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Abstract: Heat and flow enhancement is a critical weapon for the design of highly efficient, compact,
and cost-effective devices. The objective of this analysis is the detailed examination of the implemen-
tation of different fin shapes on the internal side of a tube aiming the heat and flow enhancement.
The reference empty tube is examined, while the use of circular, rectangular, and triangular fins is
also studied. Different simulations were conducted with a developed computational fluid dynamic
model, and the results were expressed in heat and flow terms. The developed model was validated
by comparing the results with the theoretical expressions for the Nusselt number, as well as for the
friction factor. The obtained results were evaluated by calculating the heat convection coefficient, the
pressure drop, the Nusselt number, the friction factor, the pump work, the mean wall temperature,
and the Bejan number. According to the calculations, the use of rectangular fins is the best solution;
the use of triangular fins is the second choice, while the less efficient improvement method is the use
of circular internal fins. Regarding the heat transfer enhancement, the rectangular fins lead to 36%
enhancement, circular fins to 25%, and triangular fins to 23% compared to the reference tube.

Keywords: thermal enhancement; internal fins; fin shape; performance evaluation criterion; thermal
engineering

1. Introduction

The improvement of the energy systems is a critical pillar for achieving the Sustainable
Development Goals [1]. The enhancement of the energy systems or devices can be based
on the development of more efficient subsystems or by the introduction of new materials.
In thermal engineering, the flow and heat enhancement methods have gained a lot of
interest and numerous methods have been tested [2]. The utilization of nanofluids [3]
and the use of turbulators [4] are the most usual choices for enhancing the flow in order
to increase the heat transfer rate. Moreover, there is also research about the combination
of the aforementioned techniques [5] as a proper choice for thermal enhancement with
high performance. Between the use of turbulators and nanofluids, the turbulators seem
to be a more efficient choice [5], while nanofluids are associated also with stability and
other issues [6]. Therefore, the use of turbulators can be an effective choice for the direct
application of energy devices, while the use of nanofluids in commercial systems needs
some extra steps before being a mature and reliable choice.

In the literature, there is a plethora of examined ideas about the use of turbulators in
engineering applications. Usually, the turbulators are applied in devices like solar thermal
collectors, refrigerators, heat exchangers, radiators, and solar stills, but they can be applied
in other applications when there is a performance enhancement margin. Different kinds
of turbulators can be used, and generally, they can be separated into the inserts and the
internal fins, while there are also turbulators with modified tube geometry. In the studies
with turbulators, the emphasis is given to the enhancement of the heat transfer, while the
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pressure drop increase is also taken into consideration [7]. Usually, the proper criteria are
applied for examining the overall flow enhancement by considering both the increase of
the heat transfer rate and the higher pumping work demand. The most usual criterion for
flow enhancement is the Performance Evaluation Criterion (PEC), as it is defined below [7]:

PEC =

(
Nu
Nu0

)
(

f
f0

) 1
3

(1)

where the Nusselt number (Nu) is used for the heat transfer enhancement, and the friction
factor (f) is used for evaluating the penalty on the pressure drop increase. The subscript “0”
regards the reference case (e.g., empty tube). If PEC > 1, then it is assumed that there is
flow enhancement.

