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Abstract: Cardiovascular diseases (CVD) are the leading cause of mortality globally. Despite im-
provement in therapies, people with CVD lack support for monitoring and managing their condition
at home and out of hospital settings. Smart Home Technologies have potential to monitor health
status and support people with CVD in their homes. We explored the Smart Home Technologies
available for CVD monitoring and management in people with CVD and acceptance of the available
technologies to end-users. We systematically searched four databases, namely Medline, Web of
Science, Embase, and IEEE, from 1990 to 2020 (search date 18 March 2020). “Smart-Home” was
defined as a system using integrated sensor technologies. We included studies using sensors, such
as wearable and non-wearable devices, to capture vital signs relevant to CVD at home settings
and to transfer the data using communication systems, including the gateway. We categorised the
articles for parameters monitored, communication systems and data sharing, end-user applications,
regulations, and user acceptance. The initial search yielded 2462 articles, and the elimination of
duplicates resulted in 1760 articles. Of the 36 articles eligible for full-text screening, we selected
five Smart Home Technology studies for CVD management with sensor devices connected to a
gateway and having a web-based user interface. We observed that the participants of all the studies
were people with heart failure. A total of three main categories—Smart Home Technology for CVD
management, user acceptance, and the role of regulatory agencies—were developed and discussed.
There is an imperative need to monitor CVD patients’ vital parameters regularly. However, limited
Smart Home Technology is available to address CVD patients’ needs and monitor health risks. Our
review suggests the need to develop and test Smart Home Technology for people with CVD. Our
findings provide insights and guidelines into critical issues, including Smart Home Technology for
CVD management, user acceptance, and regulatory agency’s role to be followed when designing,
developing, and deploying Smart Home Technology for CVD.

Keywords: cardiovascular disease; chronic disease; sensor; smart home; information technology;
user acceptance; regulatory agency; COVID-19

1. Introduction

Cardiovascular diseases (CVDs), including coronary heart disease (CHD), cerebrovas-
cular disease, rheumatic heart disease and stroke, are the leading cause of global mortal-
ity [1,2]. The risk of CVD is higher amongst older people aged over 70 years [1]. Lifestyle
choices significantly reduce CVD risk, especially regular physical activity (PA), sound nutri-
tion, weight management, and quitting smoking [3]. Additionally, PA was associated with
a larger magnitude of decreased odds of 10-year CVD risk when compared with an individ-
ual’s weight status [4]. In addition, amongst the elderly, a significant inverse relationship
between PA and CVD risk was observed [5]. Reducing modifiable risk factors, including
high blood pressure (BP), smoking, high cholesterol, obesity, and PA, could significantly
decrease CVD morbidity and premature deaths [6,7]. In contrast, CVD patients are at an
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increased risk of fatal outcomes if infected by COVID-19 [8]. Recent home quarantine and
lockdowns measures due to COVID-19 have forced social isolation and a drastic decline in
PA [9], further increasing the global risk of CVD burden [10].

The advancements in communication and sensing technologies and availability of
remotely accessible medical devices have instigated a rapid development in Smart Home
Technology (SHT) [11–13]. ‘Smart homes’ are residences equipped with hardware and
software components, including sensors and home appliances capable of providing users
demanded services such as energy management, remote monitoring and control, and
support and assistance in living [11–13]. Additionally, a health smart home has various
integrated technologies to monitor and evaluate the inhabitant’s health and well-being
to provide timely context-aware e-health services [14]. A recent study evaluated diabetes
patients’ activity, diet, and exercise compliance in SHT settings and observed that SHT
settings are essential in providing accessible, low-cost health assistance in an individual’s
home and providing the best possible quality of life [15]. In contrast, an SHT developed and
tested in laboratory settings to monitor the well-being of elderly residents with dementia
in care homes was unable to be deployed in real time due to infrastructure deficiencies [16].
On the other hand, designing SHT in consultation with dementia patients, their care-
givers, clinicians, and health and social care service providers to satisfy the functional,
psychosocial, and environmental needs results in the development of SHT that provide
patient-centric interventions and assist in seamlessly transitioning to clinical practice and
public health strategy [17]. Finally, with the advances in sensor technology, big data, and
artificial intelligence (AI), unobtrusive SHT systems would facilitate real-time monitoring
of people’s health.

