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Abstract: The recent literature reveals a dichotomy formed by a coevolution between cryptography
and Artificial Intelligence (AI). This dichotomy consists of two sides, namely Crypto-Influenced AI
(CIAI) and AI-Influenced Cryptography (AIIC). While it is pertinent to investigate this dichotomy
from both sides, the first side has already been studied. In this review, we focused on AIIC. We
identified and analyzed the stages on the evolutionary path of AIIC. Moreover, we attempted to
anticipate what the future may hold for AIIC given the impact of quantum computing on the present
and the future of AI.
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1. Introduction

Cryptography (referred to as Crypto) has recently become a research focus [1–3]. It
is the art and science of leveraging algorithms, mathematical problems and structures,
secret keys, and complex transformations to maintain data confidentiality during storage or
transmission. Cryptography plays significant roles in security-related scenarios including
authentication [4], privacy [5] and information hiding [6]. This opens its way into numerous
technological environments ranging from medical technology [7] to Internet of Things
(IoT) [8] and Cloud computing [9]. There are many branches of science and technology that
frequently appear in the ecosystem of modern cryptography. To mention a few, one may
refer to chaos theory [10], information theory [11,12], quantum computing [13], hardware
technology [14], and particularly AI [15–17].

Similar to the case of cryptography, AI has been of great interest to researchers in recent
years [18–20]. It leverages computer and complex algorithms to mimic human decision
making and problem solving. AI has been used in a variety of applications [21–23].

In recent years, cryptography and AI have formed a dichotomy that has led to their co-
evolution [24]. The role of cryptography in the evolution of AI has already been studied [25].
However, to the best of our knowledge, the role of AI in the evolution of cryptography has
not been studied in depth. This study is an attempt to address this gap. In this paper, we
tried to provide a thorough overview and a comprehensive understanding of the role of AI
in the evolution of cryptography. This role is illustrated in Figure 1.

The overlapping parallelograms in Figure 1 represent cryptography after evolving
under the impact of AI, which we refer to as AI-Influenced Crypto (AIIC) in the rest of
this paper.

Most cryptosystems depend on complex computing, and AI-based methods have
already been proven to be efficient in any computation-intensive environment. Moreover,
AI models can provide chaos [26], randomness [27], and many other properties, all of
which are required by cryptosystems [28,29]. The above mentioned facts open the way for
AI into cryptography and highlight the importance of AIIC. Moreover, AI has found its
applications in some raising cryptography-related technologies such as blockchain, which
can be studied in future research works.
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While there may be existing surveys encompassing AI and cryptography, there are
shortcomings within them, especially the lack of a detailed look at the evolutionary path of
AIIC. These shortcomings (discussed in Section 2.4) motivated this research.

Figure 1. Crypto Makes AI Evolve.

1.1. Goals and Objectives

In this review, we explored the evolutionary path of AIIC as well as its future roadmap
to answer the following questions:

• What stages should cryptography go through in order to adopt AI?
• What does AI add to the capabilities of cryptosystems in each of the identified stages?
• Which existing trends in the AI realm will affect the future of AIIC?
• What effects will AI trends have on the future of AIIC?

We sought to establish a comprehensive picture of the evolutionary path of cryptogra-
phy under the impact of AI by providing answers to the above questions.

1.2. Achievements

Our achievements in this paper are as follows.

1. We recognized and defined the following five stages in the evolutionary path of AIIC.

• AI-Unaware Cryptography (AIUC) (Section 3): At this stage, cryptography is
vulnerable to Machine Learning (ML) and Deep Learning (DL) attacks. It can
be targeted by AI-based attacks without any specialized defensive measure
or mechanism.

• AI-Resilient Cryptography (AIRC) (Section 4): This is the second evolutionary
stage, wherein cryptosystems adopt caution towards ML and DL attacks. In
this stage, cryptographic methods and devices are designed to be as resilient as
possible against AI-based attacks.

• AI-Boosted Cryptography (AIBC) (Section 5): In the third stage, cryptographic
techniques, protocols, methods, devices, etc., are supported by AI models in two
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possible ways. First, they might be improved with the help of AI in terms of
different design objectives not including security. These objectives may include
performance, efficiency, etc. Second, they might be assisted by AI for use in
security-related scenarios not including cryptography. These scenarios include
authentication, privacy, information hiding, etc.

• AI-Assisted Cryptography (AIAC) (Section 6): In this stage, as well as the next one,
AI is utilized by one or more of the internal components of the cryptosystem,
and directly for cryptographic purposes. What differentiates these two stages is
the component where AI is used. A cryptosystem often consists of an encryp-
tion/decryption component along with some extra components, which perform
cryptographic mechanisms such as hashing, random number generation, etc. In
the AIAC stage, AI is used by the components running cryptographic mechanisms.

• AI-Embedded Cryptography (AIEC) (Section 7): In the last stage, AI is used by the
encryption/decryption component.

The above stages are shown in Figure 2 along with the icon we used for each of them
in the rest of this paper.

Figure 2. The Evolutionary Path of AIIC.

Table 1 summarizes the properties of the stages shown in Figure 2.
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Table 1. Summary of AIIC Evolutionary States.

Stage Resil. Improve
Non-Sec.

Support
Scen.

Util. Non-
Encrypt.

Util.
Encrypt.

AIUC No No No No No

AIRC Yes No No No No

AIBC Yes Yes Yes No No

AIAC Yes Yes Yes Yes No

AIEC Yes Yes Yes Yes Yes

In Table 1, the first entry in each row contains one of the evolutionary stages demon-
strated in Figure 2. The second entry contains “Yes” if cryptographic modules and
systems in the related stage are aware of and resilient against Ml and DL attacks.
The third entry indicates whether or not cryptosystems in the related stage are im-
proved via the use of AI in terms of objectives not related to security. The fourth
entry shows the existence or lack of support from AI for cryptographic mechanisms in
security-related scenarios. A “Yes” in the fifth entry shows that the stage mentioned
in the first entry makes use of AI in some internal cryptographic components, but not
exactly in the encryption/decryption module. The sixth entry indicates whether or
not the related stage utilizes AI models exactly in the design and implementation of
the encryption/decryption component.
As shown in Figure 2 and Table 1, each stage adds some new capabilities in addition
to preserving the capabilities of the previous stages.

2. We reviewed current trends in research on AI such as bio-inspired and quantum-
inspired AI, and attempted to anticipate the influence of these trends in terms of what
the future may hold for AIIC. We developed a future roadmap for further research in
this area (Section 8).

1.3. Organization

The rest of this paper is organized as follows. Section 2 studies existing surveys and
their shortcomings in order to highlight our motivations for the work within this paper.
Section 3 through Section 7 provides a study of the evolutionary path of AIIC. Sections 3–7
discuss AIIC, AIRC, AIBC, AIAC and AIEC, respectively. Section 8 develops the future
roadmap and lastly, Section 9 concludes the paper and suggests further research.

2. Existing Surveys

The literature includes many surveys on the applications of AI in security. However,
some of them are outdated for use in such a dynamic research area. Some of them do not
specifically focus on the applications of AI in cryptography. Some relevant surveys study
AI-assisted cryptography only in some specific environments. Others fail to develop a
future roadmap. These surveys are analyzed below.

2.1. Surveys on AI in Security

This section explores surveys related to the use of AI tools including Neural Networks
(NNs) which are also known as Artificial Neural Networks (ANNs), ML and DL in Cyber
Security, but not directly in relation to their applications in cryptography.

Recent surveys identified many capabilities of AI that can be of assistance in security
controls such as intrusion detection [30] and authentication [31,32]. These capabilities
have paved the way for AI in many technological environments, which were reviewed in
previous surveys. For example, with recent advances in the fields of blockchain and AI, both
can be leveraged to secure communications in smart cars for inter-vehicle communication
and vehicle to vehicle communication. These applications were reviewed in [33]. Other
surveys explored the applications of ML in power systems [34] and smart grids [35].
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As another example, the authors of [36] noted that although Edge computing can
dramatically speed up and increase the performance of network applications, there are
many security concerns (Edge computing can provide the integration for storage, process-
ing, monitoring, and control of operations at the edge of a network). They studied several
attacks including DDOS, eavesdropping and malware injection against Edge computing.
These researchers showed by their reviews that NNs and other ML algorithms can provide
strong mitigating factors for the detection and prevention of these attacks.