Kumar et al. [8] examined the idea of using circular disk inserts with hollows in a heat
exchanger. They conducted an experimental work, and they found the ratio of the Nusselt
number (Nu/Nu0) to be up to 4.5, while they found the PEC to be up to 1.42, which is a
promising value for effective flow improvement. Eiamsa-ard and Promvonge [9] studied
experimentally the enhancement of the airflow by the use of V-nozzle turbulators. They
found the Nusselt number ratio up to 3.7, while the PEC up to 1.19. In some designs, the
PEC received values lower than 1. In another work, Promvonge [10] studied the use of
coiled square wires experimentally with air. It was found that the Nusselt number ratio
reaches up to 2.6, and the PEC up to 1.3. Eiamsa-ard et al. [11] studied the use of delta-
winglet twisted tape inserts with water as the working fluid experimentally. They found
the PEC to be up to 1.24, but in some cases, they found it to be lower than 1. In another
investigation, Fan et al. [12] examined with a numerical model the use of louvered strip
inserts in airflow and they found the PEC to be in the range of 1.60 to 2.05. Bhuiya et al. [13]
investigated the use of double-helical tape inserts for enhancing the airflow. According to
their calculations, the Nusselt number ratio was found to be up to 4.05, while the PEC was
found to be up to 3.15. Zhang et al. [14] studied numerically the idea of using multiple
twisted tape inserts, and they found the Nusselt number ratio to be up to 2.82 and the PEC
to be in the range of 1.64 to 2.46. The idea of using an internally finned spiral tube has been
examined by Liu et al. [15], and they found the PEC to be up to 3.35. Pai et al. [16] examined
the use of 4, 6, and 8 internal fins in a tube. They found that the greater number of fins
leads to greater Nusselt number enhancements, and generally, they found improvements of
up to 189% with the Reynolds number at 1000 and up to 256% with the Reynolds number
at 1500.

It is obvious that there are many studies about the investigation of turbulators for
enhancing the thermal performance of engineering devices. However, the literature does
not include studies that compare different kinds of internal fins in order to determine the
impact of the fin geometry on the thermal enhancement percentage. Therefore, the goal
of this analysis regards the comparison of different fin geometries for enhancing the heat
transfer rates in a tube. The reference case of the empty tube is compared with the circular
fins, rectangular fins, and triangular fins. The comparative study is conducted with water as
the working fluids and by simulating different mass flow rates and inlet temperature levels.
The simulation is carried out via developed models in SolidWorks Flow Simulation, while
validation evidence is provided. In the last step of this work, approximation equations for
the calculation of the friction factor and the calculation of the Nusselt number are proposed
for the four examined cases based on the calculated results.

2. Material and Methods

The detailed model description with and without fins, the simulation conditions, and
the validation evidence is included in the present section.
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2.1. The Investigated Cases

Figure 1 depicts the examined tube which has a length of L = 2 m, an internal diameter
Din = 20 mm, and an outer diameter Dout = 22 mm. This tube is made of copper, and it is
heated with a total heat input of 6281 W, which is given uniformly. Practically, this heat
input corresponds to a specific heat flux of q = 50,000 W/m2 in the internal tube surface
of the reference case. The working medium is selected to be water at a pressure of 4 bar
in order to operate always on the liquid phase during the simulation studies. The inlet
temperature was examined from 290 K up to 360 K with a step of 10 K, while the inlet
mass flow rate was from 0.2 kg/s up to 0.35 kg/s with a step of 0.05 kg/s. The examined
conditions correspond to turbulent flow, and so the conclusions of this work are valid only
for the turbulent flow cases.
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Figure 1. The examined tube for the performed simulations. Figure 1. The examined tube for the performed simulations.

Figure 2 shows the different examined cross-sections of the examined tube. Figure 2a
shows the reference case, Figure 2b the internally fined tube with circular fines, Figure 2c
the case with rectangular fins, and Figure 2d the case with triangular fins. The height
of every fin was selected at 2 mm, which is a reasonable value according to the selected
diameter. Totally, 8 fins were selected for every case in order to use a relatively high number
of fins in order to take a suitable percentage of thermal enhancement.
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Figure 2. The studied cross-sections of the tube: (a) reference empty tube, (b) tube with circular fins,
(c) tube with rectangular fines, and (d) tube with triangular fins.

