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Abstract: Several statistical techniques for analyzing data matrices use lower rank approximations
to these matrices, for which, in general, the appropriate rank must first be estimated depending
on the objective of the study. The estimation can be conducted by cross-validation (CV), but most
methods are not designed to cope with the presence of outliers, a very common problem in data
matrices. The literature suggests one option to circumvent the problem, namely, the elimination of the
outliers, but such information removal should only be performed when it is possible to verify that an
outlier effectively corresponds to a collection or typing error. This paper proposes a methodology that
combines the robust singular value decomposition (rSVD) with a CV scheme, and this allows outliers
to be taken into account without eliminating them. For this, three possible rSVD’s are considered and
six resistant criteria are proposed for the choice of the rank, based on three classic statistics used in
multivariate statistics. To test the performance of the various methods, a simulation study and an
analysis of real data are described, using an exclusively numerical evaluation through Procrustes
statistics and critical angles between subspaces of principal components. We conclude that, when
data matrices are contaminated with outliers, the best estimation of rank is the one that uses a CV
scheme over a robust lower rank approximation (RLRA) containing as many components as possible.
In our experiments, the best results were obtained when this RLRA was calculated using an rSVD
that minimizes the L2 norm.

Keywords: outliers; resistant statistics; singular value decomposition

1. Introduction

The singular value decomposition (SVD) is a mathematical result that allows the
calculation of a low-rank approximation of any matrix and serves as the basis of many
statistical methods used in data analysis [1]. The application areas are diverse, for example,
SVD can be used in principal component analysis [2], the imputation of missing data [3],
the graphical representation of multivariate data [4], the formulation of models to explain
the interaction in two-way tables [5,6] and non-parametric analysis of time series [7], to
mention just a few.

A problem inherent in the use of SVD is the determination of the appropriate rank
of the approximation, i.e., the appropriate number of components to be retained, and a
very convenient way to solve this problem uses the resampling technique known as cross-
validation. Standard cross-validation consists of subdividing the study matrix into a certain
number of groups, deleting each group in turn, evaluating the parameters of a chosen
predictor from the remaining data and using the result to predict the deleted values [8].

A numerical measure of agreement between predicted and actual values can then
be computed for each possible rank, and the best rank to choose is the one providing the
best calculated measure. Readers interested in classic references, alternative procedures,
method comparisons and new developments of the subject can refer to the works of
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Bro et al. [9], Owen and Perry [10], Josse and Husson [11], Camacho and Ferrer [12] and
Saccenti and Camacho [13].

Among the wide variety of methods for conducting the cross-validation, one consid-
ered as classic and influential is the Eastment and Krzanowski [14] (EK) scheme proposed
in 1982, and which currently (April 2022) has 452 citations in Google Scholar. The method
depends on the SVD, so does not rest on any distributional or structural assumptions.
Moreover, it provides exact calculations, so does not have the convergence problems that
can occur with expectation maximization (EM) approximations [15].

A frequent problem in data analysis is the presence of outliers [16] and the performance
of the EK method can be affected by them because of its use of SVD, which is a least squares
technique. To circumvent the problem, an option used by Krzanowski [17] was to compare
the results obtained for the complete data with those for the reduced data, after eliminating
the outliers. To the best of our knowledge, no specific study has been conducted to evaluate
the effect of outliers on the EK method when applied to lower rank matrices; therefore, the
aim of the current paper is to propose a methodology that combines robust singular value
decomposition (rSVD) with the EK method and that does not require the elimination of
outliers. This proposed methodology would therefore be applicable for any dataset that
has some suspicion of contamination and the outliers do not correspond to errors in the
collection or typing, as in that case the elimination of information is perfectly sensible.

This article is organized as follows: the EK method is presented first, followed by the
various proposed methods along with associated statistics that robustify the criterion for
choosing the rank of a matrix. Subsequently, three rSVD’s are presented that can be used as
a way to reduce the effect of outliers, but without eliminating them. Then, a simulation
study is described for evaluating possible cross-validation strategies for different levels of
contamination using different resistant statistics. A study of a real dataset is also described
to compare the proposed alternatives, and finally the results are presented together with a
relevant discussion.

2. EK Method

Consider a standardized data matrix Y (n × p) with elements yij (i = 1, . . . n; j = 1, . . . p)
and n ≥ p (if n < p the matrix should be first transposed), for which we wished to
determine the best lower rank approximation. For this, Eastment and Krzanowski’s [14]
cross-validation scheme can be used, which quantifies the idea of “acceptable accuracy” in
terms of predicting the elements of Y. The scheme is based on the fact that element yij in
the i-th row and in the j-th column of Y can be written as a multiplicative model using SVD,
that is:

yij =
p

∑
t=1

uit st vtj (1)

Krzanowski [8] used this representation as a basis for determining the dimensionality
of a multivariate dataset: if the data structure is essentially m-dimensional, then the
variation in the remaining (p-m) dimensions can be treated as random noise. For this
reason, it can be assumed that the main characteristics of the data are found in the space
of the first m components. This means that the data can be written according to an m-
component model, such as:

yij =
m

∑
t=1

uit st vtj + εij (2)

where εij is a residual term and setting εij equal to zero, the expression results in a predictor
of yij