Several other surveys focused on the applications of AI in the security of IoT [37,38].
In this regard, the applications of ML and DL [39] as well as Reinforcement learning [40]
have been of interest to the research community.

Moreover, the authors of [41] focused on the fact that while ML can be used as an
effective technique for identifying some kinds of attacks, it is vulnerable to other kinds of
attacks. They studied many attacks against naive Bayes, logistic regression, Support Vector
Machine (SVM) and Deep Neural Networks (DNNs). Some defensive measures used to
protect algorithms against well-known attacks include security assessment mechanisms,
placing checks in the training stage, data security and ensuring privacy.

2.2. Surveys on AI in Cryptography (AIIC)

Most relevant surveys focus on the AIEC phase. Some of them focus on the applica-
tions of NNs in cryptography. These works typically discuss how NN can be used in the
efficient and secure encryption and decryption of text [42–44]. There are also a few surveys
available on the applications of NNs in image encryption [45].

Other surveys study the applications of ML in cryptography [46,47]. The latter surveys
show how mutual learning provided by Tree Parity Machines (TPMs) can be useful in
public key cryptosystems. Furthermore, they discuss how the classification capabilities of
ML can be introduced into cryptography and how this may facilitate the classification of
encrypted traffic.

There are only a few currently available surveys which discuss the role of quantum
computing in AIIC [48]. These surveys failed to address the impact of quantum computing
on the future of AIIC. The surveys reported some compatibility issues between NNs and
quantum cryptography. These issues have their roots in the fact that quantum encryption
and decryption methods based on Heisenber’s Principle and Photon Polarization cannot match
well with NN-based key generation.

2.3. Summary

Table 2 summarizes the surveys studied above for ease of comparison with our work
in this paper.

In Table 2, the first entry in each row cites one of the surveys studied above. The
second column shows the publication year of the survey. The third column contains a
“Yes” for surveys that cover all branches of AI. It contains a “No” for those focusing on a
specific topic such as ML or DL. The fourth column contains a “Yes” if the related survey
focuses specifically on cryptography. A “No” in this column indicates a survey discussing
all aspects of security, or focusing on a security aspect other than cryptography. The fifth
column indicates whether the survey develops an evolutionary path or not. Th sixth
column contains a “Yes” only for surveys that develop a future roadmap. The seventh
column highlights surveys that discuss the role and the impact of quantum computing.
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Table 2. Summary of Existing Surveys.

Survey Year Gen. AI Crypto Evol. Roadmap Quantum

[39] 2021 Yes No No Yes No

[30] 2021 No No No No No

[43] 2021 No Yes No No No

[34] 2020 No No No Yes No

[48] 2020 Yes Yes No No Yes

[42] 2020 No No No Yes No

[44] 2020 Yes Yes No Yes No

[37] 2020 Yes No No Yes No

[38] 2020 Yes No No Yes No

[33] 2020 No No No Yes No

[40] 2020 No No No No No

[36] 2020 No No No Yes No

[47] 2020 No Yes No No No

[45] 2020 No Yes No No No

[32] 2020 No No No No No

[49] 2019 Yes Yes No No No

[46] 2019 No Yes No No No

[35] 2019 No No No Yes No

[41] 2019 No No No No No

[31] 2010 No No No No No

2.4. Motivations

As seen in Table 2, although there are some surveys that are in some way relevant to
the topic of this paper, none of them provide all the following properties:

• Covering all aspects of AI;
• Focusing specifically on cryptography among all security aspects and controls;
• Establishing an evolutionary path for the studied area;
• Developing a future roadmap;
• Discussing the role of quantum computing in the future of the studied area.

This paper attempted to address the above gap. We studied the evolutionary path of
cryptography under the impact of AI, and established a future roadmap focusing on the
role of quantum computing.

3. AIUC

In this stage, cryptosystems are unaware of vulnerabilities against AI-based attacks.
AIUC can be easily affected by ML and DL attacks. Furthermore, AI models can be used to
cryptanalyze cryptographic systems and mechanisms in this stage. Moreover, in this stage,
encrypted data and code can be identified by AI models despite the desire of the designer.
Figure 3 illustrates this stage.
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Figure 3. AIUC: Vulnerable to ML and DL Attacks.

In this section, we first present a brief review of encrypted data and code detection
using AI (Section 3.1) as well as AI-based attacks against cryptosystems (Section 3.2).
Then, we focus on AI-Unaware Physically Unclonable Functions (PUFs) because of their
importance (Section 3.3).

3.1. Encryption Detection

In [50], NNs were utilized in a method called Neural Net for Locating Cryptography
(NNLC) to classify functional blocks of a disassembled computer program into Crypto-
graphic and Non-Cryptographic. Detecting encrypted code in malware programs has been of
particular interest to the research community. To this end, NNS [51] and DL algorithms [52]
have been used by researchers.

3.2. Attack and Cryptanalysis

The authors of [53] employed Convolutional Neural Networks (CNNs) to disclose
the secret key of cryptographic circuits. In their method, a Sigmoid function and a step
function were used to normalize and classify the power dissipation of the cryptographic
circuit to generate the output training data of the CNNs. In another similar research
work, NNs were applied to break a feistel type block cipher (a cryptographic method
which alternates between confusion and diffusion of it’s elements) [54]. Moreover, the
authors of [55] showed that signals encrypted by Time Segment Permutation (TSP) can be
cryptanalyzed through the hopfield NNs in order to extract intelligible information. This is
achieved by looking at the distance between the coefficients of the segments and reordering
them through the NN.

3.3. AI-Unaware PUF

In the following, we study AI-based attacks on PUFs. A PUF is an object that gen-
erates a random digital output referred to as a response serving as a unique identifier for
every individual set of input and environmental conditions called challenge. A PUF can be
uniquely identified by its set of Challenge–Response Pairs (CRPs). PUFs are most often
based on natural uncertainties or unique physical variations appearing in semiconductor
manufacturing, waves, noises, etc. PUFs are most often implemented by integrated cir-
cuits. They are commonly used in applications with high levels of security requirements,
including cryptography.

In this subsection, we discuss how AI-based attacks can predict the outcomes of PUFs,
individually or along with other kinds of attacks. ML attacks, DL attacks and hybrid attacks
are analyzed in the following Sections 3.3.1–3.3.3, respectively.
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3.3.1. ML Attacks

In this section, we analyzed the competition between ML attack-resistant PUFs and
attacks on PUFs using traditional ML algorithms.

Some PUFs that were stated to have resistances against ML attacks were exposed.
The proposed Ring Oscillator Physical Unclonable Function(ROPUF) used configurable
XOR gates in the Field Programmable Gate Array [56]. These programmable XOR gates
could be used for the selection of ROs during the activation period. After that, selected
ROs would create a unique set of sample frequencies. Statics shows that it can only prevent
attacks from Logistic Regression-based and SVM-based ML attacks. Furthermore, it failed
to prevent attacks from ANNs with almost 90% accuracy for prediction.

Similar structures were shown in the proposed article [57]. It analyzed multiple arbiter
PUFs with XOR gates by using NN-based ML attacks. A subspace pre-learner estimated
the NN’s weights by training on CRP data in subspaces corresponding to PUF components.
It demonstrated 98% accuracy for the proposed PUF. However, it requires access to CRP in
subspace which is not an easy condition to meet.

Moreover, the approach proposed in [58] used multiple ML attacks on Arbiter PUFs
(APUF) on TSMC’s 65 nm CMOS process. The CRPs were used again for training as in
most attacks. The result shows that it can reach an accuracy of 90% when only 1000 CRPs
are used for training. However, if there are two XOR gates APUF, 9000 CRPs are required to
achieve an accuracy of 90%. Both results show that APUFs are not secure from modeled ML
attacks. In addition, Double Arbiter PUFs (DAPUFs) were claimed to have good resistances
against ML attacks. However, a study in [59] shows that they only resist attacks such as
SVM but cannot prevent attacks such as NNs.