2.2. Mathematical Formulation

The working fluid is heated by the heat input from the tube and so its temperature
increases to (Tout) as below:

Tout = Tin +
Q

.
m · cp

(2)

The mean fluid temperature (Tm) can be found according to the next expression:

Tm =
Tin + Tout

2
(3)

The transfer coefficient (h) can be found as below, by utilizing the mean wall tempera-
ture (Twall):

h =
Q

(π · Din · L) · (Twall − Tm)
(4)

The Nusselt number (Nu) is connected with the (h) as below:

Nu =
h · Din

k
(5)

The friction factor of the flow (f) can be found below:

f =
∆P · Din

L ·
(

1
2 · ρ · u2

) (6)
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The mean fluid’s velocity (u) can be written as below:

u =

.
m

ρ ·
(

π·D2
in

4

) (7)

The pumping work (Wp) is defined according to the next expression:

Wp =

.
m · ∆P
ρ

(8)

The Bejan criterion (Be) is a proper criterion that evaluates the entropy generation
type. More specifically, it evaluates the relationship between entropy generation due to the
fluid’s temperature increase (∆ST) and the entropy generation due to the fluid’s pressure
drop (∆SP). More specifically, it is defined as below [17]:

Be =
∆ST

∆ST + ∆SP
(9)

For the empty tube, accurate equations about the (Nuth) and the (fth) have been
suggested by Gnielinski [18]:

Nuth =

(
f
8

)
· (Re − 1000) · Prfluid

1 + 12.7 ·
√

fref
8 ·
(

Pr
2
3
fluid − 1

) ·
(

Prfluid
Prwall

)0.11
(10)

fth = [1.82 · log10(Re)− 1.64] −2 (11)

where the water Prandtl number has to be used twice, one calculated for the mean fluid
temperature (Prfluid) and one for the mean wall temperature (Prwall). The Reynolds number
(Re) is defined as below:

Re =
4 · .

m
π · Din · µ (12)

2.3. Developed Model

In this work, the simulation is conducted with SolidWorks Flow Simulation [19] which
is a strong design and a computational fluid dynamics (CFD) tool. The first step in this
study was the design of the four different tubes, the reference one, and the three finned
tubes. The next step is the development of the CFD studies by introducing the proper
boundary conditions. More specifically, the boundary conditions of the developed model
are the following:

(a) The mass flow rate in the inlet (
.

m) was set from 0.20 kg/s up to 0.35 kg/s with step
0.05 kg/s. Moreover, the flow is selected to be fully developed.

(b) The inlet fluid temperature (Tin) was selected to be ranged from 290 K up to 360 K
with a step of 10 K.

(c) The outlet pressure was set at 4 bar.
(d) The heat input in the internal surface of the tube was set at 6281 W.

The working fluid is selected to be water, and the respective thermal properties were
used in the present investigation. Moreover, the tube is selected to be made of copper.
The used tool solved the problem by applying the governing equations of continuity,
momentum, and energy, while the k-ε turbulence model was selected [20].

During the analysis, 32 different cases were studied for every tube design (8 inlet
temperatures and 4 mass flow rates) and so a total of 128 scenarios are presented. In every
simulation, the most valuable outputs of the model are the outlet temperature of the fluid
(Tout), the pressure drop (∆P), and the mean wall temperature of the inner surface (Twall).
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Another important step in the analysis is the selection of a suitable computational
mesh. Different meshes have been examined, and Table 1 summarizes the results for
4 different meshes for the empty tube case. It is obvious that the “Mesh 4” is a reliable
choice that can lead to results independent from the mesh structure. It is also useful to state
that the mesh was created by SolidWorks Flow Simulation by choosing the proper setting
for having a dense mesh, especially close to the surface between solid and fluid materials.

Table 1. The examined meshes for the reference case.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Total cells 12,200 72,664 715,641 1,359,609
Fluid cells 4864 36,120 333,921 743,585
Solid cells 7336 36,544 381,720 616,024

u (m/s) 0.5054 0.4889 0.4819 0.4827
Tout (K) 309.62 309.95 309.96 309.98
Twall (K) 325.02 322.11 321.71 321.68
∆P (Pa) 351.4 321.0 323.3 323.6

2.4. Model Validation

The created model was properly validated by comparing the obtained results with
the theoretical expressions for the Nusselt number and the friction factor for the reference
case. More specifically, the validation process uses the equations of Gnielinski [18] which
have been described in Section 2.2. More specifically, the equations of Gnielinski [18] have
been used in order to determine properly the pressure drop (∆P) and the heat transfer
coefficient (h) following the described mathematical formulas in Section 2.2. These results
are compared with the results of the simulation tool in order to determine the deviations
and evaluate them.