Most CVD deaths occur while the individuals are at home and care homes [18]. How-
ever, healthcare systems to support CVD patients at home are lacking [7]. The associated
healthcare expenses, human lives lost, and declining productivity due to CVD [19] increase
the burden on hospitals in minimising healthcare costs and challenges to improve individ-
uals’ quality of life [20]. With the development of wearable sensors, the monitoring of CVD
related physiological signs such as the electrocardiogram (ECG), electromyogram (EMG),
heart rate (HR), body temperature, electrodermal activity (EDA), arterial oxygen saturation
(SpO2), BP, respiration rate (RR), and activity-related signals can be easily monitored re-
motely from home [21]. Additionally, digital health technologies, including smartphone
applications (apps) integrated with physiological sensors, can improve individuals’ health
outcomes at home [22–24].

With an increasing proportion of the older population and increased time spent at
home, there is a need to monitor and maintain the health and well-being of CVD patients
in home settings. Moreover, restricting individuals within their homes as a preventive mea-
sure against COVID-19 increases CVD risks [10], and individuals spending longer durations
at home and working from home could be the new normal in the future [25,26]. Recent stud-
ies have evaluated home-based chronic disease monitoring and CVD management [27–29].
For example, a study evaluated home-based information and communications technologies
(ICT) interventions in chronic disease management [27]. A review described various ICT
intervention platforms to deliver alternative models of cardiac rehabilitation (CR) homecare
programs [29]. Furthermore, a systematic review assessed the evidence around mHealth
interventions for CR and heart failure (HF) management for service and patient outcomes,
cost-effectiveness, and implementation scope for rural and remote cardiac patients [28].
However, there is no available recent literature evaluating SHT for CVD management
to our knowledge. Hence, we have undertaken this systematic review to explore the
different technologies available for CVD management in an SHT for adults and identify
commercially available technologies acceptable to end-users.

The paper is organised as follows: Section 2 describes the materials and methods,
the results are given in Section 3 and discussion in Section 4, followed by the conclusions
in Section 5. The following are the significant contribution of our study to the body
of knowledge:
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• A systematic review of technological solutions for CVD in smart home settings.
• Highlight the paucity in SHT for CVD management.
• Underline the imperative need for remote health monitoring systems integrated with

SHT for CVD management.
• Future directions for developing a real-time CVD monitoring system in smart home

settings integrating the Internet of Things (IoT), cloud computing, and big data analytics.

2. Materials and Methods

We followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines to organise the review [30]. Since this review is based on peer-
reviewed studies for which primary investigators obtained informed consent, ethics ap-
proval was not required [31].

2.1. Protocol

This review is undertaken due to the unprecedented situation which has arisen due to
COVID-19, and hence, it was not pre-registered in PROSPERO.

2.2. Data Sources and Search Strategy

The studies were identified through a systematic literature search using four online
database, including Medline, Web of Science, Embase, and IEEE. The initial literature
search focused on home-based technologies for CVD monitoring and management using a
combination of key search terms, which include (“home based” OR “in house” OR home OR
in-house OR house OR housing OR dwelling OR residence) AND (“cardiovascular disease”
OR CVD OR heart OR cardiac OR “coronary heart disease” OR myocardial OR “heart
failure”) AND (technology OR computer OR tablet OR “mobile phone” OR smartphone OR
internet OR “information technology” OR IT). We included studies published in English in
peer-reviewed journals and conference proceedings. Table S1 represents the search strategy
adapted in the web of science database and adapted as appropriate to the specifications of
other databases.

2.3. Study Selection Criteria

Technological innovations progressively support the use of commercial smart wearable
devices to monitor cardiovascular health remotely in real time; however, to date, challenges
such as device accuracy, clinical validity, a lack of standardised regulatory policies and
patient privacy concerns hinder the widespread adoption in clinical practice [32]. In addi-
tion, poor quality medical devices negatively affect CVD monitoring and management [33].
Hence, we have excluded studies undertaken using wearable devices for CVD monitoring
and management in home settings and have considered studies using medical-grade CVD
monitoring devices. On the other hand, cloud computing and machine learning (ML) could
assist in monitoring the health status of heart patients [34]. The adoption of cloud com-
puting in healthcare could improve healthcare delivery quality and reduce the economic
burden, enabling governments to address healthcare challenges quickly [35]. A healthcare
cloud architecture comprises ambient and wearable sensors capturing physiological data
that are compressed and transferred to the cloud for further analytics, triggering alerts to
healthcare and care providers according to the anomalies in the recordings [36]. However,
since the cloud adoption rate is slow, governments could consider converting client–server
models to web-based applications, quickening the cloud computing adoption rate [35] to
reap the technical benefits of cloud computing. Hence, we have considered studies using
clinically accepted devices integrated to function as client-server, web-based or cloud appli-
cations. Among CVD patients, reviews have been undertaken to evaluate the effectiveness
of telemedicine [37,38] and telemonitoring [39–42]. Hence, we have not considered such
studies. Additionally, we used a set of selection criteria as mentioned in Table 1 to narrow
down the selection of articles that would fulfil the main objectives of the systematic review.
Accordingly, Figure 1 illustrates an SHT for CVD management and vital signs monitoring.