Some of the research works focus on lightweight PUFs. In this paper [60], two mathe-
matical attack impulses related to the previously proposed light circuits PUF, namely the
composite PUF and the Light-output rhythmic Secure PUF (LSPUF), were developed. It
was shown that the different PUF components can be used to separate and capture attacks,
which can determine the answers to unknown challenges. Using ML-based analysis, the
attack complexity was reduced.

Additional techniques were applied to obtain a higher accuracy for the prediction
of PUFs’ results. An ML technique that uses the Multi-Layer Perceptron (MLP) method
was proposed in the article [61]. The method used successfully broke APUFs but not XOR
Arbiter PUFs. It was modified in the report with an Adaptive Moment Estimation optimizer
for large CRPs. The results revealed at least 98% accuracy when predicting the response.
Feed Forward APUFs (FFPUF) possess advantageous properties such as good resistance
for ML attacks. They also have low complexity compared to other PUFs. In order to break
this PUF, the MLP method was used again [62]. The accuracy for the NNthat using MLP
was above 84%. Therefore, it increased accuracy by 16% compared to regular NNs.

Time-Delayed PUFs were also examined by others. For instance, another paper [63]
investigated the delay model of the Hardware-Embedded Layout PUF (HELP) and applied
ML algorithms to determine resilience to the built-in model. The delay model for HELP
includes significant differences compared to other PUFs such as the PUF Arbiter grounded
delay, especially with respect to the combined ways in which the response bits are tested.

Some of the studies also focused on examining PUFs’ defence capability against
ML attacks. Although metric criteria exist to evaluate the quality of PUFs, the most
common empirical approaches to assess resistance to ML attacks need to be identified.
Ref. [64] introduced the PUFmeter, a new toolbox consisting of publicly available in-house
developed algorithms to provide a reliable foundation for robust estimations of PUFs
against ML attacks.

3.3.2. DL Attacks

In addition to ML, DL attacks can target PUFs. Some PUFs that were thought to be
robust against ML attacks were subsequently broken by DL attacks. For example, a DL
attack was proposed and compared with traditional ML attacks based on SVM in [65].
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The evaluations demonstrated that the proposed DL attack can achieve an accuracy of
58% compared with 50% for SVM on the target PUF. Moreover, the paper [66] provided
an in-depth analysis of fabrication techniques using DL against APUFs. Compared with
other traditional ML techniques such as Supported Logistic Regression (SLR) and SVM, the
DL results revealed increased prediction accuracy. In a similar work, the authors of [67]
conducted and evaluated DL attacks on nonlinear silicon photonic PUFs.

3.3.3. Hybrid Attacks

In addition to ML and DL attacks, the literature outlined some hybrid attacks against
PUFs. For example, the authors of [68] proposed a hybrid side channel/ML attack to break
the resistance of PUFs against ML attacks. Another hybrid attack was reported in [69],
wherein attacks based on CNNs were boosted by side channel attacks. In this proposal, the
input challenges of XOR APUFs were utilized by the side channel attack to improve the
correlation of CNNs.

4. AIRC

This stage attempts to ensure resilience in cryptosystems against AI-based attacks. In
this stage, protective provisions are added to cryptographic systems and mechanisms in
the design phase. Figure 4 illustrates this stage and its properties.

Figure 4. AIRC: Resilient Against ML and DL Attacks.

In the rest of this section, we focus on ML-Resilient PUFs because of the attention they
received from the research community.

PUFs Resilient against ML Attacks

In the previous section, we discussed the many ways PUFs can be targeted by ML
attacks. This motivated several research works aiming to improve the resilience of PUFs
against these attacks.

The authors of [70] proposed a PUF that utilizes the strong nonlinearity of the con-
vergence time of Bistable Rings (BRs) with respect to variations in the threshold voltage.
Their simulations returned a prediction accuracy of 50% for SVM in the responses of the
proposed PUF. This indicated that SVM cannot perform better than a random guessing
algorithm. Another PUF was proposed in [71,72] with the goal of reducing the accuracy of
ML attacks to 50%.

The authors of [73] presented a practical smooth-routing PUF authentication procedure
in the settings where the server authenticated the device and when the authentication
number was limited during the manufacturer’s lifetime. The CRPs would not be available
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for ML attacks in the same way as other PUFs. They would instead be encrypted using
protocols to limit their availability.

AN ML-resistant PUF was designed using Linear Feedback Shift Registers (LFSRs)
in [74]. The PUF takes n as the challenge from the input and clocks the LFSR n times with
no output. In this way, the state of the LFSR is kept unknown to the attacker. At the n-th
stage, it would send all the output bits to the APUF.

A Configurable Tristate PUF (CTPUF), proposed in [75], is also resilient to ML attacks.
It contains structures from APUF, Configurable RO PUF, BR PUF, to dual-mode PUF. It
uses n stages inverters and multiplexers at the front of the design to determine the signal
transmission path. According to the path or the position of the response bit, different types
of PUF would be used to generate the challenge and response bit. It uses a bitwise XOR
obfuscation mechanism to prevent matching between challenging and response pairs for
further protection. The complexity of this design makes it more secure than other PUFs.
However, it requires more computing power as a tradeoff.

Furthermore, the short function proposed in [76] provides a subtramentive intention-
between backed by the relentlessly powerful PUF. The PUF derives its uniqueness from the
random mismatch of the threshold voltage with the inverted gate and drain drains and
checking in the underground region. The nonlinear current relations in the underground
tunnel region of the proposed PUF are also supported by ML resistance (ML) attacks. The
prediction accuracy of the PUF response with logistic regression SVM and MLP is close to
51%. The PUF prototype fabricated at 65 nm consumes only 0.3 pJ/bit and achieves the
optimum combination of energy efficiency and ML impact resistance.

An Ising-PUF is a PUF that imitates the Ising model originating from the field of
physics. A PUF of this type was designed in [77] to be robust against ML attacks. The
authors used some small PUFs as spins in the Ising model. Each PUF would send its value
as a challenge signal to its adjacent PUFs. The value of the PUFs would be random since
they interact with each other. The results demonstrated that it possessed ML resistance due
to its chaotic property.

The authors of [71] argued that there is a tradeoff between AM-resistance and error
rate. They employed a two-stage non-linear cascaded structure to manage this tradeoff.

Additionally, a stability-aware challenge pruning technique was used in [78] to keep
the temperature steady. Similar to two-staged PUFs, the proposed Two-Round SRAM PUF
(2SPUF) uses two rounds of implementations for PUFs to reduce the correlation between
CRPs. The correlation is key for ML attacks to learn the pattern. Furthermore, SRAM cells
would invert the challenge bit to provide more secure and random states.

In another research study reported in [79], responses were generated by the PUF which
were then mapped to a polynomial equation for reconstruction. The mapping of CRPs
would be random due to these procedures. It can be used to prevent attacks from ML. The
error-tolerant variation would be used when performing authentication to increase the
stability of the PUF. The result shows that the ML attack only has an accuracy of 60% for
the proposed PUF.

Time variables were used in [80] for ML resistance. This research presented a dynamic
domain design with an efficient algorithm, namely the Optimal Time Delay Algorithmic
(OTPA), to balance the ROPUF CRPs (interval CRPs). CRPs generated using this interval
algorithm exhibited a high level of PUF performance in terms of uniqueness and consis-
tency. A similar idea was shown in the proposed algorithm [70], which introduced a new
unrelenting Coin FlippingPUF (CF-PUF) that significantly improved resistance against ML
attacks. The proposed function utilizes a non-explosive physically strong nonlinearity of
ring BRs with respect to threshold voltage variations.