Figure 3 shows the heat transfer coefficient for different values of the Reynolds number.
These points correspond to the cases with different mass flow rates (from 0.20 kg/s up
to 0.35 kg/s) and to different inlet temperatures (from 290 K up to 360 K). The results are
given for the theoretical case and the simulation analysis. It is obvious that the respective
points are close to each other for the examined range of the Reynolds number. Figure 4
shows that the deviations are relatively low and are inside the error bar of 5%. Therefore, it
is obvious that the maximum error is up to 4.95%, while the mean deviation is found at
1.2% which is a low value.

The next step is to check the results of the pressure drop. Figure 5 shows the pressure
drop for the different investigated cases (combinations of different mass flow rate values
and inlet temperature levels). It is clear that the found points between the theory and the
simulation are close to each other. Figure 6 exhibits the deviations between the theory
and the simulation, and it is obvious that the found deviations are lower than 5%. The
mean deviation of the pressure drop is found at 2.54% which is a relatively small and
acceptable value.

To conclude, the aforementioned comparison analysis makes clear that the present
created model in SolidWorks Flow Simulation is able to predict with high accuracy the heat
transfer coefficient and the pressure drop of the examined problem. Therefore, the results
of this study can be assumed to be reliable.
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Figure 3. Heat transfer coefficient from simulation studies and theoretical calculations.
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3. Results and Discussion

This part includes the results obtained from the different performed simulation studies
in this work. These results have been taken by simulating every design for different
combinations of mass flow rate values and inlet temperature values with SolidWorks Flow
Simulation.

3.1. Parametric Analysis for the Reference Case

The first part of the results section regards the presentation of the results about the
reference cases which correspond to the empty tube without internal fins. The results are
given for different combinations of the fluid inlet temperature from 290 K up to 360 K,
and of mass flow rates from 0.20 kg/s up to 0.35 kg/s. Figure 7 shows the variation of the
Nusselt number for the different examined scenarios. Higher fluid temperature and higher
mass flow rate lead to higher values of the Nusselt number. The Nusselt number ranges
from 112 to 251 for all the studied cases. Moreover, Figure 8 indicates that the fluid heat
transfer coefficient has similar behavior to the Nusselt number. More specifically, the heat
transfer coefficient increases with the increase of both inlet fluid temperature and mass
flow rate. Moreover, the heat convection coefficient ranges from 3761 to 8471 W/m2K for
all the studied scenarios.

The next part of the investigation rewards the fluid energy loss during the movements
in the tube. Figure 9 shows the variation of the friction factor with the variation of the
independent parameters. It is obvious that the increase in the fluid temperature and the
mass flow rate leads to a lower friction factor. However, the reduction of the friction factor
is not high and generally, the friction factor takes values in the range from 0.019 to 0.027.
Figure 10 illustrates the pressure drop for the different cases. Interestingly, the pressure
drop increases with the increase of the mass flow rate, while it reduces with the increase of
the fluid temperature. It was found that the pressure drop ranges from 445 to 1455 Pa, so
there is an important variation in the pressure drop among the examined cases.
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Figure 10. Pressure drop variation for the different operating scenarios in the reference case of the
empty tube.