Appl. Syst. Innov. 2022, 5, 51 4 of 18

Vital recordings such as HR, BP, ECG, steps walked, sleep, body temperature, and body
weight are captured from the individual and transferred to the server for processing. After
processing the information in the server, the data are transferred to healthcare providers
for analysis and to initiate necessary care and intervention. Once the healthcare providers
initiate alerts and interventions, the patients receive necessary notifications, including alerts
and interventions to upkeep their health and well-being. Based on the selection criteria
and the defined architecture of SHT, we have conducted this review to be unique and add
knowledge by providing relevant future directions for CVD monitoring.

Table 1. Selection criteria for review articles (adapted from reference [43]).

Inclusion Criteria:

• CVD patients.
• English language.
• Year of publication: January 1990—March 2020.
• Participants aged >18 years.
• Studies describing SHT for CVD management with sensor devices (wearable and non-wearable sensors) connected to a

gateway and has a web-based user interface.
• SHT prototype/architecture deployed and evaluated in real-time with ≥5 patients.

Exclusion Criteria:

• Publications on incomplete or part of research (e.g., editorials, abstracts, workshop/conference summaries, research proposals,
descriptive survey, clinical protocols, research methods, literature reviews, conceptual papers).

• Studies evaluated healthy adults and non-CVD patients.
• Non-human focused (e.g., animals, building, physical structures, bridges, health economic, evaluation of study ethics).
• Non-SHT used amongst CVD patients (e.g., questionnaire, apps to monitor health and well-being, cardio signal processing,

the influence of day-to-day activity on cardio health, home-based rehabilitation programme).
• Hardware such as heart pump, pacemaker, microcontrollers used to measure a particular physiological parameter, oximeter,

accelerometers, hardware assisting in the functioning of heart, and ECG device including portable ECG and ECG monitor.
• Evaluation and development of research tools (e.g., hardware and algorithm improvement studies, signal processing, and

clinical measurement technology to access and analyse secondary data).
• Stand-alone devices (smartwatch, tablet, and smartphones).
• Lack of sensors.

SHT: Smart Home Technologies, CVD: Cardiovascular diseases, ECG: Electrocardiography.
Appl. Syst. Innov. 2022, 5, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 1. A smart home system for CVD and vital signs monitoring. (The arrows indicate the direc-
tion of the communication/transfer. Arrow 1: Transfer of recordings from patient to server for pro-
cessing, Arrow 2: Processed information transfer to healthcare providers for analysis and initiate 
necessary care and intervention, Arrow 3: Alerts and intervention initiated by the health care pro-
vider, and Arrow 4: Patient receiving necessary notification, including alerts and intervention to 
upkeep their health and well-being.) 

2.4. Study Selection Process 
We followed a step-by-step selection process to identify the relevant articles, as illus-
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screen the articles and select studies relevant to the review’s objective.  

Figure 1. A smart home system for CVD and vital signs monitoring. (The arrows indicate the
direction of the communication/transfer. Arrow 1: Transfer of recordings from patient to server
for processing, Arrow 2: Processed information transfer to healthcare providers for analysis and
initiate necessary care and intervention, Arrow 3: Alerts and intervention initiated by the health care
provider, and Arrow 4: Patient receiving necessary notification, including alerts and intervention to
upkeep their health and well-being).
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2.4. Study Selection Process

We followed a step-by-step selection process to identify the relevant articles, as il-
lustrated in Figure 2. We imported the obtained citations into the reference management
software EndNote and removed duplicates, and then, we applied the selection criteria to
screen the articles and select studies relevant to the review’s objective.
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Figure 2. Flow diagram for selection of articles (adapted from reference [30]).

2.5. Data Extraction

One reviewer independently evaluated the titles and abstracts of all records identified
in the initial database search; then, they reviewed the full text for eligibility according to the
study’s inclusion criteria [44]. We extracted data regarding study characteristics, including
study type, duration, and participant characteristics, and the SHT used, including system
configuration, parameters monitored, and the data analysis and interpretation methodology.