ŷ(m)
ij =

m

∑
t=1

uit st vtj (3)

Since the calculations of uit, st and vtj involve all values of Y, the predictor of yij
uses the value of yij itself. This is an undesirable feature in cross-validation because it
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can be a source of bias. To avoid this bias, Eastment and Krzanowski [14] suggested the
following scheme: suppose we are looking for the prediction of yij in Y, then, the i-th row
from Y is deleted and the SVD for the ((n − 1)× p) resulting matrix Y(−i) is calculated as
Y(−i) = UDVT , U = (ush), V = (vsh), D =

(
d1, . . . , dp

)
. The next step is to delete the j-th

column from Y and obtain the SVD for the (n × (p − 1)) matrix Y(−j) as Y(−j) = ŨD̃Ṽ
T

,

Ũ = (ũsh), Ṽ = (ṽsh), D̃ =
(

d̃1, . . . , d̃p−1

)
. The matrices U, V, Ũ, and Ṽ are orthonormal,

while D̃ and D are diagonal. By combining the two SVDs, Y(−i) and Y(−j), a predictor of Yij
based on the m component model is given by

ŷ(m)
ij =

m

∑
h=1

ũih

(
d̃h

√
p/(p − 1)

) 1
2
vjh

(
dh

√
n/(n − 1)

) 1
2

(4)

This predictor is slightly modified relative to the one proposed by Eastment and
Krzanowski [14] following the work of Bro et al. [9] and Arciniegas-Alarcón et al. [3] be-
cause the inclusion of the constants

√
p/(p − 1) and

√
n/(n − 1) improves the quality of

the predictions. On the other hand, in order to avoid computational problems, a parity check
should be done in each prediction by matching the sign of(

ũih

(
d̃h
√

p/(p − 1)
) 1

2
)(

vjh

(
dh
√

n/(n − 1)
) 1

2
)

in (4) to the sign of uihdhvjh obtained

from the SVD of the Y matrix for each m.
After establishing the predictor of the observations, an overall measure of predictive

accuracy of the m-component model is given by

PRESS(m) =
1

np

n

∑
i=1

p

∑
j=1

(
ŷ(m)

ij − yij

)2
(5)

This function can be computed for each value of m, where m = 1, . . . , p − 1 and an
optimal choice of m (the rank of Y) can then be based on some appropriate function of these
values. The suggestion made by Krzanowski [17] and Krzanowski and Kline [18] was to
calculate the statistic

Wm =
PRESS(m − 1)

n + p − 2m
÷ PRESS(m)

DR
(6)

for each m, where DR = (n − m − 1)(p − m). To calculate W1, it is necessary to define
PRESS(0); in this case, you can use ŷ(m)

ij = 0, Forkman and Piepho [19], or ŷ(m)
ij can be the

mean of j-th column without the element (i,j) (Carlos Tadeu dos Santos Dias, personal
communication, 3 August 2021). Finally, the m-th component of the SVD can be considered
“important” if Wm > 0.9 and the total number of important components constitutes an
estimation of the optimal rank of the matrix Y taking into account predictive criteria. In
those cases where Wm < 0.9 for all components, the rank estimation can be determined by
the component with the highest value of Wm. The acronym EK82 can be used to identify
the method described above.

3. Proposed Methodology

The choice of the optimal rank for a lower rank approximation using the EK method
basically depends on two aspects: the predictions of the elements of Y and the criterion to
determine if a component is important or not. It is known that the quality of predictions
using the standard SVD decreases in the presence of outliers in the data matrix [20]. For
that reason, our first attempt at circumventing this problem was to create a robust version
of the EK schema. For this, the usual standardization of Y was replaced by a robust
standardization and, in the calculation of the elements of the predictor described in (4), the
SVDs of Y(−i) and Y(−j) were replaced by an rSVD (details for calculating it are described
in the next section).
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Although this approach produced good-quality predictions in small test matrices (for
instance, 20 × 5), the main disadvantage was computational because the implementation
for larger matrices became too heavy due to the inclusion of rSVDs. In this way, the problem
of outliers was circumvented, but the computational speed of the EK method was lost. This
could later be a problem in the future for large arrays. Thus, we now have a more complex
problem: how do we improve the predictions of the EK scheme in the presence of outliers,
without eliminating them while at the same time trying to preserve the computational
speed of the method as much as possible?

To resolve this issue, we decided to use the work of Arciniegas-Alarcón et al. [21] and
our proposal was to conduct the cross-validation in two stages: (i) calculate an rSVD on the
original matrix Y and obtain a robust lower rank approximation YRLRA with the maximum
possible number of components, that is, with the smallest number between n and p. With
this YRLRA, we can obtain a good approximation of the original values, and in the case
of outliers we can obtain a robust approximation without eliminating any information
and following the maximum-data precept. (ii) The EK method is then applied to YRLRA,
and the optimal rank is determined. Such a combination of methodologies (rSVD + EK)
was not found in our literature review so becomes a possible way to perform a robust
cross-validation on contaminated lower rank matrices that is is computationally efficient as
the size of the study matrix increases.

