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Abstract: The proliferation of electric vehicle (EV) technology is an important step towards a more
sustainable future. In the current work, two-layer feed-forward artificial neural-network-based
machine learning is applied to design soft sensors to estimate the state of charge (SOC), state of
energy (SOE), and power loss (PL) of a formula student electric vehicle (FSEV) battery-pack system.
The proposed soft sensors were designed to predict the SOC, SOE, and PL of the EV battery pack on
the basis of the input current profile. The input current profile was derived on the basis of the designed
vehicle parameters, and formula Bharat track features and guidelines. All developed soft sensors
were tested for mean squared error (MSE) and R-squared metrics of the dataset partitions; equations
relating the derived and predicted outputs; error histograms of the training, validation, and testing
datasets; training state indicators such as gradient, mu, and validation fails; validation performance
over successive epochs; and predicted versus derived plots over one lap time. Moreover, the
prediction accuracy of the proposed soft sensors was compared against linear or nonlinear regression
models and parametric structure models used for system identification such as autoregressive with
exogenous variables (ARX), autoregressive moving average with exogenous variables (ARMAX),
output error (OE) and Box Jenkins (BJ). The testing dataset accuracy of the proposed FSEV SOC, SOE,
PL soft sensors was 99.96%, 99.96%, and 99.99%, respectively. The proposed soft sensors attained
higher prediction accuracy than that of the modelling structures mentioned above. FSEV results
also indicated that the SOC and SOE dropped from 97% to 93.5% and 93.8%, respectively, during
the running time of 118 s (one lap time). Thus, two-layer feed-forward neural-network-based soft
sensors can be applied for the effective monitoring and prediction of SOC, SOE, and PL during the
operation of EVs.

Keywords: soft sensor; state of charge; state of energy; power loss; neural networks; formula student
electric vehicle; battery pack

1. Introduction

Electric vehicles (EV; E-mobility) are gaining wider acceptance in mainstream applica-
tions as a greener alternative to the conventional fossil-fuel-based locomotion. E-mobility
is a primary focus in the global research efforts to limit and reduce the damage caused
to Earth’s natural ecosystems due to the effects of the fossil-fuel-based economy. The
past decade has witnessed many investigations aimed towards the design, development,
and deployment of E-mobility technologies for a more sustainable future. Recent efforts
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have focused on making E-mobility systems more efficient and affordable. Tran et al. [1]
optimised the performance of a hybrid electric vehicle powertrain considering its various
components and arrangements. Pappalardo et al. [2] developed a model on the basis of the
virtual prototype of an electric vehicle. Vita et al. [3] investigated the integration of electric
vehicles with renewable-energy-based power grids and distribution networks.

The most important component of an EV drive train is its battery. The performance
and reliability of the battery pack directly impacts the overall functioning of the EV during
the drive cycle. Sen and Kar [4] modelled an electric-vehicle battery pack for the effective
analysis of the battery management system. Lithium ion batteries are reliable with regard to
the power and energy requirements of an EV. Researchers attempted to model lithium ion
battery packs to characterise their power and energy performance under varying operating
conditions. Jaguemont et al. [5] modelled the lithium ion battery pack of an electric vehicle
operating under low-temperature conditions. Cui et al. [6] derived a model for the lead
acid battery of an energy-storage power station and applied the extended Kalman filtering
method to estimate its SOC. Li and Mazzola [7] modelled the lithium ion battery pack as a
an analogue electrical battery system with constant parameters for automotive applications.