3. Results

We retrieved 2462 articles for the applied search key from the database. Upon re-
moving duplicates, 1760 articles were there for full-text review. Furthermore, we screened
the electronically obtained titles and abstracts for the relevance of selection criteria. The
selected 36 articles were further accessed, assessed, and matched with the study’s objectives.
At each level of article screening, we excluded review articles such as systematic review and
meta-analysis [45], literature reviews [46,47], perception survey [48], protocols [49] and sim-
ilar articles. We further screened for non-human subjects [50] and other irrelevant articles to
the objective, such as home telecare service consumption [51], HF treatment [52], database
analysis [53], training coronary patients [54], and cardiac rehabilitation program [55]. Like-
wise, we eliminated studies undertaken on economic impact [56], among children [57],
prototypes not evaluated on human subjects [58], and providing information and advice
but lacking sensors to capture vital recordings in real time [59,60]. In addition, we excluded
interviews to evaluate patient perspectives [61], improving knowledge [62], and multiple
articles on a single study, e.g., My Heart [63,64], studies in healthy adults [65] and those
lacking analytical results [66]. Finally, we included five studies comprising various inte-
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grated SHTs to monitor and assist CVD patients in home settings in this review, and Table 2
represents the characteristics of the included studies.

Table 2. Study Characteristics.

Articles Reviewed Study
Type

Study
Duration Country Participants Age

(Years)
Male
(%)

Female
(%)

(Sciacqua, 2009) [67] CO Spot
reading/day Italy 10 elderly

CHF NS 90 10

(Katra, 2011) [68] CO 90 days Asia 180 HF 61 ± 13 70 30

(Fanucci, 2013) [69] CO 1 month Italy 30 CHF µ: 62 NS NS

(Alnosayan, 2017) [70] CO 6 months USA 8 HF 61.5 ± 9.3 63 37

(Kotooka, 2018) [71] RCT 0–31 months Japan 181 HF Tel: 67.1 ± 12.8
Usual: 65.4 ± 15.6 59 41

CO: Cohort; RCT: Randomised Control Trial; CHF: Chronic Heart Failure; HF: Heart Failure; USA: United States
of America; NS: Not Specified; Tel: Telephone.

The five included studies comprised 409 CVD patients, with a mean age of ≈63 years
and ≈62% male participants [67–71]. The participant’s medical conditions differed between
the studies; for example, three studies included patients with HF [66,68,69], whereas two
other studies had congestive HF (CHF) patients [67,69]. The studies with CHF participants
had ten [67] and thirty elderly participants [69]. Likewise, studies with HF patients had
one hundred and eighty participants [68], one hundred and eighty-one participants [71],
and eight participants [70]. Moreover, a study did not mention the proportion of males and
females [69], whereas other studies had predominant male participants [65,66,68,69]. The
duration of the studies varied, i.e., from one day to 31 months. Three studies monitored
the participants continuously for over a month [66,67,69], and one study monitored for
six months [70]. In contrast, a study monitored participants for a short time in a day [67].
The studies were undertaken in different international settings, including two studies in
Italy [67,69], one study each in Japan [71] and the United States of America [70], and a
study in eight locations in Asia [68].

The objectives of the SHT differed between the studies; however, the developed
systems effectively delivered the intended functionalities with acceptable accuracies. For
example, a system developed to monitor CHF patients’ HR, RR, and other parameters
was generally well accepted irrespective of the sensors and protocols used, although they
encountered minor difficulties [67]. In contrast, a study demonstrated that chronotropic
incompetence (CI), typical in HF patients and associated with worsening outcomes, could
be detected and tracked by capturing and analysing participants’ HR, RR, PA, and body
fluid at regular intervals [68]. Likewise, for early detection and minimised hospitalisation
among CHF patients, their vital parameters, including ECG, SpO2, BP, and weight, were
non-invasively captured and analysed in the permissible range and sent to hospitals
regularly [69]. Moreover, a study undertaken to provide a personalised mHealth system
to support HF patients effectively concluded that understanding users’ requirements
combined with physician and nurse requirements can yield a feasible telehealth system that
effectively supports HF self-care [70]. Finally, a study concluded that home telemonitoring
for HF patients was feasible but could be enhanced to make it more efficient [71].

3.1. Available Smart Home Technologies for CVD Management

Smart homes are integrated systems comprising sensing systems, including environ-
mental and personal sensors responsible for data acquisition, communication systems to
transfer the sensor captured data, and processing systems receiving the sensor captured
data to analyse and provide the required services [14,72]. Table 3 details the technology
and parameters monitored in the SHT for CVD management from the reviewed articles,
and we discuss them in the following section.
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Table 3. Smart Home Technology and monitored parameters.

Articles
Reviewed

Parameters Monitored System

Manual
Device

Communication System Gateway Interactive User
Interface

Report Viewed
by

Alarm
SituationWearable Non-Wearable

(Sciacqua, 2009)
[65]

HR, BP, BW,
SpO2,

Temperature.

RR, ECG, Chest
movement.

