and also data exploration in general. In our
case, we have used standard scaler.

After data processing, we train each algorithm using different parameters until we
find the optimal parameter values for our data, as shown in Figure 1.
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Figure 1. Approach used to adjust parameters.

In this section, we will review the different machine learning algorithms that we have
used to find the best model to predict energy consumption in the FDM process, using as
input the data shown in Table 2. Then we will present the statistical indicators used to
measure performance.
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4.1. Overview of Machine Learning Algorithms
4.1.1. Linear Regression

The mathematical formula for linear regression [29,30] is defined by the following
equation:

E(Y | X = x) = β0 + β1x
Var(Y | X = x) = α2 (1)

This linear regression model is formed by the mean function; it is a linear equation that
combines a set of input values (X) with the output (Y) that represents the predicted value.
The β0 value is obtained for E(Y | X = x) with X = 0 and the intercept β1 is calculated by
changing the values of X. The variance is assumed to be a positive value, usually unknown.

The observed value and the estimated value are related by the following formula:

yi = E(Y | X = xi) + ei or explicitly by ei = yi − E(Y | X = xi) (2)

where ei is the error calculated in estimation, which depends directly on the unknown
parameters.

4.1.2. RANSACRegressor (Random Sample Consensus)

RANSAC is a random sampling algorithm which was first introduced by Fischler and
Bolles [31]. This algorithm gives a fit to the model by excluding outliers; RANSAC is able to
smooth and interpret training data containing gross errors. The presence of outliers has an
impact on the parameters of the training model, so it is preferable to remove outliers from
the training. The objective of RANSCAN is to fit the model with outliers while efficiently
exploring the parameter space to maximize an objective function C (3). In the standard
RANSAC formula, the maximized objective function C is the support size for a given
model. In other words, the support is the number of points that have residual errors below
a predefined threshold t (4), and the group of points is called the consensus set. The goal of
the method is to maximize the cardinal of this group (3).

C = ∑
i

ρ
(

e2
i

)
(3)

ρ
(

e2
i

)
=

{
1 for e2

i ≤ t2

0 for e2
i > t2 (4)

4.1.3. Ridge Regression

This approach was introduced by Hoerl-Kennard [32]. It aims to optimize Formula
(5):

minβE(α, β) =
n

∑
i=1

(yi − Xiβ)
2 + α‖β‖2 (5)

It is a linear regression with quadratic constraint on the coefficients. This regression
is used more when we have variables that are highly correlated. The solution can be
expressed as follows:

β∗= (X’X + αI)−1X’Y (6)

where β∗ is the estimator of β, matrix αI is a named bias factor, and it is possible to choose
an α for which the matrix (X′X + αI) is invertible. This is especially useful when there are
several variables. The goal of Hoerl-Kennard is to make the matrix (X′X + αI) invertible;
the higher the value of α, the more robust the model coefficients.
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4.1.4. Lasso Regression

This is a regression technique with coefficient constraint. It is used when the variables
have a high correlation. This method is very effective, especially with a database that has a
large dimension [33]. Lasso regression aims at optimizing Problem (7):

minβE(α, β) =
n

∑
i=1

(yi − Xiβ)
2 + α‖β‖ (7)

For a single variable, this regression acts on one variable, and lasso must minimize the
following formula:

E(β) =
n

∑
i=1

(yi − βxi)
2 + α|β| (8)

That is, we must find β with E(β) = 0
In other words:

E′(β) =


n
∑

i=1
−xi(yi − βxi) + α si β > 0

n
∑

i=1
−xi(yi − βxi)− α si β < 0

(9)

And : E′(β) = 0⇔


β =

−α+
n
∑

i=1
xiyi

n
∑

i=1
x2

i

si β > 0

β =
α+

n
∑

i=1
xiyi

n
∑

i=1
x2

i

si β < 0

(10)

4.1.5. Gaussian Process Regressor (GPR)

The Gaussian process regressor formula is given by (13) with the input
X = [x1, x2, . . . , xn], the output Y = [y1, y2, . . . , yn], and for any element
{(xi, yi) | i = 1, . . . , n},yi = f (xi). The main idea of GPR is to apply a Gaussian process
(GP) to represent f(x), which we will call latent variables. Input X allows us to index these
latent variables so that { f (x1), . . . , f (xk)} is a Gaussian distribution correlated between all
elements.

m(x) = E(f(x)) (11)

m(x) is the mean of f(x) and, for the covariance, is described by the following equation:

k
(
x, x′

)
= E( f (x)−m(x))

(
f
(
x′
)
−m

(
x′
))

(12)

E( ) represents the expectation. The function of the mean is especially important when
there is a region with unobserved inputs with a value of zero.