In [81], multiple PUFs were used to form a more complex PUF with more robustness
against ML attacks. A current mirror PUF and an APUF were combined to form a PUF
that was unpredictable for ML algorithms. The output of the current mirror PUF would
be placed into the APUF as an input. The result from this PUF would have Configurable
Tristate PUF (CTPUF) (1616)16 possible outcomes, which depend on delays and voltage.
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This provides more randomness for the PUF circuit. A similar study was reported in [82].
An APUF combined with Ring Oscillators can provide randomness to prevent ML attacks.
Responses generated from the APUF would select ring oscillators. Ring oscillators would
be compared through frequencies to form final response bits. The result revealed its
higher prediction error when using modern ML algorithms as opposed to regular PUF.
Furthermore, the authors of [83] proposed a new design for PUF that improved the existing
weak PUF to a strong PUF. The goal for the PUF is to have better resistance against ML
attacks. It used a 1-bits MPUF design that contained multiple PicoPUFs with one APUF. The
output response bit of PicoPUFs would be used as a challenging bit for APUF to increase
security. Hamming distance was used again for randomness measurements.

Moreover, a strong subthreshold current counter PUF resilient to ML attacks was
proposed in [84]. Similarly, the algorithm proposed in [85] used an output voltages sub-
threshold array to provide randomness. The array here consisted of unit cells with switch
transistors in every one of them. These transistors can have a large variation with respect to
voltages. Hamming distance was used to analyze the stability of this PUF. The average BER
(temporal stability) in the worst case was only 9%. A similar framework was developed
in [86]. In the latter research, a Strong PUF was proposed that uses three subthreshold
voltage divider arrays to provide randomness that can resist ML attacks. It uses biases
from PUF cells for MOS transistors to generate threshold voltages in a variety of ways.
It also allows the PUFs to turn off if there is no work for them to save power. Even with
15,000 training data of CPRs, modern ML techniques such as ANNs can only reach 60%
of accuracy.

Furthermore, it was reported that a Novel PUF that simulates a double-layer RRAM
array structure can be used to resist ML attacks [87]. The read instability of RRAM cells
is the key to maintaining RRAM PUF’s stability. The proposed algorithm used the 1-
RESET-multi-SET method for the continuous current distribution of the RRAM array. As
a result, it would have stable reads but many states. A high-temperature environment
was used during the testing process, and it revealed high stability compared to a one-
layered RRAM PUF. PUFs can be enhanced with inputs from other systems. In [88], the
randomness of intrinsic process-induced variations and the memory turning process were
used to construct PUF. It also used time as a variable to expand CRPs size. The results
revealed that it can have a pair size of 10211 with a 50.3% average uniformity and low
energy consumption. It also possessed good resistance to ML attacks.

5. AIB

In this stage, AI models support cryptosystems to improve them in terms of perfor-
mance, reliability or other design objectives, but not security. Additionally, in this stage
of evolution, AI models can be used along with cryptographic mechanisms as auxiliary
tools (not as internal components) in security-related scenarios such as authentication and
privacy. This stage is demonstrated in Figure 5.

Figure 5. AIBC: Supported by ML and DL.
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In the rest of this section, we first discuss the design objectives improved by AI
(Section 5.1), and then study the security-related scenarios where cryptosystems have been
used along with AI models (Section 5.2).

5.1. Improved Design Objectives

In this subsection, we briefly overview some design objectives in cryptosystems that
have been improved with the support of AI.

5.1.1. Performance

In [89], logistic maps were used for text randomization before applying the secret
key. This approach along with replacing the encryption process with NN-based chaotic
attractors provided an encryption scheme with a performance higher than that of traditional
cryptosystems.

5.1.2. Reliability

The authors of [90] improved PUFs in terms of reliability in device authentication and
key generation under noisy conditions. A two-step methodology was employed in this
research. The acquisition of the parameters of PUF models and utilization of the obtained
parameters by ML algorithms as well as CRPs were the main ideas behind the methodology.
The experiments demonstrated a notable improvement in reliability.

5.1.3. Signal Quality and Noise Resistance

Some researchers focused on improving signal quality in the output of cryptosystems.
For example, in [91], the authors used chaotic NNs to improve the signal quality in the
output of signal encryption systems.

Noise immunity is another design objective considered by researchers focusing on
AIBC. As an example, the authors of [92] used CNNs to improve the noise resistance of
digital signals encrypted using the Rivest–Shamir–Adleman (RSA) cipher. As another
example, in [93], Cohen–Grossberg NNs were coupled with the Arnold chaotic map in
order to achieve improved noise resistance in colored image encryption. In the method
proposed in this research, the image was represented using the Red–Green–Blue (RGB)
standard when used as an input to the NN. The pixel matrix for the image is hidden, and
the NN is able to store the hidden message as a stable representation. This provides noise
cancellation and a secure image encryption mechanism.

5.2. Security-Related Scenarios

AI models have supported cryptosystems in different security-related scenarios. Some
of these scenarios are detailed below.

5.2.1. Authentication

In [94], the authors examined improving security in IoT environments through the
authentication of wireless nodes using a PUF supported by in situ Machine Learning.
The high prediction precision provided by ML algorithms was utilized in this research to
mitigate the error issue key generation for authentications.

Furthermore, a novel Multimodal Deep Hashing Neural Decoder (MDHND) architec-
ture was used in multibiometric, error-correcting codes and authentication by the authors
of [95]. The MDHND framework is trained via three-stage joint optimization. The first
stage is learning to generate a shared multimodal latent code, the second one is using a
traditional error-correcting code decoder to obtain data for training a Neural Network
Decoder (NND), and the third stage is using data from stage two to train the NND decoder
and for the joint optimization of the MDH and NND.

It was previously shown that existing WiMax technology has key security flaws when
it comes to wireless functionality. A solution to this problem was proposed in [96] using
NNs to generate a pair of secret keys for authentication via neural synchronization.
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A study reported in [97] presented PUF signatures to identify a speaker based on a
high-level NN structure, which performed wireless node authentication using inherent
effects. In this study, the variation in the voice processing properties of wireless broadcasts
was detected using in situ ML on the receiver side.

5.2.2. Privacy

TPMs were used by the authors of [98] to achieve privacy-preserving ubiquitous
computing with Radio Frequency IDentification (RFID). TPMs are a sort of NNs. In [99], the
authors combined NNs with homomorphic encryption schemes aiming at improved privacy.

Moreover, in [100], the authors conducted a Ciphertext Only Attack (COA) to evaluate
the privacy of a pixel-based image encryption scheme that utilizes DNNs. They showed that
the use of identical encryption keys for different images reduces privacy. These researchers
proposed a method for generating different keys for different images. A similar study was
reported in [101].

5.2.3. Trust

Reinforcement learning was used in [102] to support decision making for multiple
trusted third Parties. PUF-cash mainly functions by leveraging the random and unique
statistics properties.

5.2.4. Information Hiding

The application of AIBC in information hiding has been of interest to some researchers.
For example, the authors of [103] proposed an NN-based steganography method that is
more resistant against steganalysis. In their method, the secret data were encrypted before
being embedded in the cover image. Neural networks are used in order to identify the best
locations in the cover image to embed the secret data to improve the image quality. In a
similar study, steganography methods were combined with Elliptic Curve Cryptography
(ECC), and this combination was supported by neural networks.

5.2.5. Visual Cryptography

As an example of research works focusing on AI-boosted visual cryptography, one
may refer to [104]. This research proposes an NN-based approach for visual authorization,
which is an application of visual cryptography. In the proposed method, the system can
visually recognize the authority assigned to a particular user by checking the information
carried by the superposed image. A similar study was reported in [105].

6. AIAC

A cryptosystem typically consists of an encryption/decryption engine along with some
cryptographic mechanisms and modules such as Random Number Generators (RNGs) and
hashing modules. In the AIAC stage, AI is used to support one or more of the cryptographic
modules, but not in the encryption/decryption engine. This stage is shown in Figure 6.

Figure 6. AIRC: Uses Cryptographic Mechanisms Based on ML and DL.