HR, BP, BW,
SpO2.

Device to
Gateway: BT,

Wi-Fi.

Gateway to
App: Internet. Computer

User:
questionnaire,
guides in vital
measurement.

Health
Practitioner

Doctor
contacted
patients.

(Katra, 2011)
[66] -

HR, RR, Body
Movement,

Posture.
NA Device to

Gateway: BT.
Gateway to

App: Internet. Device NA Researcher NA

(Fanucci, 2013)
[67] - -

RR, ECG, Chest
movement, BP,
BW, Posture,

SpO2.

Device to
Gateway: BT.

Gateway to
App: Internet. Computer

User: assist in
therapy.

Clinician:
interact with the

system

Health
Practitioner

Caregivers or
relatives are

contacted via
SMS.

(Alnosayan,
2017) [68] Symptoms - BW, BP, BG Device to

Gateway: BT.
GW to App:

Internet. Device

User: personal
health tracking

system.
Clinician: view

patient
recordings.

Heart failure
nurses

Nurse contacted
the patients.

(Kotooka, 2018)
[69] - - BW, PR, BP. Device to

Gateway W: BT.
Gateway to

App: Internet. Device NA Health
Practitioner

Nurse notified
the patient’s
physician.

HR: Heart Rate, BP: Blood Pressure, BW: Body Weight, RR: Respiration Rate, ECG: Electrocardiogram, SpO2: Oxygen saturation, BT: Bluetooth, NA: Not Available.
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3.1.1. Sensor and Monitored Parameters

The vital signs generally monitored to evaluate CVD patients’ health are HR, BP, RR,
SpO2, and body temperature [73]. Sensors recorded the participant’s vital signs, and the
readings were acquired either manually or automatically at normal home settings [67–71].
The sensors were vests [67] and attached to the body at different positions such as at the
torso [68], arm, wrist, finger, and chest [69,70]. The vital signs recorded by the sensors
include HR [65,66,69], BP [67,69–71], respiratory rate [67–69], blood glucose [70], and
SpO2 [67,69]. Furthermore, HR computation as a function of cardiac vibration extracted
from the obtained ECG signals was performed [69]. Additionally, an SHTs system had
non-wearable sensors such as weighing scales [67,69–71].

3.1.2. Communication Systems

The communication system comprises an internal network connecting the sensors,
the gateway functioning as an interface between the internal and external networks, and
an external network transferring the captured data from the gateway to applications [14].
The internal network consists of interconnected sensors using popular short-range wireless
protocol communication technologies such as Zigbee, Wi-Fi, and Bluetooth [14]. The
internal communication systems used in the studies differed. For example, studies had used
devices interconnect through short-range wireless protocol communication technologies
such as Wi-Fi [67,70] and Bluetooth [67–71].

A gateway is a significant component in an SHT, performing functionalities including
network interconnection, network management, and application management; however,
the gateway could be a dedicated device or a mobile device such as a smartphone, a
tablet, or a local smart sensor node placed in the environment or mounted on a computer
server [14]. The studies have used computers [67,69] and dedicated devices [66,68,69] as the
gateway to receive the sensor data through the internal communication system, perform the
necessary management functions, and forward the information to the end-user application
over the external network.

The gateway relays data using different external network systems such as fixed tele-
phony networks, Wi-Fi, cellular networks, satellite networks, and other technologies to
healthcare applications [14]. The healthcare applications were installed at a computer
running in external networks as a web application [67–71] and app [70], and internet com-
munication (telephony networks, cellular networks) was established to transfer information
from the gateway to healthcare applications running in an external network [67–69,71].

3.1.3. End-User Applications

The SHT had an interactive user interface enabling the users to complete the question-
naire followed by guiding in vital physiological measurements [67], assisting in therapy [69],
and assisting them to track their health [70]. Likewise, clinicians had the provision to in-
teract with the system [69] and view patients’ recordings [70]. Additionally, the end-user
applications displayed the processed information to the relevant stakeholders, including
health practitioners [65,67,69], HF nurses [70], and researchers [68] for caregiving. In a
study, the health practitioner viewing the report was able to identify the dangerous increase
in BP and necessary measures to avoid health risk and hospitalisation [67]. Likewise,
caregivers or relatives were contacted via SMS [69], and nurses notified the patient’s physi-
cian [71] for detected irregular readings. In addition, a system had provision for the patients
to contact nurses through the app to discuss their health, and the nurses had the option
to continuously monitor their patients using the web application [70]. On the contrary, a
study stored data during the study period but was not analysed and could not be used to
guide or alter patient treatment [71].