Figure 11 depicts the pumping work demand which takes generally low values com-
pared to the heat input of 6281 W. The pumping work ranges from 0.09 W to 0.51 W. The
pumping work demand is directly associated with the pressure drop, and thus it takes
lower values when the temperature increases.
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Figure 11. Pumping work demands variation for the different operating scenarios in the reference
case of the empty tube.
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The Bejan number is an important index, which is depicted in Figure 12. This criterion
is defined as the ratio of the generated entropy due to the fluid temperature increase to
the total generated entropy. It has to be said that the total generated entropy includes
the entropy generation due to both temperature increase and pressure drop. According
to Figure 12, the Bejan number takes high values (over 99%), which indicates that the
main reason for the entropy generation is the fluid temperature increase. Therefore, the
application of thermal enhancement methods, such as the use of internal fins, is needed in
order to enhance the heat transfer conditions and reduce the total entropy generation. It
is notable to state that the Bejan number reduces a bit with the increase of the mass flow
rate due to the higher pressure drop in these cases. Moreover, it has a very small decrease
with the increase in the fluid’s temperature. This criterion is an important one in order to
evaluate the impact of the pressure drop on heat transfer problems.
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Figure 12. Bejan number variation for the different operating scenarios in the reference case of the
empty tube.

The mean wall temperature is an important parameter which is depicted in Figure 13.
This temperature level increases approximately linearly with the increase of the inlet fluid
temperature. Moreover, it takes higher values when the fluid moves with a lower velocity,
which means a lower mass flow rate. Practically, the lower mass flow rate makes the work-
ing fluid warmer (higher temperature increase), which leads to a higher wall temperature
because the wall temperature has to be always higher than the fluid temperature. It is also
notable that the curves of m = 0.30 kg/s and m = 0.35 kg/s are close to each other, which
indicates that a higher mass flow rate would not lead to significantly different results.
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Figure 13. Mean wall temperature variation for the different operating scenarios in the reference case
of the empty tube.

3.2. Comparison of the Different Tubes

The second part of this analysis is the comparison of the different finned tubes with the
reference cases. The results are presented with the Reynolds number in the horizontal axis
to show the impact of the critical flow parameter (Re) on the results. Every depicted point
in the following figures corresponds to a different combination of fluid inlet temperature
and mass flow rate (Tin, m).

Figure 14 gives the results of the Nusselt number which is the main dimensionless
number that describes the heat transfer phenomena. Moreover, the heat convection coef-
ficient of the fluid, which is directly associated with the Nusselt number, is depicted in
Figure 15. Both Figures 14 and 15 indicate that the finned tubes lead to higher heat transfer
rates from the tube to the fluid compared to the reference case. The use of rectangular fins
seems to be the most effective design, while circular fins are the second one and triangular
fins are the third one. The difference between the circular and the triangular fin cases is rel-
atively low according to the results. Moreover, the enhancement margin seems to be higher
in the cases with higher Reynolds numbers compared to the small Reynolds numbers.

The results of the friction factor are given in Figure 16, the pressure drop in Figure 17,
and the pumping work demand in Figure 18. The friction factor shows clearly that the
finned tubes lead to significantly higher friction losses compared to the reference case. The
rectangular fins lead to the maximum friction factor with circular fins to follow with a
very small difference. The triangular fins follow with a lower friction factor, while the
reference empty tube has the lowest value of the friction factor. The results about the
pressure drop and the pumping work demand show that the Reynolds number is not
the only parameter that includes these parameters, and thus, there is a cloud of points.
However, it can be said that in the respective cases, the use of fins leads to greater pressure
drop and higher pumping work demand compared to the reference case. It could be said
that the pumping work is about 60% higher with rectangular fins. Figure 19 depicts the
results for the Bejan number which is over 99%. Therefore, the impact of the pressure drop
on the system-generated entropy is not high in all cases. However, the Bejan number is
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lower for the finned designs compared to the reference case due to the higher pressure drop
in these cases.
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Figure 14. Nusselt number in the examined cases for all the tubes.
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Figure 15. Heat transfer coefficient in the examined cases for all the tubes.
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Figure 16. Friction factor in the examined cases for all the tubes.
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Figure 17. Pressure drop in the examined cases for all the tubes.
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Figure 18. Pumping work demand in the examined cases for all the tubes.
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Figure 19. Bejan number in the examined cases for all the tubes.
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Figure 20 shows that the mean wall temperature of the tube is higher for the reference
case compared to the finned tube. Practically, the lower heat transfer rates in the reference
case leads to superheating in the tube in order to deliver the heat input in the working fluid.
The finned tubes present similar wall temperature levels, with the rectangular finned tube
having the lowest wall temperature level.
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Figure 20. Mean wall temperature in the examined cases for all the tubes.