Determining the rank depends on the chosen criterion; therefore, in addition to Wm,
we could use several criteria based on trimmed PRESS [22]. The following is a list of the
possible criteria we considered:

1. PRESS: According to Equation (5), the optimal rank is the one that minimizes the
statistic. Bro et al. [9] found that, in some cases, this criterion may be more effective
than Wm.

2. PRESS75: A resistant PRESS statistic is constructed by averaging the 75% of the small-

est squared errors
(

ŷ(m)
ij − yij

)2
. The optimal rank is the one that minimizes PRESS75.

3. PRESS50: A resistant PRESS statistic is constructed by averaging the 50% of the small-

est squared errors
(

ŷ(m)
ij − yij

)2
. The optimal rank is the one that minimizes PRESS50.

4. Wm: According to Equation (6), the optimal rank is the total number of
important components.

5. Wm(Max): The optimal rank is the number of the largest important component using
Wm. Krzanowski [8] found that, in some data sets, the Wm statistic does not always
show a monotonically decreasing behaviour. For example, if W1 = 26.22, W2 = 5.95,
W3 = 0.19 and W4 = 1.03, the optimal rank is 4, even though component 3 is
not important.

6. Wm75: In Equation (6), PRESS is replaced by PRESS75 and the optimal rank is the total
number of important components.

7. Wm75(Max): The optimal rank corresponds to the number of the largest important
components using Wm75.

8. Wm50: In Equation (6), PRESS is replaced by PRESS50 and the optimal rank is the total
number of important components.

9. Wm50(Max): The optimal rank corresponds to the number of the largest important
component using Wm50.

4. Robust Singular Value Decompositions (rSVDs)

The cross-validation proposed in this paper depends directly on the rSVDs used
initially; therefore, to delimit the research, we considered the proposals of Gabriel and Odo-
roff [23], Hawkins et al. [24] and Zhang et al. [25] for the actual computational procedures.
Below, we provide a brief outline of each proposal, but a complete algorithmic description
is available from García-Peña et al. [20].
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Gabriel and Odoroff’s [23] proposal cyclically used fits of rank-one approximations
and obtained the residuals after each of these adjustments. They inserted medians and
trimmed means into the technique of reciprocal averaging used to minimize the L2 norm. A
computational implementation in the R statistical environment [26] is found in a study by
Arciniegas-Alarcón et al. [21] The acronym EK84 will be used to describe the methodology
that mixes this rSVD with the EK schema.

On the other hand, Hawkins et al. [24] found the eigenvalues and eigenvectors for
each component of the rSVD through an iterative procedure minimizing the L1 norm.
The drawbacks are that this rSVD can be affected in the case of the presence of leverage
points, the eigenvectors can be non-orthogonal and the eigenvalues do not always have a
decreasing order. A computational implementation is in the pcaMethods package of R [26].
The acronym EK01 is used to describe the methodology that mixes this rSVD with the
EK schema.

The rSVD by Zhang et al. [25] computed a sequence of robust rank-one approximations.
Robust estimates are obtained by minimizing the Huber function in an iterative re-weighted
least squares algorithm. The procedure is implemented in the R RobRSVD package [26].
The acronym EK13 is used to describe the methodology that mixes this rSVD with the
EK schema.

5. Simulation Study

To evaluate the performance of the cross-validation schemes (i.e., EK01, EK13, EK82,
and EK84) on contaminated low-rank matrices, one hundred matrices of dimension
(100 × 8) were simulated using the following process: “Clean” observations were gen-
erated as Y = T + E, where T = ABT =

[
tij
]

is a rank four matrix with A (100 × 4),
B (8 × 4), and E (100 × 8) is “pure noise”. The elements of A, B and E were iid N(0, 1).
Outliers were produced on each Y matrix in different percentages (0, 5, 10 and 20%), their
positions were chosen randomly and were generated using the normal distribution with
mean µj + 100σ2

j and variance σ2
j . In this case, µj and σ2

j represent the mean and variance
of the j-th column. Contaminated matrices will be noted by YC.

The four cross-validation schemes were applied to the YC matrices to determine their
rank m (each scheme with each statistic considered can provide different ranks). The
quality of this choice was evaluated from the predictive point of view, calculating the
corresponding (robust) lower rank approximation with m components (Ŷ) and comparing it
with the original matrix Y without contamination. For this, the Procrustes M2 statistic was
used [27]. In this case, M2 = trace

(
YYT + ŶŶT − 2YQŶT

)
where Q = VUT is the rotation

matrix calculated from elements of the SVD of the matrix YTŶ = U ∑ VT . The M2 statistic
measures the difference between two configurations of points, so the (robust) lower rank
approximation that minimizes this difference indicates the rank selection method that
yields the closest match between clean data and calculated approximations in the presence
of outliers.