3.2. User Acceptance

Performing usability testing in the deployed environment is essential to evaluate the
system’s ease of use, usefulness, and user acceptability [74]. On evaluating the satisfaction
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and usefulness of the system, 89% of the patients responded that the system was satisfactory,
and 70% responded that it was useful [69]. On the other hand, on a scale of ten, physicians
positively rated greater than nine, highlighting the effectiveness and usefulness of the
system [69]. Likewise, patients expressed that the system was helpful and helped them,
since it facilitated recording and tracking readings, reassuring nurses, resolving system issues,
providing insights, and assisting them in communicating with their healthcare professionals
easily [70]. In contrast, a few studies have not used standard or customised methodologies to
evaluate the user and healthcare perception of the developed system [65,66,69].

3.3. Role of Regulatory Agency

The revolution in smartphone technologies, direct-to-consumer genetic testing, crowd-
sourced information, big data, and many other technologies have enabled researchers,
including independent researchers, citizen scientists, patient-directed researchers, do-it-
yourself researchers, and self-experimenters, to innovate and develop health monitoring
systems that are easily accessible [75]. On the other hand, easy access to health moni-
toring systems increases the potential of unregulated health research [75], which could
be beneficial but could pose risks such as compromised accuracy, privacy invasion, and
minimised safety to the users [75–77]. Hence, there is an imperative need for the govern-
ments to regulate the development and deployment of health monitoring systems through
competent regulatory agencies [75–77]. However, although the studies have fabricated
hardware and used available commercial products, they have not obtained any regulatory
approvals [67–71].

4. Discussion

In this study, we aimed to explore the different Smart Home technologies available for
CVD monitoring and management in home setting. Five studies were identified using SHT
amongst HF patients and included sensor and physiological monitoring, communication
systems, and end-user applications. We found that stakeholders well-accepted SHTs
for CVD management. However, none of the studies had obtained relevant regulatory
approval. Although there is a surge in smart home studies, very minimal studies have
been evaluated experimentally in research settings [11]. Given the limited number of smart
home experimental studies, it is evident from our study that there is a lack of experimental
studies focused on SHT for CVD management.

A systematic review evaluated various ICT intervention platforms to deliver alterna-
tive models of CR homecare programs [29]; in contrast, another systematic review assessed
the evidence around mHealth interventions for CR and HF management for service and pa-
tient outcomes, cost-effectiveness, and implementation scope for rural and remote cardiac
patients [28]. This systematic review aimed to evaluate SHT available for CVD management
and highlights the paucity in SHT for CVD management, necessitating the importance of
real-time remote health monitoring systems integrated with SHT for CVD management.

IoT connects the physical world, including the human body, with the internet, and IoT
application to healthcare could improve the individuals’ quality of life, assist in chronic
disease management, danger warning and life-saving interventions remotely [78] and could
assist in death prevention and cost reduction due to CVD [79]. The real-time monitoring of
CVD patients through the IoT, which is a system of wireless, interrelated, and connected
digital devices that could non-invasively collect physiological and environmental data,
send, and store data over a network without requiring human-to-human or human-to-
computer interaction, could be realised [80,81]. In conjunction with other novel technologies
such as big data and cloud computing, IoT could be used to develop a remote monitoring
system for CVD patients [82]. However, apart from barriers, such as internet access, user-
friendliness, organisational support, workflow efficiency, and data integration in deploying
digital health technology in CVD care [83], most systems are in prototype stages and have
not been exhaustively evaluated clinically.
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Globally, HF is rising in prevalence; however, there are several unmet severe social and
healthcare needs for both patients and caregivers, necessitating research to develop and
evaluate disease management toolkits [84]. A smart healthcare framework using IoT, and
cloud technologies could monitor HF patients based on real-time data and provides timely,
effective, and quality healthcare services [85]. However, although several prototypes have
been developed to monitor HF patients, there is a need to carry out future clinical trials,
including those targeting a reduction in HF hospitalisations [20]. On the other hand, CHF
patients are at a high risk of suffering from morbidity and mortality and poor quality of
life [86]. A remote CVD management system could assist in the early identification of
decompensation and promote better adherence to lifestyle changes and medication and
interventions resulting in reduced hospitalisation need [86]. Moreover, mobile health-
driven interventions integrated with other parameter monitoring such as activity trackers
and weighing scale capabilities could benefit HF patients [87].

Studies are developing a system to monitor stroke, which happens due to brain-cell
death in the absence of blood flow to brain cells [88–91]. An IoT-based real-time EEG
brain–computer interface medical monitoring device significantly reduce the complexity of
real-time monitoring and data acquisition among stroke patients providing better healthcare
management [92]. Furthermore, wearable sensors and ML could play a vital role in post-
stroke rehabilitation through activity recognition, movement classification, and clinical
assessment emulation [93].