The Gaussian process regressor is given by:

f (x) ∼ GP(m(x), k
(
x, x′

)
) (13)

with:
yi = f (xi) + ε (14)

ε ∼ N
(
0, σ2) and σ2 are the variance of the noise.

For the covariance, there are some specific parameters that are independent and give
the distribution of f(X) and named hyperparameters θi, and it usually uses the exponential
squared Covariance (15).
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k
(
x, x′

)
= θ1 exp

(
−‖x− x′‖2

2θ2

)
(15)

Note that the covariance function decreases rapidly at input pairs x and x’, which
are distant, which expresses a low correlation between f(x) and f(x’). Therefore, θ1 is a
hyperparameter that represents the maximum correlation and θ2 is a positive value defining
the rate of decline for the correlation of points that are not close to each other.

4.1.6. Elastic Net Regressor

The elastic net regression model was introduced by [34] in order to solve the criticisms
on the lasso, whose set of selection variables may be too dependent on the data and
therefore unstable. The solution is to combine the regression penalties of ridge regression
and lasso to exploit the best aspects of both methods. Elastic net aims to minimize Function
(16):

Lenet (β̂) =

n
∑

i−1

(
yi − x′i β̂

)2

2n
+ λ

(
1− α

2

m

∑
j=1

β̂2
j + α

m

∑
j=1

∣∣β̂ j
∣∣) (16)

with:ŷ = β̂0 + x1 β̂1 + · · ·+ xn β̂n is the predicted value for the input X of n elements.
β̂i is the predicted coefficient.
0 ≤ α ≤ 1 and λ ≥ 0
where α is the mixing parameter between ridge regression (α = 0) and the lasso (α = 1).
Here, α determines the influence of ridge regression relative to lasso.

There are two parameters to adjust: λ (penalty) and α.
Elastic net must minimize the following function [34]:

EN(β) =
n

∑
i=1

(
yi − x>i β

)2
+ λ1

p

∑
j=1

∣∣β j
∣∣+ λ2

p

∑
j=1

∣∣β j
∣∣2 (17)

where λ1 and λ2 are the lasso and ridge regression penalties, respectively.
Elastic net combines the advantages of lasso and ridge, which are shrinkage and

sparsity, respectively.

4.1.7. Random Forest Regressor

This approach has a set of regression trees, and a sample of the training is processed
each time first. In other words, each sample produces a regression tree. For the prediction
of the test data, the average of the predictions of each tree is calculated; each tree gives us a
prediction, and the prediction result is the average of the values (18).

RF(X) =
p

∑
i=1

Ti(X) (18)

The algorithm of this approach is the following:

Step 1: From the dataset, we choose N records at random.
Step 2: For each N records, we create a regression tree.
Step 3: For each tree, we repeat steps 1 and 2.
Step 4: For a problem of a record E, we take the average of the other predictions of the other
trees to estimate the Y value of the output.

4.1.8. SVM

SVM was introduced by Vapnik [35]. The SVM regression method is given by Formula
(19), in which ϕ(x) is a nonlinear mapping function of the input x into a feature space
and the two respective parameters b andω represent the weight vector and a coefficient,
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respectively, both of which are to be calculated from the data. By performing a linear
regression in a high dimensional feature space with nonlinear mapping, the two parameters
b and ω are estimated by minimizing Sum (20), in which C is a constant and positive value
that determines the tradeoff between the complexity of the model and the sum with a
condition of having an error greater than ε. ||ω||2 is the Euclidean norm of the regression
vector ω, and Lε is a loss function that calculates the empirical risk R (20).

f (x) = ω · φ(x) + b (19)

R = C
n

∑
i=1

Lε( f (xi), yi)
1
2
‖ω‖2 (20)