Another criterion for comparing the proposed methods, following the work of
Krzanowski [8,28], was the critical angle (θ) between two subspaces of principal com-
ponents. For this, both the SVD of Y = UDVT and the (r)SVD of YC = WJKT were
calculated. If the cross-validation shows that the rank is m, the matrices V and K with m
retained components are compared, that is, V(m) and K(m). The calculation of the critical
angle is defined by θ = cos−1(d), where d is the smallest element of G in the SVD of the
matrix VT

(m)K(m) = MGPT . The greater the critical angle, the greater the influence of out-
liers on the principal coefficients components; therefore, the best cross-validation scheme is
the one that provides the lowest value for θ.

In each percentage of outliers considered, one hundred values of the Procrustes
statistics and one hundred values of critical angles were obtained. From these values, the
means of the 90% with the lowest values were calculated. This average is a robust criterion
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that leaves out some flaws that a method may have, but which, in general, presents a
good behavior [20,29].

6. Real Data

In addition to the simulation study, cross-validation schemes were applied to the real
dataset previously studied by Skov et al. [30] and Bro and Smilde [31], from whose work
we attained the main description of the data: “Red wines, 44 samples, produced from the
same grape (Cabernet sauvignon) were collected. A Foss WineScan instrument was used to
measure 14 characteristic parameters of the wines such as the ethanol content, pH, etc. Hence
a dataset consists of 44 samples and 14 variables. The actual measurements can be arranged
in a table or a matrix of size (44 × 14)”. The data are available at http://www.models.life.ku.
dk/Wine_GCMS_FTIR (accesed on 1 April 2022) and, as it is a multivariate matrix with
different measurement scales, we used the standardized matrix in all our analyses.

A difficulty in evaluating schemas on real data is the lack of a priori knowledge of
what should be “good behaviour”. Because of this, and following the recommendation of
Maronna and Yohai [29], we added outliers in the data set following the same procedure
described in the simulation study and using the same comparison criteria, but the difference
in the simulations occurred only once.

7. Results

Table 1 presents the trimmed means to evaluate the cross-validation schemes when the
M2 statistic was used in the simulation study. It can be seen that, without contamination
(i.e., outliers = 0%), the best method is the EK82 method because it minimizes the value of
the criterion. This result is to be expected because the standard SVD provides very good
results in the absence of outliers. It can also be seen that, of the resistant criteria considered
to choose the rank of the matrices, the one that provided the best results was PRESS50. This
indicates that using only 50% of the smallest residuals by cross-validation may be sufficient
to select the rank.

Table 1. The 0.9-trimmed means of Procrustes values in the simulation study.

0.9-Trimmed Means of Procrustes Values

Outliers = 0% Methods Outliers = 10% Methods

Criterion EK01 EK13 EK82 EK84 Criterion EK01 EK13 EK82 EK84

PRESS 928 411 405 2326 PRESS 5,929,179 9,858,840 10,533,642 2726
PRESS75 845 367 357 2284 PRESS75 6,503,877 10,051,928 10,592,223 2764
PRESS50 802 357 315 2273 PRESS50 9,915,026 13,550,429 13,794,540 2771
Wm 1773 1547 1563 2364 Wm 16,969,901 23,472,838 23,671,632 2703
Wm(Max) 1431 1017 1000 2359 Wm(Max) 16,969,901 23,472,838 23,671,632 2706
Wm75 1222 841 826 2295 Wm75 6,890,112 10,644,089 11,219,853 2741
Wm75(Max) 1102 647 614 2292 Wm75(Max) 8,091,972 11,470,833 11,918,769 2748
Wm50 1177 822 806 2280 Wm50 10,431,960 15,358,453 15,708,124 2753
Wm50(Max) 1041 640 619 2279 Wm50(Max) 13,724,787 18,830,770 19,093,611 2760

Outliers = 5% Methods Outliers = 20% Methods

Criterion EK01 EK13 EK82 EK84 Criterion EK01 EK13 EK82 EK84

PRESS 1,349,656 5,347,643 5,517,974 2503 PRESS 16,219,919 20,858,768 23,719,760 3794
PRESS75 1,593,606 5,978,138 6,160,294 2500 PRESS75 16,585,561 20,389,484 23,240,805 3875
PRESS50 2,085,285 7,208,180 7,361,273 2491 PRESS50 24,876,820 26,596,384 26,604,794 3896
Wm 6,121,399 12,296,349 12,339,272 2513 Wm 32,095,002 43,746,109 47,429,575 3491
Wm(Max) 6,145,795 12,296,349 12,339,272 2511 Wm(Max) 32,300,042 43,746,109 47,429,575 3529
Wm75 1,802,253 6,876,657 7,043,231 2498 Wm75 17,200,893 20,911,456 23,301,683 3710
Wm75(Max) 2,427,846 8,446,853 8,567,883 2500 Wm75(Max) 18,713,152 21,288,046 23,488,022 3736
Wm50 2,659,677 8,260,863 8,433,306 2494 Wm50 23,995,906 27,336,626 27,389,422 3769
Wm50(Max) 4,369,880 10,172,078 10,266,390 2493 Wm50(Max) 28,428,412 31,084,469 29,862,533 3799