High BP is directly associated with a high risk for CVD [94]. With the advancements in
technology, BP could be monitored at fixed intervals during sleep and at different intervals
during the day and could determine BP in response to a specific trigger, such as increased
heart rate [95]. BP monitoring at home could assist in predicting the onset of CVD events,
enabling proactive interventions to avert adverse outcomes [95].

Sleep disturbance could be a common factor that might increase CVD risk; participants
with short sleep duration had significantly higher CVD and hypertension; on the contrary,
participants with long sleep durations had no increase in CVD, CHD, myocardial infarction,
or hypertension prevalence [96]. Furthermore, sleep onset timing could initiate CVD risk;
hence, collecting sleep parameters via accelerometry-capable wearable devices may serve
as novel CVD risk indicators [97]. In addition, a study identified three sleep–cardiovascular
health phenogroups, such as resilient (non-adequate sleep and ideal cardiovascular health),
uncoupled (adequate sleep and non-ideal cardiovascular health), and concordant (sleep and
cardiovascular health metrics were aligned), highlighting the advantage of incorporating
sleep assessments into studies of cardiovascular health [98]. Finally, with sleep disturbances
and disorders implicated in CVD morbidity and mortality, there is an imminent need for a
transdisciplinary research framework integrating knowledge, methods, and measures of
psychology and sleep research to advance CVD prevention and treatment [99].

Monitoring patients using technologies, including telemedicine, creates a void in
evaluating vital parameter recordings and could result in misdiagnosis [100]. Moreover,
with many forced to stay at home for a prolonged period [101], and with the associated
risk surrounding CVD patients and the restrictions in healthcare services due to COVID,
there is a greater need for remote monitoring of CVD patients in real time, especially while
they are at their homes [100,102]. In addition, we observed that the SHT functionalities
and components, including sensors, communication systems, and end-user applications,
differed; however, all the systems lacked real-time data processing, analysis, and reporting
capabilities [67–71]. With 53.6% of global households and 84% of households in developed
countries having internet access [103], there are research prospects to develop SHT to
monitor CVD patients in real time.

Wearable devices are finding widespread applications in healthcare in health and
safety monitoring, chronic disease management, disease diagnosis and treatment, and
rehabilitation [104]. A study observed that activity data from wearables could monitor
CVD patients remotely, enabling safer and higher resolution monitoring of patients [105].
However, on the downside, although current studies highlight the wearables’ potential
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to monitor cardiovascular events, the lack of a real data set and proper systematic and
prospective evaluation hampers their deployment as a diagnostic or prognostic cardio-
vascular clinical tool [106]. Additionally, to date, wearable devices possess challenges
in cardiovascular care, such as device accuracy, clinical validity, a lack of standardised
regulatory policies and concerns for patient privacy hindering the widespread adoption of
smart wearable technologies in clinical practice [32].

With an imperative need to develop affordable and reliable real-time SHT CVD moni-
toring systems, IoT-based healthcare systems could be an effective solution. For example,
IoT systems developed using Raspberry Pi, which is an affordable small-sized computer
that finds widespread healthcare applications due to its technical capabilities to connect
with a wide range of sensors and process and transfer the data in real time to a cloud
environment for further processing [107,108], could be an effective solution. Our study
examined the available SHT used amongst HF patients among the various CVD. On the
contrary, studies are developing a system to monitor other CVD, such as stroke, which
happens due to brain-cell death in the absence of blood flow to brain cells [88–91]. Hence,
there is a need to consider end-user needs and develop a system accordingly to be used
effectively amongst the target audience [109].

The healthcare systems developed based on theory-guided user-centred design ap-
proaches could effectively address the healthcare needs of the target group [110]. Con-
versely, using standard user acceptance models such as the technology acceptance model
could inform end-user acceptance of the system [110]. However, the studies had not
used any models to gauge the user acceptance of the system [65,66,69], although there is
a need to obtain medical approval to comply with standards and guidelines to be used
globally seamlessly [111]. Moreover, the COVID-19 pandemic has highlighted the need for
a comprehensive real-time health monitoring system. Nevertheless, since healthcare needs
depend on physicians, patients, and external users, it is worth designing and developing
the system based on user requirements [112] complying with regulatory standards [111].