The last step in this analysis is the presentation of some figures about the fluid tem-
perature in the tube outlet (Figure 21) and the fluid velocity in the tube outlet (Figure 22).
In every figure, the four different cases are given. It can be said that the fluid is warmer
close to the tube, while it has a higher velocity in the tube center. These are reasonable and
acceptable results that verify the results.
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3.3. Final Evaluation of the Different Cases

The last step in the present investigation concerns the evaluation of the Nusselt
number increase with the simultaneous friction factor increase. Figure 23 shows that
clearly the Nusselt number ratio (Nu/Nu0) is enhanced with the fins. The rectangular fins
lead to 36% enhancement, circular fins to 25% enhancement, and triangular fins to 23%
enhancement, approximately, compared to the reference tube. It is useful to state that in
low Reynolds numbers, the circular tube leads to lower enhancements, which is considered
an interesting result.

Figure 24 shows the variation of the friction factor ratio (f/f0) for the finned tubes. The
rectangular and the circular fins lead to a higher friction factor increase of around 65% and
63%, respectively. The triangular fins lead to a 43% friction factor increase. Moreover, it is
useful to state that in low Reynolds numbers, the circular fins lead to a lower increase in
the friction factor.
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Figure 23. Nusselt number ratio in the different examined operating conditions for the different
finned tubes.

The last step is the proper evaluation of the aforementioned ratios of the (Nu) of the (f).
The performance evaluation criterion (PEC) is used as a proper criterion for this purpose
which has been defined in Equation (1). The results of Figure 25 show that the PEC is over
1 for all the cases, so there is flow enhancement in all the examined cases with all the finned
tubes. This is an important result that indicates that the idea of using internal fins works
for enhancing the flow totally. More specifically, the PEC is around 1.16 for the rectangular
finned tube, 1.09 for the triangular finned tube, and 1.06 for the circular finned tube. Thus,
the most appropriate design is the one with rectangular fins.
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Figure 24. Friction factor ratio in the different examined operating conditions for the different
finned tubes.
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Figure 25. Performance evaluation criterion ratio in the different examined operating conditions for
the different finned tubes.
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Moreover, the calculated results for the (Nu) and the (f) are presented in the following
equations. These equations have been found with the proper approximations, and the
mean error (Erm) is relatively low; thus, these equations are accurate. These equations can
be used for water and Reynolds number in the range of 10,000 < Re < 70,000. The format of
these equations follows typical formats of similar equations in the literature and so a very
accurate approximation was achieved.

Reference tube:

Nuref = 0.02405 · Re0.8033 · Pr0.4450 , Erm = 0.72% (13)

fref = 0.2762 · Re−0.2417, Erm = 0.27% (14)

Circular finned tube:

Nucirc = 0.02446 · Re0.8194 · Pr0.4712 , Erm = 1.54% (15)

fcirc = 0.4772 · Re−0.2468, Erm = 0.52% (16)

Rectangular finned tube:

Nurect = 0.02537 · Re0.8239 · Pr0.4804 , Erm = 1.18% (17)

frect = 0.4246 · Re−0.2351, Erm = 0.13% (18)

Triangular finned tube:

Nutri = 0.02445 · Re0.8167 · Pr0.4710 , Erm = 1.38% (19)

ftri = 0.4194 · Re−0.2473, Erm = 0.19% (20)