Lε( f (xi), yi) =

{
0 for | f (xi)− yi| < ε

| f (x)− y|−ε otherwise
(21)

4.1.9. Multi-Output Regression—SVR

This regression method [36] was introduced by Pérez-Cruz et al. [37]. This method is
more generalized than standard SVR. Considering the {ϕ1, ϕ2, . . . , ϕN} time series and for
the multi-step prediction and modeling, this amounts in other words to finding in training
the relation between the value of the previous observation x and the current observation
y with: x = [ϕt, ϕt−1, . . . , ϕt−d+1] ∈ Rd and y = [ϕt+1, ϕt+2, . . . , ϕt+H ] ∈ RH ; i.e., for{
(xi, yi)

}n
i=d, the M-SVR aims to find a wj regressor and also find bj(j = 1, . . . , H) for each

output by minimizing:

Lp(W, b) =
1
2

H

∑
j−1
||wj||2 + C

n

∑
i=1

L(ui) (22)

with: ui = ‖ei‖ =
√(

eT
i ei
)

and

eT
i = yT

i − ϕ(xi)W − bTW =
[
w1, . . . , wH

]
, b =

[
b1, . . . , bH

]T
(23)

where C is a parameter that determines the relationship between the regressor wj and
the error ei and ϕ(.), a nonlinear function to the feature space x. L(u) is a quadratic cost
function that is independent at epsilon:

L(u) =

{
0 u < ε

u2 − 2uε + ε2 u ≥ ε
(24)

This approach is called support vector regression and was developed to perform
regression [36]. The specificity of this method is that the training is performed only on a
subset of the data. This is done given the cost for building the model; the SVR takes only
the training data that are not close (with respect to a threshold e).

Multi-output regression is widely used, especially the objective is to make simulta-
neous predictions of several values in output. SVRs are more efficient than time series
because the latter do not provide reassuring results for non-linear data.

4.1.10. Regression Chain

This method is based on the classical chain classification method. RC has the advantage
of chaining models to a single target variable while creating regression models for each of
the variables, which allows us to build in sequential order a chain of targets. The first target
variable related to the regression model to be built is chosen independently from the other
target variables. In the prediction process, these target values become inputs to the training
set to predict the next target variable. That is, for X as input and for Y as output with three
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target variables Y (y1, y2, and y3) in the first regression, we fit the first model M1 for the
variable y1 taking X as input (25). The second iteration concerns the second model, M2,
which will be adjusted for the target variable y2 based on the training set, which is X and y1
(26), so model M3 is adjusted in the same way while having X and y1 and y2 as inputs (27).

(X, y1) → M1 (25)

(X et y1, y2) → M2 (26)

(X, y1 et y2, y3) → M3 (27)

4.1.11. KNeighbors Regressor

KNeighborsRegressor it is a supervised technique in machine learning. It is based on
the neighbors; the KNN consists of performing a regression for the continuous labels. This
method is based on the measure of similarity between the nearest elements. This measure
is obtained by using the Euclidean distance between the nearest values (28).

d =

√
n

∑
i=1

(yi− xi)∧2 (28)

The value of K is calculated in training. It must not be very small in order to not overfit
the regression model and to avoid noise in the model. In other words, the value of K is
determined in order to obtain the best model.

4.1.12. DecisionTreeRegressor

This is a supervised machine learning technique used for both classification and
regression. This approach is based on the decision tree [21]. It is useful to train the data in a
tree-like way and to make predictions.

4.2. Evaluation Metrics

In order to evaluate the performance of the approaches used, four statistical indicators
were calculated: MAE (mean absolute error), RMSE (root mean square error), R2 Square
(coefficient of determination), and ESV (explained variance score):

• Mean absolute error (MAE) is the mean of the absolute value of the errors; this
indicator represents the average of the absolute difference between the actual and
predicted values in the database. It measures the average of the residuals in the data
set (29).

MAE =
1
N

N

∑
i=1
|yi − ŷ| (29)

ŷ− predicted value
y− mean value

• Root mean squared error (RMSE); this measure represents the root mean square error
of the squared difference between the original and predicted values of the model (30).

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (30)

• R-Squared expresses the ratio of the variance of the variable explained by the model
with the original value (31).