In the following, we discuss the state-of-the-art in AIRC.
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6.1. AI-Assisted Key Management

In research reported in [106], NNs were used as part of a key exchange protocol for
application in RFID systems. The authors of [107] used key-controlled NNs to enlarge the
available key space of a chaotic encryption scheme and add to the protection provided to
the chaotic function. It was shown in [108] that the need for a secret key can be eliminated
using an NN-technique based on mutual Learning. In the method proposed in this research,
the two parties did not have to exchange keys through a public network. Instead, they used
neural weights as a secret key when encrypting and decrypting messages. Encryption was
performed through the recursive modulo-2 substitution technique.

A challenge with mutual learning is presented in the case of a group key exchange
using NNs. This challenge can be resolved using a recursive algorithm that orders the
communicating parties in binary trees and uses NNs to communicate the key among
them. This was demonstrated in [109]. One can also use reflecting boundaries with
mutual learning through NNs as a way to exchange key information over a public channel.
Similarly, it was shown in [110] that delays in PUFs can be used to predict response bits
with given challenge bits. After training these delays, the third party was able to produce
different challenge bits for both users with the same response bit used as a key for them to
share messages.

6.2. Neural Hashing

Recurrent Neural Networks (RNNs) [111], Cell Neural Network [112].
In an article [111], the hash value—a fixed-size value— was returned by the crypto-

graphic Hash function. RNN as a possible approach was validated by a software implemen-
tation of RNN. The principles of RNN and possibilities of RNN as well as experiment-tested
RNNs with three layers on the basis of several examples of general texts were presented.
An efficient one-way hash function is a crucial part of modern cryptography research.

A hash function construction based on a cell neural network was proposed with the
chaotic sequence generated by a cell neural network using the Runge–Kutta algorithm [112].
Through the transformation of the latter chaos sequence, the hash code was obtained and
could be generated from the former hash result.

Previous generations of Hashing algorithms were often deployed in combination with
chaotic functions to avoid prediction. However, they revealed vulnerabilities because of
the involvement of AI. Combining AI with chaotic functions could introduce more secure
hashes and offer resistance to ML attacks.

The most commonly used method is to combine ANNs with hash techniques to ensure
greater security. Secure Hash Algorithms (SHA), as the standard of cryptography Hash
Functions, helps to provide message integrity, authentication and digital signature. Due to
the properties of Chaos and NNs, a new technology based on chaotic NNs was used [113].
By conducting a comparison of these two methods, a new structure of Hash function
was presented.

There are also studies that focus on the efficiency of the hashing algorithm. The NNs
that were used aimed to speed up the program. The effective generation of the Hash
function is a transformation that takes an input and returns a fixed-size value representing
the achievement of security in today’s networks. The ANN was used for the hash function
generation and provided network configuration [114]. Moreover, due to the compact and
efficient binary codes of image Hashing, it is often applied to large-scale content-based
visual retrieval.

Neural Networks can also be combined with the chaotic function to produce secure
hashes. The chaotic function and NNs were used in data encryption due to their cipher-
suitable properties, and a hash function based on them was constructed which made use
of their advantageous properties. The proposed function [115] encodes the plaintext of
arbitrary length into the fixed length, improving security against statistical attacks, birthday
attacks, and meet-in-the-middle attacks. Furthermore, the implemented Hash function
demonstrated good statistical properties, strong Collision Resistance and High Message
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Sensitivity. Furthermore, this proposed algorithm [116] can be used in cryptography, which
includes the following two major operations: generation of NN parameters using fast
and efficient Chaotic Generator and the iteration of the message through the Chaotic
NN. Effective hash functions are the cornerstone of security in today’s communication
networks. A similar idea was presented in [117], which focused on a theoretical analysis
of the possibility of using ANNs and chaotic maps for hashing. ANN could be used to
generate a one way hash function. This paper used several testing sets to show the validity
of the presented proposal. Similar uses of chaotic maps were apparent in [118]. It proposed
a new structure named Keyed Sponge Chaotic Neural Network (KSCNN hash function)
based on chaotic maps, NN and sponge construction. The security of the proposed hash
function improved after KSCNN. The theoretical analysis and experimental simulations
showed that the proposed hash function KSCNN has good statistical properties and strong
collision resistance.

6.3. AI-Assisted Random Number Generation

RNGs are of essential importance in cryptography. They can be used for many cryp-
tographic functions. RNGs play an important role in cryptography as random keys and
many other types of random objects are of critical use in cryptosystems [119]. RNGs can be
divided into two main categories. Pseudo-Random Number Generators (PRNGs) try to
generate deterministic sequences of numbers using computer algorithms. In contrast, True
Random Number Generators (TRNGs) use uncertainties in electronic circuits or physical
phenomena such as waves or noises to create random numbers. The following section
discusses how AI assists in the design and evaluation of RNGs.

Design

Designing a PRNG with cryptographic properties is a challenging tasks. Several
enabling technologies including AI [120] were used for this purpose.

In order to overcome the shortcomings of SP 800-22 with regard to pseudo random
number generation, a pseudo-random binary sequence generator was designed by employ-
ing a chaotic NN. This form of PRNG outperforms a PRNG based on Linear Feedback Shift
Registers (LFSRs) in terms of randomness and statistical complexity [121].

The chaotic NN based on a Pseudo-Random Sequence Generator (PRSG) leverages a
chaotic map coupled with the non-linear complexity of a four-layer NN [122].

Cellular NNs have properties which can be used to create psuedo-random number
generation using random properties. A special type of cellular automata can be considered
for the generation of random numbers at high speeds (greater than 1000 bits key space) [123].
The current NIST SP 800-22 is a framework that allows for the evaluation of a PRNG but it
overlooks statistical biases.

One kind of NN that is used in this area is the Hopfield Neural Network (HNN).
These networks networks were used to improve the security of the RNG system. Ref. [124]
presents a model for PRNG using HNNs that produced unpredictable outputs under
specific circumstances.

A similar idea was shown in [125]; a new pseudo-random number generator was used
in the field of secure communications in the proposed article. The novel pseudo-random
number generator was based on HNN technology with the output function as the generator
of the pseudo-random number.

The quality of the random numbers it generates can meet the requirements of secure
communication. Since the HNN is nonlinear, it can be used to improve the traditional
random number generator. The study in [126] also proposed a new PRNG model using
a non-converging HNN. The results of the study show that the new model was effective
because the model passed the National Institute of Standards and Technology (NIST)
statistical test and ENT test and was evaluated using random numbers generated by HNN.

Other research also focused on specific objectives. The Elman Neutral Network (ENN)
was used in the proposed pseudorandom number generator in [127]. This pseudoran-
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dom number generator could generate pseudorandom numbers from the weight matrices
obtained from the layer weights of the Elman network. The proposed pseudo random
number generator is easy to implement for varying bit sequences, while not computation-
ally demanding. Furthermore, the study [128] focused on demonstrating a new random
number generator with adjustable adaptability. It was shown that the standard deviation
of the resistance state had a negative correlation with the Compliance Current (CC); an
Adaptive RNG (ARNG) can be implemented by controlling CC during the RRAM setup.
Additionally, the RRAM-based ARNG can achieve the same performance as the software
ARNG. Moreover, the proposed study [129] analyzed the effect of noise sources using error
calibration and quantum tomography experiments. An ML model was proposed to predict
the optimal quantum gate parameters based on the quantum bit error norm. It can correct
up to 88.57% of the deviation in any worst-case quantum bit in real quantum hardware.

There are also studies that focus on the comprehensive view of the RNG algorithm.
In [130], a novel and secure RNG architecture was proposed, which is a backward prop-
agation neural network based on the SHA-2 (512) hash function. The SHA-2 (512) hash
function guarantees the unpredictability of the generated random numbers. The results
revealed that the quality of random numbers generated by the new RNG architecture
were able to meet the security of cryptosystems and improve the performance of power,
flexibility, cost, and area in network security.

6.4. Attack, Test and Cryptanalysis

AI can be used in not only the design of RNGs, but also in the analysis of the output
of RNG and to provide predictions. Moreover, AI can be used to cryaptanalyze RNGs and
conduct attacks against them. These applications are discussed below.