4.1. Limitations of this Study

This study had several limitations. Although smart home development is at various
developmental stages globally, since we have not considered articles published in the
non-English language, we could have missed relevant studies published in other languages.
Secondly, we excluded ML and deep learning (DL) model studies if they omitted SHT
as well as studies only evaluating telemedicine or telemonitoring, which are not part
of SHT using IoT. Thirdly, we have exclusively considered articles published in peer-
reviewed research journals and conference proceedings to select studies undertaken in
research settings that could have excluded grey literature and incurred publication bias.
Fourthly, given the time sensitivity, an experienced reviewer performed the article selection,
screening, and data extraction outlined in the methods section, which could have caused
selection bias. Finally, the heterogeneity of the data and the lack of standard models to
evaluate the user perception of the SHTs have restricted us from conducting meta-analysis.
However, our study’s findings could be beneficial in addressing the needs of CVD patients.

4.2. Future Directions

With limited SHTs to monitor CVD patients in real time evaluated in research settings
and accessible to patients, there is an urgent need to design, develop, and deploy effective
solutions. Moreover, the disruption in healthcare due to COVID-19 and the severity of
COVID-19 is an impetus for the innovation of IoT-based SHTs to address residents’ day-to-
day healthcare needs [80,113]. An IoT-based SHT architecture comprises the perception
layer that includes sensors such as radio frequency identification sensors, infrared sensors,
cameras, global positioning systems, medical sensors, and smart device sensors, the net-
work layer comprises wired and wireless technologies which communicate and store the
perception layer captured information, and finally, the application layer interprets data
and delivers application-specific services to the user [80]. Figure 3 illustrates an overview
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of an IoT-based SHT for CVD monitoring [88–91]. The system comprises four layers: the
perception layer, connectivity layer, processing layer, and application layer. The perception
layer consists of all sensors in an SHT setting to capture vital recordings, such as BP, HR,
heart rate variability (HRV), ECG, blood oxygen and other signals, such as sleep, step count,
body temperature and weight. The connectivity layer comprises gateway and telecommu-
nication networks that facilitate the transfer of the sensor data from the internal network to
the processing layer over an external network. The processing layer stores the data and
performs the specified analysis. Finally, the application layer displays the processed data to
healthcare providers, who initiate necessary intervention through caregivers or patients.
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An IoT health monitoring system could leverage the features of AI, wherein devel-
oped algorithms emulate human cognitive function, encompassing but not limited to ML,
DL, natural language processing, and computer vision, to deliver enhanced personalised
healthcare services [34,112,113]. Moreover, the capabilities of ML algorithms facilitate
the prediction of CVD [114,115]. Furthermore, the application of DL could accurately
estimate the CVD risk [116]. Constructively, COVID-19 has fuelled the development and
utilisation of real-time patient monitoring systems, which are enabled by automated alert
systems explicitly tailored to the patient’s needs, which could be the cornerstone of a more
continuous, patient-centric healthcare model subsequently [117]. Moreover, integrating
adjunct technologies, including big data, cloud computing, smart sensors, AI, and virtual
reality/augmented reality, with IoT could maximise the potential benefits [118]. Hence,
developing SHT for CVD monitoring integrating IoT with adjunct technologies could
facilitate real-time monitoring, facilitating the upkeep of the health and well-being of CVD
patients [88–91].
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HRV could be used as a marker for cardiac status and for predicting cardiovascular
outcomes quickly with wearable devices capable of measuring HR in real time; HRV is a
measurable reflection of the balance between sympathetic and parasympathetic tone [119].
A meta-analysis of studies amongst CVD patients observed that lower HRV is associated
with a higher risk of cardiovascular events and mortality, although the extent of the associ-
ation is uncertain [120]. In addition, current research suggests that HRV parameters may
have utility as a biomarker for stroke and post-stroke complications and functionality [121].
Likewise, HRV could classify CHF patients from healthy adults [122]. Finally, a study
observed an association between HRV and BP [123]. ML models are applied to computed
HRV parameters to classify cancer patients [124] and predict the risk of suspected sepsis
patients in the emergency department [125]. Hence, research prospects are to capture HR
in real time from wearable devices and apply ML to classify healthy and CVD patients.

5. Conclusions

With elderly adults spending most of their time at home and the pandemic restrict-
ing healthy lifestyles such as outdoor PA further confining adults at home, there is an
increased risk of CVD, instigating an imperative need to monitor vital parameters regularly.
However, the limited SHTs available to address the needs of CVD patients and monitor
healthy adults for risks, although CVD is a leading cause of death globally, highlights
the urgent need to develop such solutions. Hence, our findings could provide insights
and guidelines into critical issues, including SHTs for CVD management, user acceptance,
and regulatory agency’s role to be followed when designing, developing, and deploying
integrated solutions for CVD monitoring at home. Our findings also contribute to the de-
velopment of patient-centred care for managing CVD related chronic conditions in ambient
assisted living.
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