In bold, the method with the lowest statistic value in each percentage of outliers.

http://www.models.life.ku.dk/Wine_GCMS_FTIR
http://www.models.life.ku.dk/Wine_GCMS_FTIR
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On the other hand, when there is some degree of contamination in the simulations,
according to Procrustes statistics, methods EK01, EK13 and EK84 always present better
performances (lower values) than EK82 using any of the criteria considered (resistant or
not). This indicates that the estimation of the rank in the presence of outliers should be
performed with one of the robust procedures rather than the standard EK method.

Taking into account predictive criteria and making a comparison between the robust
methodologies, it is very clear that the EK84 method always provides the best results, being
the most consistent and stable in the simulations, regardless of the percentage of outliers.
EK84 shows the highest efficiency (lower M2 values) using the PRESS50 as a rank selection
criterion when the contamination level is low (5%), but when said level is intermediate
(10%) or high (20%), the criterion with the best performance is Wm.

Table 2 presents the performance of the schemes in the simulations using critical angles
as a criterion. It is observed that the smallest angles (very close to zero) are obtained with
the EK82 method in the matrices without outliers, while in the face of contamination in
any of the three percentages considered, EK84 is the best method. These results confirm
what was found with the Procrustes statistics. As for the criterion for choosing the rank
in matrices without outliers, we found that any of them can be used, but according to the
critical angles, it is not recommended to use either Wm or Wm(Max), while in the presence of
outliers the EK84 scheme in combination with Wm or PRESS provides the best results.

Table 2. The 0.9-trimmed means of critical angles in the simulation study.

0.9-Trimmed Means of Critical Angles

Outliers = 0% Methods Outliers = 10% Methods

Criterion EK01 EK13 EK82 EK84 Criterion EK01 EK13 EK82 EK84

PRESS 0.8547 0.1242 0.0000 0.9791 PRESS 1.5224 1.5708 1.5612 1.1699
PRESS75 0.9473 0.1574 0.0000 1.1286 PRESS75 1.5100 1.5568 1.5652 1.2546
PRESS50 1.0053 0.1935 0.0000 1.1629 PRESS50 1.3777 1.3662 1.4003 1.2339
Wm 0.8177 0.7221 0.7330 1.0202 Wm 1.2399 1.2184 1.2110 1.1507
Wm(Max) 0.6050 0.2747 0.2094 1.0174 Wm(Max) 1.2399 1.2184 1.2110 1.1608
Wm75 0.6846 0.0950 0.0000 1.1048 Wm75 1.4913 1.5103 1.5134 1.2072
Wm75(Max) 0.7120 0.0695 0.0000 1.0948 Wm75(Max) 1.4939 1.5216 1.5465 1.2083
Wm50 0.6963 0.0956 0.0000 1.1163 Wm50 1.3135 1.1962 1.2189 1.2315
Wm50(Max) 0.7274 0.0824 0.0000 1.1184 Wm50(Max) 1.3118 1.2863 1.2883 1.2278

Outliers = 5% Methods Outliers = 20% Methods

Criterion EK01 EK13 EK82 EK84 Criterion EK01 EK13 EK82 EK84

PRESS 1.5524 1.5680 1.5674 1.0965 PRESS 1.5331 1.5397 1.5462 1.2667
PRESS75 1.5361 1.5136 1.5256 1.1683 PRESS75 1.5506 1.5619 1.5650 1.2965
PRESS50 1.4639 1.4059 1.4189 1.2177 PRESS50 1.3658 1.3845 1.4704 1.3262
Wm 1.2733 1.2049 1.1807 1.1067 Wm 1.3682 1.1988 1.1768 1.1356
Wm(Max) 1.2754 1.2049 1.1807 1.1059 Wm(Max) 1.3618 1.1988 1.1768 1.1540
Wm75 1.4223 1.2850 1.2965 1.1224 Wm75 1.5051 1.5372 1.5628 1.2210
Wm75(Max) 1.4773 1.3853 1.3826 1.1292 Wm75(Max) 1.5164 1.5613 1.5680 1.2497
Wm50 1.1589 1.2008 1.2478 1.1582 Wm50 1.3567 1.3086 1.3888 1.2847
Wm50(Max) 1.3298 1.2757 1.2939 1.1666 Wm50(Max) 1.3588 1.3698 1.4449 1.2950

In bold, the method with the lowest statistic value in each percentage of outliers.

The simulation study was complemented with the analysis based on the real matrix
from the multivariate characterization of wines. Table 3 presents the M2 values and it is
observed that without outliers again the EK82 method works very well with PRESS50 and,
unlike the simulations, Wm50(Max) becomes an alternative criterion. With these criteria, the
rank chosen was nine and, according to the analysis by Bro and Smilde [31], with nine
components, the explained variation is above 90%, but some of these components can
explain very little variation.
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Table 3. Procrustes statistics for the real dataset.