6.4.1. Test and Analysis

Testing and analysis of PRNGs is of critical importance, especially in the design of
stream ciphers [131]. The authors of [132] compared three ML methods with the goal
of identifying the most suitable one for PRNG testing. They used the results of their
comparisons to design a testing tool for PRNGs. They showed that their tool can re-
veal the weaknesses of PRNGs that are wrongly considered as Cryptographically-Secure
PRNGs (CSPRNGs).

6.4.2. Cryptanalysis

There are only a few works focusing on the AI-assisted cryptanalysis of PRNGs.
Among these works, one may refer to the one published in [131]. In this research, NNs
have been leveraged to identify statistical biases in the output of a PRNG through the use
of supervised learning. Statistical bias analysis is the very first step in cryptanalysis.

6.4.3. Attack

DL was used in [133] for testing RNGs such as regular ML algorithms. The first deep
DL-based side channel attack on an FPGA-implemented TRNG hawas reported in this
research. The reported attack successfully leveraged offline statistical tests, online health
tests, and countermeasures to monitor the quality of entropy sources at runtime.

6.5. AI-Assisted Cryptographic Arithmetic Module

In [134], the authors introduced a One-Time Pad (OTP) cipher scheme, where the
encryption and decryption were asynchronous through the use of NNs. This is achieved
through the chaotic series produced by Laguerre chaotic NNs. It is seen to be a strong asyn-
chronous encryption algorithm that overcomes the pitfalls of its synchronous counterparts
such as parameter matching and noise interference.
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6.6. AI-Assisted Substitution Boxes

Substitution boxes (S-boxes) play critical roles in many cryptosystems [135]. A few
researchers investigated the use of AI in the design of S-boxes. For example, the authors
of [136] employed a chaotic NN to design a cryptographic S-box.

6.7. AI-Assisted PUF

Several researchers have focused on the design and implementation of AI-assisted
PUFs. For example, in [137], the authors used ML in the design of a PUF and demonstrated
how the resulting PUF can eliminate IoT requirements. Another AI-assisted PUF was
proposed in [138]. The latter PUF makes use of the capabilities of an Extreme Learning
Machine (ELMs) to achieve higher levels of configurability.

7. AIEC

This stage incorporated AI capabilities directly in the encryption/decryption engine
as illustrated in Figure 7.

Figure 7. AIRC: Adopts ML and DL for Encryption.

AIEC has received attention in research over recent years [139,140]. AIEC has found
its applications in a variety of technological environments [141,142]. In this section, we
focus on neural cryptography, especially homomorphic neural cryptography because of
its importance.

7.1. Neural Cryptography

Neural cryptography is a cutting-edge cryptographic paradigm, wherein key exchange
depends on mutual learning between two different NNs fed by identical input patterns,
which update their weights according to predefined rules [143]. It is the most signifi-
cant trend in the realm of AIEC [144–147]. It has converged with other emerging trends
such as chaotic cryptography [148] and DNA cryptography [149]. Neural cryptography
has been successfully applied to different content types such as text [149,150] or binary
messages [151,152]. In this subsection, we study the current state of neural cryptography.

Neural Encryption can also be used on multimedia applications such as Image Encryp-
tion with applications ranging from medicine through to encrypting satellite imaging [153].
This is seen in the Chaos Sequence generated by Cellular NNs and it’s application in
Encrypting Images.

One such application of this uses block encryption on an image and then strengthens
it with a ‘radius basis chaotic neural network’ [154]. A wavelet based Chaotic Neural
Network can be leveraged for image encryption. Specifically, WCNN provides two key
security features along with data compression. The first one is the encryption of the image
itself and the second is the comparison properties between the scrambled images. WCNN
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based encryption is strong because similar keys encrypted with different keys have little to
no correlation with each other [155].

Furthermore, Cellular NN’s chaotic properties can be combined with compressive
sensing (which can achieve synchronous compression and encryption) in order to create an
encryption algorithm. The measurement matrix for this algorithm is implemented through
Lissajous map and is controlled by the index sequence of the CNN. This encryption scheme
has a large key space, high key sensitivity and a strong compression system [156].

Image encryption can be accomplished by the Chaotic Dynamics present in the HNNs.
The cryptosystem uses chaotic signals generated by the human body which are developed
and implemented as FPGA hardware. During testing it was found that the correlation
co-efficient for encrypted images with this method was close to zero. thereby proving that
it is quite robust [157].

Rather than relying on key exchange, another approach to encrypt digital media using
NNs is to use random substitutes and impurity additions onto the image. Once the image
is received, ANNs will decrypt the image and extract the original image [158].

The Hermite chaotic NN has impressive application in the area of image encryption—
specifically medical imaging [159]. First, the chaotic sequences are created using logistic
mapping which is used to train a Hermite chaotic NN. The image is encrypted using two
streams of keys generated by the NN. Experiments with this encryption system show a
strong algorithm which is resistant to statistical analysis, and has a large key space and
good sensitivity [160].

Another way NNs can be used for image encryption is through Memristive bidirec-
tional associative memory neural networks. The model relies on leakage delays and time
varying delays; it is used to develop a color image encryption algorithm. This algorithm
has a large key space and resists attacks such as brute force and differential attacks [161]. It
can also be applied by using an RBG plane where the first stage of this process involves
Logistic mapping on all three planes of the image. Then, by using the chaotic functions
in NNs present in the Newton–Leipbik chaotic system, the weights for the pixels can be
changed and the output of the previous stage is used as the input of this step. This creates
a strong encryption system which is resistant to attacks [162].

Image encryption can be accomplished by the Chaotic Dynamics present in HNNs.
The cryptosystem uses chaotic signals generated by the human body which are developed
and implemented as FPGA hardware. During testing, it was found that the correlation
coefficent for encrypted images with this method was close to zero, thereby proving that it
is quite robust [157].

Fractional-Order Quantum Neural Networks (QNNs) provide another source for
image encryption. This system uses a technique known as the anamorphic fractional
Fourier Transformation which increases the leeway offered by the optical cryptosystem.
The chaos order/sequence generated from the QCNN is used to provide a complex key
space which can be used to encrypt the image and provides robust protection against
attacks such as noise and occlusion [163].

Furthermore, combining Hyper Chaotic systems from cellular NNs along with encryp-
tion schemes that use Latin squares was shown to provide better security than traditional
encryption methods for Grayscale image encryption [164].

Even though synchronization can be archived through the NN synchronization proto-
col, its performance can still be affected by delays. Asymptotical synchronization of the
unbounded delayed inertial NNs model can be used to solve problem of unbounded delay
within the synchronization system [165]. The encryption algorithm based on these NNs
provides relatively more secure communication since it requires a hybrid input from the
response system. Furthermore, NN can be leveraged for image encryption and compres-
sion. The middle layer in the NNs can be represented as the compressed image [166]. The
compressing process occurs during the transformation from the input layer to the middle
layer, and the decompressing process occurs from the middle layer to the output layer.
Then, it can XOR with some chaotic functions to enhance security in encryption. There
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are many types of lag in the synchronization system. It is known that NNs can be applied
to perform synchronization for communication. They can also be used to perform lag
synchronization [167]. The reason for lag synchronization is because complete synchroniza-
tion is hard to achieve due to transmission delay. As a result, lag synchronization may be
preferred. Switched NNs can be used to solve globally exponential lag synchronization
problems by adding an additional controller based on the neuron activation function. These
NNs can perform encryptions in the same way as other NNs for synchronization systems.
The traditional scrambling–diffusion structure for image encryption separates scrambling
and diffusion into two processes and makes them available for hackers to decrypt simulta-
neously. Strong encryption must exist for both processes to resist decryption from attackers.
Neural networks can be applied here with the chaotic function to provide robust and secure
encryption for the diffusion process [168].

Another application of NNs in encryption comes with looking at ANNs and key
distributions for symmetric encryption. The application of TPM which is a special type
of ANN was used to establish a secret key exchange protocol. An interesting point which
is to be noted is much of the TPM learning derived from changing the weights of TPM
and not changing the inputs. This implies that the key exchange protocol is difficult to
decipher [169].