The state of charge (SOC) is an important battery-pack performance characteristic. Bat-
tery management system (BMS) design is completely dependent upon accurate SOC estima-
tion. Liu et al. [8] explored novel methods of SOC estimation and modelling. Ting et al. [9]
applied Kalman filter for estimating SOC of the EV BMS. The accurate modelling of com-
ponent characteristics based on operating conditions is vital for reasonably estimating
performance characteristics of any machinery. Researchers have attempted the modelling
and control of various mechanical systems using system identification methods. Shah and
Sekhar [10] implemented system identification on the basis of fractional order modelling
to identify a closed-loop DC motor system. Sekhar et al. [11] designed a control-theory-
based system modelling of nano composite machining. Similar system-identification-based
modelling applications include the characterization of complex materials [11,12], robotic
arms [13], manufacturing processes [14–16], bolted joints [17], and biofuel engine dynam-
ics [18]. The latest modelling methods involving artificial-intelligence and machine-learning
methods exhibited excellent prediction consistency in manufacturing systems [19–21]. In
the case of EV systems, SOC, SOE, and PL modelling is difficult due to the highly nonlinear
characteristic of the battery under varying operating conditions [22]. Catano et al. [23]
developed a dynamic model for SOC estimation in real time. Liu et al. [8] explored novel
methods of battery SOC estimation and modelling. Zhang et al. [24] employed fractional or-
der modelling and fractional Kalman filters to estimate the SOC of lithium ion battery packs.
Xiao et al. [25] also implemented Thevenin fractional order modelling in SOC estimation of
an EV lithium ion battery pack. Meng et al. [26] compared the relative merits and demerits
of support vector machine (SVM), single-particle model (SPM), and RC equivalent cell mod-
els (ECM) in EV SOC estimation. Many researchers applied various forms of artificial neural
networks to accurately model SOC estimation in E-mobility systems [27–29]. Li et al. [30]
applied fuzzy neural networks in conjunction with a reduced form of the genetic algorithm
for the same. Weigert et al. [31] achieved 95% prediction accuracy of SOC models using
artificial neural networks. Li et al. [22] minimised SOC prediction errors to 1.75% using
recurrent neural networks. He et al. [27] used unscented Kalman filtering to improve neural
network prediction accuracy of SOC estimation. Investigations were also carried out with
regard to the fault diagnosis and motor design of FSEV [32–34].

Similar research was carried out for the EV battery state of energy (SOE) estimation.
Zhang et al. [35] implemented the covariance matching method to update the battery
model parameters on a real time basis. In a similar study, Zhang et al. [36] followed the
adaptive unscented Kalman filter approach to estimate the SOE of a lithium ion battery.
He et al. [37] developed a Gaussian model for SOE prediction, whereas Zheng et al. [38]
applied the moving window energy integral method for the same. Li et al. [39] followed
a unique methodology that combined an analytical model with an electrical model to
improve SOE estimation. Lin et al. [40] applied a multimodel-probability-based state fusion
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methodology for SOE estimation. Zhang et al. [41] established a multi time scale observer
for SOE assessment. Li et al. [42] explored fractional calculus-based SOE modelling for
LiFePO4 battery. Fewer investigations were carried out for power-loss (PL) modelling in
EV. In an interesting study, Elpiniki et al. [43] analysed EV PL as a function of charging
rate and SOE.

This brief literature review indicates that the past investigations did not include
SOC/SOE/PL soft sensor designs for FSEV applications.The exploration of effective PL
estimation and modelling strategies is an open research area. Therefore, a novel research
scope was identified for the current study to estimate the SOC, SOE, and PL of a formula
student electric vehicle (FSEV) battery pack based on neural-network-enabled soft-sensor
designs. The following section gives details of the battery-pack modelling and neural-
network-based soft-sensor design methodology.

2. Methodology

This section presents the details of the FSEV battery-pack specifications, BMS design
constraints, battery-pack modelling procedure, and the soft-sensor design methodology,
including neural-network implementation in MATLAB and the specifics of the ANN
training algorithm. Lastly, alternative modelling structures considered in the current study
for comparison with the proposed ANN soft sensors are presented.

2.1. FSEV Battery Pack Modelling

The FSEV was designed as per the vehicle characteristics specified in the Formula
Bharat rule book [44]. The features of the designed vehicle (Table 1) and the Formula
Bharat track parameters at the Kari Motor Speedway, Coimbatore, India were fed into
OptimumLap software to obtain the required drive cycle. Drive cycle characteristics and
FSEV features were put into the vehicle powertrain model created in Simulink, MAT-
LAB. The powertrain model resulted in the input current profile (Figure 1) for further
computations. The charging current was limited to 20 A as an additional safety margin
considering the 40 A limit specified by the cell manufacturer design guide (Table 2). The
FSEV battery pack was designed as per the constraints and specifications provided by
the competition rulebook and the A123 cell manufacturer (based on real experimentation
datasets) (Tables 2 and 3).
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Figure 1. Current profile for a single cell obtained from powertrain model.
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Table 1. FSEV vehicle design parameters [45].

Parameter/Specification Value Parameter/Specification Value

Vehicle Mass 300 kg Tire Rolling Drag 0.03
Drag coefficient 0.7 Power Scaling Factor 95%

Downforce coefficient 0.5 Aero Scaling Factor 90%
Frontal area 0.9 m2 Grip Scaling Factor 90%

Drivetrain efficiency 90% Mass Lateral Friction 260 kg
Tire rolling radius 0.203 m Mass Longitudinal Friction 260 kg

Air density 1.23 kg/m3 Aero Efficiency 0.7142
Final drive ratio 5 Motor Thermal Efficiency 80%

Longitudinal friction 1.4 Motor Torque Data 90 N·m
Lateral friction 1.5 Motor RPM Data 6500 rpm

Table 2. BMS constraints.