Appl. Syst. Innov. 2022, 5, 86 11 of 16

R2 = 1−
∑ (yi − ŷ)2

∑ (yi − y)2 (31)

Explained variance score (EVS); this metric expresses the rate representing the variance
of the current value (true value) and the estimated value (32).

Explained variance(y, ŷ) = 1− Var(y − ŷ)
Var(y)

(32)

5. Results

In this article, we used twelve algorithms to find the most effective model for predicting
energy consumption from the input (Table 2). Figure 2 shows a graphical comparison
between the actual energy values and the predicted energy for each part and according to
its different orientations using these algorithms.
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Table 3 presents the statistical performance indicators for each model in terms of MAE,

RMSE, R2, and explained variance
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Table 3. Evaluation Metrics of used models.

Model MAE RMSE R-Squared Explained
Variance

1 Linear Regression 5.251029 11.569446 0.965963 0.969285

2 RANSACRegressor 5.167925 10.929534 0.969624 0.973401

3 Ridge Regression 5.894558 13.867725 0.951097 0.956034

4 GaussianProcessRegressor 3.881234 5.793596 0.991465 0.991602

5 Lasso Regression 5.764058 13.284901 0.955121 0.960033

6 Elastic Net Regression 5.920195 14.095655 0.949476 0.954896

7 Random Forest Regressor 7.287192 19.347954 0.904808 0.904854

8 SVM Regressor 9.683700 23.169309 0.863493 0.877995

9 Linear SVR Multi Output
Regressor 15.571200 22.334431 0.873154 0.893362

10 Linear SVR Chain Regressor 15.588542 22.311816 0.873410 0.893883

11 KNeighborsRegressor 13.197450 24.191009 0.851189 0.851421

12 DecisionTreeRegressor 9.929268 23.336388 0.861517 0.862568

Figure 3 illustrates the trend line between the actual and the predicted values of each
prediction algorithm.
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From Figure 3 and Table 3, it is clear that the GPR model achieves the highest precision,
having 99.16% as the explained variance value. For the R-squared, it is 99.14%. The
respective values of MAE and RMSE are 3.88 and 5.79. It can be seen that these values are
the best in comparison with the other models.
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6. Discussion

The benefits of artificial intelligence and machine learning algorithms in 3D printing
are wide-ranging. In our case, before each printing, we will predict the printing energy
depending on the part’s orientation. Figure 4 illustrates a graphical comparison between the
actual energy values and the predicted energy for each part and according to its different
orientations using the GPR model. It is clear that the two curves perform in a similar
manner, so we can use the GPR model to find the best part orientation for printing, which
will use less energy.
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To assess the performance of our approach, four parts from the database were selected
at random. For each part (Table 4), we will predict the energy needed for printing according
to the three orientations (0, 90, and 180).

Table 4. Examples of comparison between actual energy and predicted energy by GPR.

Part Orientation Predicted Energy by GPR Actual Energy
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From the results shown in Table 4:

o For part number one, if we print it following orientation 180 instead of printing it
following 0, we will lose about 70 Wh of energy.
o For part number two, if we print it following orientation 90 instead of printing it follow-
ing 0, we will lose about 50 Wh of energy.
o For part number three, if we print it following orientation 90 instead of printing it
following 0, we will lose about 7 Wh of energy.
o For part number four, if we print it following orientation 90 instead of printing it follow-
ing 0, we will lose about 90 Wh of energy.

These pertinent results confirm the capacity of our model based on the GPR algorithm
to predict energy consumption in the FDM process with high accuracy.

7. Conclusions

In this research, twelve machine learning algorithms are used to model and predict
energy consumption in the FDM process using a database of the FDM 3D printing of
isovolumetric mechanical components (r3DIM benchmark). The most effective model
is chosen based on four performance criteria: mean absolute error (MAE), root mean
squared error (RMSE), R-squared (R2), and explained variance score (EVS). The GPR
model outperformed these models with a high degree of accuracy and had the following
performances: 99.16% as the value of explained variance and 99.14% for R-squared; the
respective values of MAE and RMSE are 3.88 and 5.79, respectively. With our model, before
each printing, we will be able to predict the printing energy according to different part
orientations, and after the comparison between the predicted energies, we can decide the
best orientation to use to minimize energy use in the printing phase.
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