The implementation of chaotic NNs extends to the public key cryptosystem, especially
the Diffie–Hellman PKI. There exists a one way function between the chaotic sequence of
NNs and the Overstored Hopfield Neural Network (OHNN). The Diffie–Helman public
key cryptosystem can be implemented with changes in the synaptic matrix and changes of
OHNN with the private key being the permutation operation of the synaptic matrix and
the public key being the neural synaptic matrix after the permutation [170].

Another way NNs can be used as an encryption system is through the time delays
between different neurons in the original data. This form of encryption has a wide array
of applications ranging from using it as a one way function to generate a public key from
a private one to using it as an encryption mechanism for communication between two
entities [171].

Clipped Hopfield Neural Network (CHNN) and multivariate cryptography can also
be used for a public key cryptography system [172].

Symmetric key cryptography can use genetic algorithms and an Error back propogra-
tion neural network to encrypt and decrypt data. The encryption process uses the GA while
the decryption process uses EP-NN which is a commonly used for supervised learning
NNs. The time complexity for this algorithm is significantly less than that of Advanced
Encryption Standard (AES), Data Encryption Standard (DES) and RSA [173].

The chaos property of ANNs can also be used to encrypt digital video transmission.
One encryption algorithm from chaotic NN uses MPEG-2 video codec standard to change
the audio–visual video data into an encrypted form [174,175]. The encrypted data are
then transmitted to the destination using the OFDM modulation technique. The creation
of a cipher based on the chaotic NN property reveals an interesting characteristic where
the control parameter must be close to 4 [174]. Otherwise, the cipher system does not
possess sufficient chaotic properties which can lead to crypt-analytic vulnerability. Another
way this can be achieved is through the binary sequence that is generated via the chaotic
system along with the biases and weights that are set. This, in combination with the VLSI
architecture, can create an encryption method which has the following characteristics: high
security, limited distortion and suitability for digital integration.

The noise-like chaotic properties of ANN can also be used for signal encryption using
time-series generation and hash-value generation. These can be fused with the ANN and
the chaotic sequences to create a signal digital envelope which has a secret key and a hash
value associated with it [176,177].

Delayed NNs can be applied in the master–slave synchronisation field. Specifically,
they can be deployed where network and controller modes are asynchronous and a memory
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asynchronous control allows for a solution to the outer synchronization problem. The veri-
fiability of this is seen through chaotic-like NNs and their application to encryption [178].

Memristor-Based BAM Neural Networks are widely used in synchronization system.
They can also be applied to encryption processes because of their chaotic property [179].

With the efficiency of key generation and high development ability of NNs, many
communication systems use NNs to achieve secure communication networks. An NN can
provide system synchronization and the encryption process [180]. Furthermore, it can be
made more secure by combining a hyper-chaotic function with the NN. A hyper-chaotic
system would require at least 4Di chaotic functions, which the NN can quickly obtain. The
encryption process from the hyper-chaotic NN would provide even more secure communi-
cation. Impulsive synchronization can be achieved using two reaction–diffusion NNs [181].
The networks can be combined with the Lyapunov function to ensure less conservative
criteria compared to the regular impulsive synchronization system. Similarly to other NNs
in synchronization, reaction–diffusion NNs can also provide encryption and decryption
while synchronizing computers. We mentioned the Memristor-Based Neural Networks
above, which can be used for synchronization systems. Now, they can become be more
powerful as they can be improved for finite-time synchronization [182]. They can perform
synchronization with time-varying delays and distributed delays to guarantee the synchro-
nization time in a finite time. The delays algorithm would be integrated into the NN to
perform synchronization and encryption. Traditional time-triggered communication sys-
tems with data-sampled control would send additional sampled data that are unnecessary.
The event-triggered communication system can prevent the problem of wasting limited
bandwidth due to its properties [183]. It only transmits data when the event condition is
met. Inertial Neural Networks(INNs) can be used to construct this communication system
with an additional Markovian function and reaction–diffusion terms.

Information security has three basic tenets to protect the following: confidentiality,
integrity and availability. The current state of cryptography looks at how to protect confi-
dentiality through the use of crypto-graphic systems. One of the newest fields of study is
cellular NNs/Cellular Automata and how to use them in cryptography [184–186].

With the significant amount of work being produced in this field, there are two main
types of NNs at play, namely Feed Forward Neural Networks (FFNNs) and RNNs. The
techniques employed in cryptography for NNs include using sequential machines and
employing a chaotic NN [187–189].

Artificial neural networks can be trained to decrypt ciphertext that is created by
random encryption algorithms. The pseudorandom mapper is used in conjunction with
garbage values at random positions to encrypt the image. The ANN is then able to identify
the garbage values and decrypt the messages [190].

An interesting proposition is combining the AES encryption algorithm with NNs. This
encryption scheme is based on looking at the weights of synaptic connections in NNs as
the bases for input images. This approach provides a constant key rotation which increases
the cryptography complexity required to break the encryption [191].

Chaotic properties of NNs can further be used to generate S-boxes which are cryp-
tographically strong and secure NNs can be leveraged to detect ciphers which use the
same key. RNNs were shown to have reduced learning abilities when the confusion and
diffusion parameters of the cryptographic system were strong [192].

With a comparison having been performed between AES and chaotic NNs, it was
found that chaotic NNs were more suitable for encrypting shorter plaintexts while AES
was more efficient at encrypting larger plaintexts [193].

A symmetric cryptography system was created through the use of CNNs and was
compared with AES symmetric cryptography. The CNN cryptosystem has potential for
encrypting small file sizes but its susceptibility to attacks has not yet been confirmed [194].

The cryptosystem can be improved by adding noise/random bits into the ciphertext
which can only be caught and decrypted by the end user. This foils many of the attacks
where the attacker can feed the ciphertext into the NN to try and extract the key [195].
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While chaotic NNs use binary inputs for the training of their models, using Auto
Associative neural networks can create a strong encryption algorithm by using a bipolar
input instead [196]. The input pattern is deemed known if and only if there is an output
that is the same as the input for this pattern. The auto associative NNs are used to encrypt
plaintext into ciphertext where the relation between different ciphertexts is independent.

Another way NNs can be used as an encryption system is through the time delays
between different neurons in the original data [171]. This form of encryption has a wide
array of applications ranging from using it as a one way function to generate a public key
from a private one to using it as an encryption mechanism for communication between
two entities. Moreover, a Generalized Synchronization Network is a kind of NN that
can be thought of as a discrete time array. The GSDTAE can design a encryption scheme
with an OTP. Through this, we were successfully able to encrypt and decrypt the original
information with a large key space [197].

The resilience of ANNs can be measured when sensitive Intellectual Properties are
stored in the system [198]. It is known that the weight in NNs is unpredictable without
knowledge about the training data. As a result, it could be a valid key for encryption and
decryption. RNNs can be used to produce keys and to provide Cipher Block-Chaining
(CBC) mode encryption [199]. It takes the first output (ciphertext) of the NN and places
it back as part of the input for the second plaintext. The same implementation was also
shown in [200].

Furthermore, NNs consume a large amount of energy under the current von-neumman
architecture due to the presence of a memory wall. In order to rectify this, Non-Volatile
Memory (NVM) systems are seen as an alternative but they are susceptible to confidentiality
attacks where the attacker can steal the NN model. With little performance overhead,
a Sparse Fast Gradient Encryption (SFGE) method coupled with Runtime Encryption
Scheduling (RES) can be used to secure the confidentiality of NNs. This can help mitigate
the AI hardware-based attacks with a strong encryption scheme [201].

One method to leverage NNs in order to encrypt and decrypt text messages is the use
of Auto Encoder Neural Networks (AENNs). An AENN is an FFNN which can be used for
unsupervised learning where the input can also be the output. By leveraging the encryption
scheme, key generation becomes extremely secure because for every training set it produces
a different key. Therefore, for the same plaintext a different ciphertext is produced [56]. Real-
time RNN-based ciphers can be employed to secure the transfer of mobile ad hoc networks
through the use of a Multi-Path Routing Scheme. The steps involved in this process include
message encryption through the use of RRNN symmetric cipher, message routing through
multi-path DSR and message decryption with the RRNN-SC. This system helps address
many of the underlying issues of confidentiality, integrity and access control currently
experienced with Mobile Adhoc NETworks (MANETs). Looking at the Fast Handover
protocol, which is usually in effect when a mobile router from a previous access point
connects to a new one, it can be seen that it is susceptible to DOS and Masquerading attacks.
In order to combat this, NNs can be used by leveraging their property of mutual learning.
The Two parties communicating with each other use a TPM and the key generated is the
synchronized weights of the two entities. This provides a better communication system
than the proposed solutions of using PKI or Diffie–Helman because of their slowness and
lack of efficiency [202].