Procrustes Statistics for the Real Dataset

Outliers = 0% Methods Outliers = 10% Methods

Criterion EK01 R EK13 R EK82 R EK84 R Criterion EK01 R EK13 R EK82 R EK84 R

PRESS 185 9 66 7 162 4 493 4 PRESS 598 1 79,846 1 124,788 1 500 5
PRESS75 185 9 66 7 53 7 493 4 PRESS75 598 1 79,846 1 124,788 1 514 6
PRESS50 280 5 66 7 24 9 492 7 PRESS50 598 1 79,846 1 124,788 1 500 5
Wm 300 4 469 1 455 1 491 3 Wm 188,330 5 250,402 4 343,767 4 500 5
Wm(Max) 280 5 231 3 222 3 491 3 Wm(Max) 188,330 5 250,402 4 343,767 4 500 5
Wm75 280 5 129 5 162 4 493 4 Wm75 611 2 79,846 1 124,788 1 499 5
Wm75(Max) 280 5 66 7 53 7 493 4 Wm75(Max) 317,830 8 79,846 1 124,788 1 499 5
Wm50 300 4 94 6 82 6 493 4 Wm50 147,451 4 79,846 1 124,788 1 499 5
Wm50(Max) 300 4 38 9 24 9 493 4 Wm50(Max) 317,830 8 79,846 1 124,788 1 499 5

Outliers = 5% Methods Outliers = 20% Methods

Criterion EK01 R EK13 R EK82 R EK84 R Criterion EK01 R EK13 R EK82 R EK84 R

PRESS 564 1 50,690 1 63,605 1 475 4 PRESS 190,811 1 218,985 1 354,334 1 1236 4
PRESS75 564 1 50,690 1 63,605 1 475 4 PRESS75 190,811 1 218,985 1 354,334 1 1662 5
PRESS50 564 1 50,690 1 63,605 1 475 4 PRESS50 190,811 1 218,985 1 354,334 1 1662 5
Wm 130,404 7 291,105 11 247,466 6 475 4 Wm 190,811 1 849,997 7 354,334 1 915 3
Wm(Max) 130,404 7 291,105 11 247,466 6 475 4 Wm(Max) 498,098 3 849,997 7 626,980 3 915 3
Wm75 564 1 99,950 2 63,605 1 475 4 Wm75 378,913 2 218,985 1 503,121 2 1662 5
Wm75(Max) 564 1 130,657 3 63,605 1 475 4 Wm75(Max) 498,098 3 218,985 1 626,980 3 1662 5
Wm50 30,753 2 130,657 3 123,006 2 475 4 Wm50 587,876 4 218,985 1 503,121 2 1662 5
Wm50(Max) 101,359 6 252,100 8 173,123 3 475 4 Wm50(Max) 778,336 7 218,985 1 626,980 3 1662 5

In bold, the method with the lowest statistic values and the rank used. R: Rank.

According to the cross-validation study by Bro and Smilde [31], in the original data
matrix, a maximum of three or four components is sufficient. This same result was obtained
with the EK82 method using Wm(Max) and Wm75; however, if Wm75 is used as a criterion, the
EK13 method with five components would be preferable as it presents better predictions in
the absence of contamination.

For the wine matrix contaminated at three levels, it can be verified that the EK84
methodology always presents the best results, minimizing the Procrustes statistics. In
this case, with 5, 10 and 20% contaminations, the ranks chosen were four, five and three,
respectively, but the selection criteria were different depending on the number of outliers.
With a low level of outliers (5%), EK84 produced the same rank with all criteria (resistant or
not), while with an intermediate level of outliers the only criterion that did not work very
well was PRESS75 and with a high level of contamination the best performance criteria
were Wm and Wm(Max).

Finally, Table 4 presents the results of the wine matrix taking into account only the
critical angles. As expected without contamination, the EK82 method was the best with
most criteria presenting angles close to zero, but there was a wide multiplicity of ranks with
an approximately equal result. For this reason, in this specific situation, it is recommended
to take the lowest rank (three) that corresponds to the Wm(Max) criterion.

With the change in criterion, at the maximum level of contamination (20%), EK84
(with Wm and Wm(Max)) again showed the best performance selecting rank three to obtain
the lowest critical angle. Results that we did not expect occurred at the other contamination
levels (5 and 10%), EK84 was surpassed by EK82 (with Wm50(Max)) and EK01 (with Wm75)
with the smallest angles. These last results compared to those obtained from the simulations
suggest that the methods can become unstable if the rank is selected taking into account
these angles. Because of this situation, it is suggested in practice to repeat the procedure
several times when the contamination level is between 5 and 10%. We repeated the
procedure ten times for these two percentages of outliers (not shown) and found that,
for the wine matrix, the lowest average of the critical angles was obtained with EK01
(using Wm75).