Furthermore, it is useful to define the mean error (Erm) according to Equation (21).
More specifically, when the approximated value is (X) and the real calculated values are
(X0), while there are (N) points of approximation, the error is defined as:

Erm =
∑N

i=1

∣∣∣ X
X0

− 1
∣∣∣

N
(21)

In the end, it is useful to discuss the present results with other studies from the
literature. The present work uses 8 internal fins, and this number is correct according
to the literature. Pai and Yeh [16] found that the internal fins are the optimum choice.
Moreover, the present work found that the thermal enhancements with rectangular fins are
around 36%, while the results of Reference [16] indicate enhancements of around 34% for a
relatively low-pressure drop, so there is an agreement with this study. Moreover, it is very
interesting that applying the suggested equations for the eight rectangular straight fins of
Reference [21], the heat transfer enhancement is found again at 36%. Therefore, it is clear
that the results obtained in this work are reliable and acceptable.

In the future, the examined internal fins will be optimized in order to determine the
optimum thickness, height, and shape. Moreover, an idea is to model the fin geometry
parametrically (e.g., with a polynomial Bezier–Bernstein) and to optimize their geometry
with a free-form deformation methodology. Last but not least, the number of the fins can
be also examined.

4. Conclusions

The aim of this analysis is the detailed examination of the flow and heat behavior of
tubes with different fins. The use of internal finds with circular, rectangular, and triangular
shapes is studied and compared with the reference case of the empty tube. The analysis is
carried out for different inlet fluid temperatures and different mass flow rates to study the
system under different operating conditions. Below, the most critical conclusions are given:
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- All the examined finned tubes lead to significant improvement in the heat transfer.
The rectangular fins lead to 36% enhancement, circular fins to 25% enhancement, and
triangular fins to 23% enhancement, approximately, compared to the reference tube.

- All the examined finned tubes lead to an increase in the pressure drop. The rectangular
fins lead to a 65% increase, circular fins to a 63% increase, and triangular fins to a 43%
increase, approximately, compared to the reference tube.

- The performance evaluation criterion (PEC) is calculated over 1 in all the finned tubes,
and thus, all the examined designs lead to significant flow enhancement. More specifi-
cally, the PEC is around 1.16 for the rectangular finned tube, 1.09 for the triangular
finned tube, and 1.06 for the circular finned tube.

- The most suitable design is the tube with the rectangular fins; the second one is the
design with the triangular fins, while the use of circular fins is the less effective design.

- The pumping work demand takes very small values, which indicates that it is not
an obstacle in the system operation. Moreover, the Bejan number takes values over
99%. This fact proves that the entropy is mainly generated due to the temperature
increase, and the pressure drop does not generate an important amount of entropy in
the system.
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Nomenclature

Be Bejan number
cp Specific heat capacity, J/kgK
Din Inner tube diameter, m
Dout Outer tube diameter, m
f Friction factor
h Heat convection coefficient, W/m2K
k Thermal conductivity, W/mK
L Tube length, m
M Mass flow rate, kg/s
N Points of approximation
Nu Nusselt Number
PEC Performance Evaluation Criterion
Pr Prandtl Number
Q Heat rate, W
q Heat flux, W/m2

Re Reynolds Number
Tin Fluid inlet bulk temperature, K
Tm Fluid mean temperature, K
Tout Fluid outlet bulk temperature, K
Twall Mean wall temperature, K
u Mean fluid velocity, m/s
Wp Pumping work demand, W
X Parameter of approximation
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Greek Symbols
∆P Pressure drop, Pa
∆SP Generated entropy due to pressure drop, W/K
∆ST Generated entropy due to temperature increase, W/K
µ Dynamic viscosity, Pa s
$ Density, kg/m3

Subscripts and Superscripts
circ Circular fins
fluid Mean fluid
rect Rectangular fins
ref Reference tube
th Theoretical
tri Triangular tube
wall Mean wall
0 Reference case
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