An HNN encryption scheme can be used to encrypt text-messages. Then, in order to
bolster security, a DNA cryptography model can be used [149].

Security of Neural Cryptography

Interestingly, side channel attacks can be curbed through the use of Tree Parity Machine
Public Key Exchanges (TPMPKE) [203]. Neural Synchronization looks at the communica-
tion of two TPMs to establish a secret key via an open channel. Once this is successfully
established, it is highly resistant to the majority flipping attack by a cooperating attacker.
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The security of neural cryptography can be compromised if there are multiple cooper-
ators that work together to decrypt the exchange key using their own NNs [185].

Symmetric ciphers based on real-time RNNs can be subject to Chosen Plaintext Attacks
(CPA). If the adversary has access to arbitrary amounts of plaintext and can generate the
ciphertext for them: the resulting input and output can be fed into an NN and the key can
be discovered [204].

Neural Cryptography protocols can be attacked using a technique known as ‘power
analysis’. This protocol is weak against this attack where the power can trace the informa-
tion which is exploited [205]. A counter measure is sending Erroneous information which
can be transmitted in order to deceive the attacker listening to the communication about
the content of the information.

7.2. Homomorphic Neural Cryptography

Homomorphic encryption is a recent trend in cryptography [206–208]. Homomorphic
encryption allows trusted third parties to process encrypted data without knowledge of
the data. Data can be encrypted before transmission. A Fully Homomorphic Encryption
(FHE) scheme would allow people to perform any arbitrary manipulation on encrypted
data such as addition or multiplication at the same time. This section studies how AI-based
techniques, specifically NNs, could be used to enhance homomorphic encryption.

The authors of [209] argued that homomorphic encryption is susceptible to errors
because of the calculations performed by the algorithm in each step. They attempted
to solve this problem by separating the computational operations while encrypting and
decrypting the data at each stage. Combining this with NNs provides a robust encryption
algorithm that minimizes the errors and offers a strong encryption system.

Further, the authors of [210] firstly argued that the complexity caused by a modification
in encrypted data increases the difficulty of the implementation of FHE. In their method,
noises would be added to the plaintext at the time of encryption using NNs. It would
be hard to predict/evaluate when the modification procedures also modify the noise.
Secondly, they argued that it takes a lot of time and computing power to perform decryption
through bootstrapping. One possible solution is to limit the time of modification for the
encrypted data.

While FHE is still in progress, Partial Homomorphic Encryption (PHE) can be imple-
mented in real-world applications. The Paillier encryption algorithm, as a PHE algorithm,
was used in [211] with the support of DNNs for face recognition.

8. Future Roadmap: The Promise of Secure AI

We anticipate that research on AIIC will move towards quantum-inspired AIIC in the
near future. Our reason for this belief is the existence of trends in quantum-inspired AI and
its use in cryptography, which are discussed in Sections 8.1 and 8.2, respectively.

8.1. Quantum-Inspired AI

In this section, we provide insights into quantum-inspired AI. The capacities of quan-
tum computing can be adopted by AI to perform learning techniques. We analyze how the
capabilities of quantum computing would improve the learning performance of AI.

A study reported in [212] presented a Quantum-inspired Reinforcement Learning
(QiRL) solution to the problem of Unmanned Aerial Vehicle (UAV) trajectory planning. This
QiRL used a novel collapse behavior selection strategy inspired by quantum mechanics,
which provided a natural balancing approach for exploration and development by ranking
the collapse probabilities of different behaviours. The proposed QiRL method was proven
to be effective, and the proposed method was shown to be capable of balancing convergence
speed and learning quality better than the traditional Q-learning method.

Moreover, an algorithm for navigation control of autonomous mobile robots was
presented in [213] using QiRL. In quantum information retrieval, probabilistic behavior
selection and probabilistic enhancement strategies were applied, which were influenced
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by the amplitude amplification and collapse phenomenon of quantum measurements and
computation. Several simulation experiments on the Markov state transfer revealed that
QiRL was more robust in terms of learning rate and the initial state than traditional rein-
forcement learning. Simulations and experimental results demonstrated the effectiveness
of the QiRL-based navigation control method when applied to a real mobile robot.

Another study proposed a Quantum Fuzzy Neural Network (Q-FNN) classifier that
was able to solve the overlapping sample classification problem [214]. According to em-
pirical results, Q-FNN outperforms existing classifiers in terms of classification accuracy.
The model used a tenfold cross-verification scheme, and generated accurate results. In a
second experiment, the classification model proposed was applied to 11 of 15 state-of-the-
art datasets. Another study also aimed to develop a framework for Deep Reinforcement
Learning (DRL) supported by quantum computation based on the results of an empirical
replay [215].

Furthermore, self-convergent iterative learning model algorithms were notably im-
proved using quantum computing in [216]. Quantum-inspired Hopfield Associative Mem-
ory (QHAM) demonstrated quantum information processing in neural structures. In
this study, a new Quantum-inspired Multidirectional Association Model was introduced
(QMAM), combining one-off learning and self-convergent iterative learning methods. The
simulation results show that the proposed model was of acceptable stability, memory
capacity and recall reliability.

8.2. (Quantum-AI)-Supported Cryptography

Recently, neural cryptography and quantum cryptography were combined by some
researchers [217]. We refer to this combination as (quantum-AI)-supported cryptography.
Quantum-supported AI was used for image encryption in [163]. Furthermore, ML was
used for the cryptanalysis of Quantum Random Number Generators (QRNGs) [218]. More-
over, the authors of [219] showed how ANNs can be leveraged to assist error correction
within quantum cryptography. This can be performed using partially-synchronized NNs
and TPMs that work with weights randomly generated for the NN. In [220], another cryp-
tosystem was devised that caused two NNs to exchange the ciphertexts (in qubits) with the
key being synchronized by both parties. This system relies on multilayer qubits combined
with a back-propagation algorithm.

Figure 8 illustrates our predictions for the future of AIIC.

Figure 8. The Future of AIIC.
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9. Conclusions and Further Works

The recent literature revealed strong crossimpact between AI and cryptography, indi-
cating great promise for both. Crossimpact creates a dichotomy in the context of which,
the two technologies coevolve. The evolution of AI under the impact of cryptography
was studied in previous research works. This research was an attempt to provide a com-
prehensive perspective on the evolution of cryptography under the impact of AI. We
identified five stages on the evolutionary path of AI-Influenced Cryptography (AIIC),
namely AI-Unaware Cryptography (AIUC), AI-Resilient Cryptography (AIRC), AI-Boosted
Cryptography (AIBC), AI-Assisted Cryptography (AIAC) and AI-Embedded Cryptogra-
phy (AIEC). We observed that going through these stages, cryptosystems not only learn to
protect themselves against AI-based attacks, but also use the capabilities of AI to improve
security, performance, etc. Moreover, they learn to take advantage of AI’s capabilities in
different security-related scenarios and different internal modules. We also took a look at
what the future may hold for AIIC given the role of quantum computing in current trends
of research on AI.

Our work presented in this paper can be built upon in the following ways:

• Investigating challenges and applications of AIIC;
• Developing a taxonomy, an ecosystem or a life cycle for AIIC;
• Studying the impact of bio computing on the future of AIIC given its impact on current

trends in AI as well as cryptography;
• Providing a look-ahead at the future of Crypto-Influenced AI (CIAI) with a focus on

the role of bio computing;
• Anticipating the role of information theory in future AI, and consequently on the

future of both AIIC and CIAI;
• Investigating the coevolution of AI and blockchain.
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