A short comment now follows regarding the distributional and computational aspects.
The methods considered in this research depend on (r)SVDs; therefore, they are distribution-
free and only require that the dataset under study can be written in a matrix form. On the
other hand, the computational characteristics of the algorithms depend on several factors,
such as implementation used, computer characteristics, matrix dimension, correlation
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structure and outliers’ quantity and location. This last aspect is important because, in some
cases, the location and quantity of outliers may or may not favor the calculations and the
rapid convergence of the iterative procedures that involve the calculation of an (r)SVD.

Table 4. Critical angles for the real dataset.

Critical Angles for the Real Dataset

Outliers = 0% Methods Outliers = 10% Methods

Criterion EK01 R EK13 R EK82 R EK84 R Criterion EK01 R EK13 R EK82 R EK84 R

PRESS 0.9468 9 0.2145 7 0.0000 4 1.5706 4 PRESS 1.5708 1 1.5708 1 1.5708 1 1.5419 5
PRESS75 0.9468 9 0.2145 7 0.0000 7 1.5706 4 PRESS75 1.5708 1 1.5708 1 1.5708 1 1.4672 6
PRESS50 1.1845 5 0.2145 7 0.0000 9 1.3454 7 PRESS50 1.5708 1 1.5708 1 1.5708 1 1.5419 5
Wm 0.9548 4 1.5708 1 1.5708 1 1.5160 3 Wm 1.5340 5 1.5212 4 1.4336 4 1.5419 5
Wm(Max) 1.1845 5 0.1481 3 0.0000 3 1.5160 3 Wm(Max) 1.5340 5 1.5212 4 1.4336 4 1.5419 5
Wm75 1.1845 5 0.2507 5 0.0000 4 1.5706 4 Wm75 0.8734 2 1.5708 1 1.5708 1 1.5419 5
Wm75(Max) 1.1845 5 0.2145 7 0.0000 7 1.5706 4 Wm75(Max) 1.2729 8 1.5708 1 1.5708 1 1.5419 5
Wm50 0.9548 4 0.2297 6 0.0000 6 1.5706 4 Wm50 1.4129 4 1.5708 1 1.5708 1 1.5419 5
Wm50(Max) 0.9548 4 0.2196 9 0.0000 9 1.5706 4 Wm50(Max) 1.2729 8 1.5708 1 1.5708 1 1.5419 5

Outliers = 5% Methods Outliers = 20% Methods

Criterion EK01 R EK13 R EK82 R EK84 R Criterion EK01 R EK13 R EK82 R EK84 R

PRESS 1.5708 1 1.5708 1 1.5708 1 1.5674 4 PRESS 1.5708 1 1.5708 1 1.5708 1 1.4772 4
PRESS75 1.5708 1 1.5708 1 1.5708 1 1.5674 4 PRESS75 1.5708 1 1.5708 1 1.5708 1 1.4279 5
PRESS50 1.5708 1 1.5708 1 1.5708 1 1.5674 4 PRESS50 1.5708 1 1.5708 1 1.5708 1 1.4279 5
Wm 1.4977 7 1.4511 11 1.5510 6 1.5674 4 Wm 1.5708 1 1.3250 7 1.5708 1 1.2653 3
Wm(Max) 1.4977 7 1.4511 11 1.5510 6 1.5674 4 Wm(Max) 1.4304 3 1.3250 7 1.4549 3 1.2653 3
Wm75 1.5708 1 1.5394 2 1.5708 1 1.5674 4 Wm75 1.4678 2 1.5708 1 1.2746 2 1.4279 5
Wm75(Max) 1.5708 1 1.3051 3 1.5708 1 1.5674 4 Wm75(Max) 1.4304 3 1.5708 1 1.4549 3 1.4279 5
Wm50 1.2620 2 1.3051 3 1.3082 2 1.5674 4 Wm50 1.4821 4 1.5708 1 1.2746 2 1.4279 5
Wm50(Max) 1.5166 6 1.5696 8 1.2432 3 1.5674 4 Wm50(Max) 1.3989 7 1.5708 1 1.4549 3 1.4279 5

In bold, the method with the lowest statistic values and the rank used. R: Rank.

To present the reader with an idea of the times of each algorithm, we analyzed one
of the previously simulated matrices and the real data matrix of red wines on a personal
computer with an Intel(R) Core(TM) i7-8550U, CPU 1.80 GHz 1.99 GHz and 8 GB of RAM
installed. Table 5 shows the comparison of times of the different cross-validation methods.
According to the information in the table, the best average times both in the simulated
lower rank matrix and in the real multivariate data were provided by EK82, which can be
considered as an expected result because, unlike the proposed methods, this method does
not include any extra treatment in the presence of outliers. Clearly, the robust methods
need a little more time, which by construction could also be expected. However, for the
dimensions of the matrices studied, the robust algorithms present good average times of
less than twenty seconds, which in practice makes them quite competitive, taking into
account that they adequately treat all observations, including outliers.

Table 5. Time in seconds.

Simulated Matrix with n = 100, p = 8, Rank = 4

Outliers EK01 EK13 EK82 EK84

0% 15.05 10.36 9.94 17.43
5% 10.52 11.40 8.45 12.94
10% 11.36 10.47 8.69 13.98
20% 14.89 12.75 11.58 20.47

Mean 12.96 11.25 9.67 16.21
SD 2.35 1.11 1.43 3.43

Real matrix with n = 44 and p = 14

0% 23.93 13.84 16.37 17.55
5% 15.69 23.40 14.34 18.17
10% 16.98 21.34 19.11 19.48
20% 16.67 16.86 16.65 19.17

Mean 18.32 18.86 16.62 18.59
SD 3.78 4.32 1.95 0.89

SD: Standard deviation.
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8. Discussion and Conclusions

The simulation study and the analysis on the real dataset provide some very clear
conclusions. In lower rank matrices without suspected contamination, classic EK82 can be
used without problems with a simple statistic, such as PRESS50 that uses only 50% of the
smallest residuals. Thus, being a resistant criterion, it presented good results in scenarios
that did not present outliers. According to the results of our analysis, other competitive
criteria were Wm50(Max) (which also depends on PRESS50) and Wm(Max).

However, when there is any suspicion of contamination, EK82 should be replaced by
one of the proposed robust schemes. Thus, if the objective is to choose the rank that pro-
duces good predictions with robust lower rank approximations, the EK84 method presented
the best performance together with the Wm criterion in most of the situations studied.

On the other hand, if the objective is to minimize the critical angle between two princi-
pal component subspaces, EK84 (with PRESS or Wm) can be used if the contamination level
is high (20%). From our analysis on real data, we can conclude that at lower contamination
levels (5 or 10%) EK84 (with PRESS or Wm) should be compared with EK01 (with Wm75),
repeating the analysis several times (say, 10 or more) to gain consistent results. This can
be achieved, for example, by adding a small number of outliers at random positions or by
applying the methods on submatrices obtained from the original study matrix.

The methodologies proposed in this paper proved to be efficient in solving the con-
tamination problem without having to use any method of detecting outliers in the original
data and without eliminating information, but there are still some aspects that are worth
discussing. One of these refers to the simulation study. Similar to any simulation study,
more features can be added to make it more complex, but in our case it was enough to
show the performance of robust procedures taking the EK82 as the standard method. Our
idea of fixing the matrix rank and the level of “pure noise” was to detect the strengths and
weaknesses of the schemes when the contamination levels were variable, following ideas
similar to those used by Maronna and Yohai [29] and Rodrigues et al. [32]. Future research
from the computational point of view can be conducted to determine the robustness of the
procedures under other conditions.

A common problem in data analysis is performing cross-validation from incomplete
matrices. In this case, two options are suggested, the first is to use EK84. This method is
based on the rSVD of Gabriel and Odoroff [23], and the fit of rank-one approximations
leaves out the missing positions and does not need to perform data imputation for this
calculation, but if an imputation of the missing data is required, a robust lower rank ap-
proximation can be a very useful alternative if contamination is suspected. The second
suggestion to get around the problem of missing data in cross-validation without sus-
pected contamination is to apply iterative EK82, in which case there are already algorithms
available [3,33] that can be easily adapted for optimal selection of the rank of a matrix.
Arciniegas-Alarcon et al. [3] showed that an iterative algorithm using parity check pro-
vides better quality imputations than the expectation-maximization method proposed by
Bro et al. [9].

In the dimensions of the matrices that the cross-validation schemes were tested in
this study, computational time was not a problem, but if the matrix is of a much larger
dimension, there are ways to circumvent this potential problem. For example, Krzanowski
and Kline [18] used several random samples from the rows of a multivariate matrix to
achieve consistency in the rank selection and reduce computational time. Another alter-
native is to delete some random positions from the matrix and perform the imputation
following one of the previously mentioned schemes. In this case, between 10 and 30% of
the original data can be considered as missing data and a comparison between the real data
and the imputations can be made to choose the optimal rank. This approximation is used in
the R imputation package (https://github.com/jeffwong/imputation) (accessed on 1 April
2022). In the literature, there is also the option to perform leave-group-out elimination in
the EK82 method [34]; this alternative computationally reduces calculation times, but the

https://github.com/jeffwong/imputation
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computational gain is accompanied by a decrease in accuracy in determining the optimal
rank of a matrix.

Finally, future research could be conducted to continue testing the methods proposed
here. For example, more types of contamination could be considered. In the works of
Maronna and Yohai [29] and González-Cebrián et al. [35], there are more alternatives
to produce outliers. However, there is still no robust cross-validation procedure in the
literature to choose the best additive main effects model with a robust multiplicative
interaction or robust AMMI model [32], so the EK84 (or EK01) scheme could be tested for
the choice of that model. The methodologies presented here can also be compared with
those that detect outliers [36] and assume the outliers as missing values for later imputation
by EM algorithms or with multiple imputations [37]. Finally, the EK84 and EK01 schemes
are based on the EK method that could be replaced by Gabriel’s method [4] or by the
Eigenvector method [9], which can be computationally faster for large matrices.
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