Parameter Lower Limit Upper Limit

Charge current 0 A 40 A
Discharge current 0 A 300 A

Cell voltage 2 V 3.65 V
Cell temperature 0 °C 55 °C

Table 3. Battery pack specifications.

Specifications Value

Drive cycle distance 22 km
Pack voltage 300 V

Range 22 km
Cell voltage nominal 3.3 V

Cell capacity 20 Ah
Pack capacity 20 Ah

The FSEV battery pack was designed to have 90 cells connected in series, all drawing
the same amount of current. In the current study, SOC was estimated for one cell assuming
ideal operating conditions over one lap of the Formula Bharat track. For cell parameter
estimation, the series internal resistance (R0) was first approximated as per the direct cur-
rent resistance (DCR) −% SOC characteristics prescribed in the A123 manufacturer design
guide (based on actual experiments) [46]. The remaining cell parameters, namely, parallel
internal resistance (R1) and capacitance (C1), were determined by mutual substitution in
the following equations (also derived from actual experiments) [47,48]

R0 = −0.000513(SOC) + 0.002733 (1)

R1 = 0.001426(SOC)−0.771947 (2)

C1 = 3297.55log(SOC) + 13, 481.96 (3)
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These R0, R1, C1 values along with the input current profile were utilised to compute
voltage drops across R0, R1 and C1. Subsequently, these voltage drops and the input
current profile were employed to obtain the total PL due to the cell components R0, R1 and
C1. Thereafter, battery pack temperature was estimated using total PL (Ploss) as per the
following relation

CT ∗
dT
dt

= (ambient Temp− current Temp) ∗ RT + Ploss (4)

where CT is specific heat capacity (J m−3 K−1), and RT is convection resistance (W m−2 K−1)
of the cell. Next, the charge capacity of the battery was estimated at all operating tempera-
tures derived in Equation (4) as per the following relation.

Capacity = −0.001238 ∗ T2 + 0.7507 ∗ T − 94.06 (5)

On the basis of the derived temperature–capacity profile, the SOC was estimated as
follows.

SOC (at time t) = initial SOC−
∫ I

Capacity ∗ 3600
dt (6)

where I is the battery current, and the initial SOC was assumed to be 0.97. Next, open
circuit voltage (OCV) was estimated from the experimental OCV, SOC, and temperature
data sheet provided by the cell manufacturer [46]

OCV = 3.149 ∗ SOC− 7.551× 10−5 ∗ T + 0.523 (7)

Terminal voltage (Vt) was obtained as follows.

Vt = OCV−Vd1 −Vd2 (8)

where Vd1 and Vd2 are the potential differences across R0 and R1, respectively. These
voltages were determined using the following relations.

Vd1 = I0R0

Vd2 = I1R1

where I0 is the current through R0, and I1 is the current flowing through R1 in the equivalent
cell model. Subsequently, SOE was calculated as follows.

SOE (at time t) = initial SOE−
∫ P

nominal energy
dt (9)

where P is power of the FSEV battery in watts. Nominal energy of the cell was obtained
from the design data sheet [46], and the initial SOE was assumed to be 0.97. Figure 2 shows
a schematic representation of the SOC, SOE, and PL estimation procedure followed in the
current study. The following section gives details of the proposed soft-sensor designs for
these FSEV battery parameters.
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Figure 2. SOC, SOE, and PL estimation procedure.

2.2. Soft-Sensor Design

Data-based modelling generally begins with preprocessing that includes data cleaning
and normalization, followed by partitioning data into training, validation, and testing
sets [49]. Figure 3 exhibits the two-layer feed-forward artificial neural-network architecture
for the soft sensor application proposed in the current work. The two layer feedforward
neural network in association with the Levenberg–Marquardt algorithm for data fitting
exhibited high fitting accuracy at the cost of lesser training iterations and data points [50].
The vehicle drive cycle characteristics were applied to the input nodes I1 (time) and I2
(current). Weights W1,1, W1,2, · · · , W1,10 were assigned to the connections from input node
I1 to the ten nodes in the hidden layer. Similarly, weights W2,1, W2,2, · · · , W2,10 were applied
to the connections from input node I2 to the hidden layer nodes. The output of each hidden
layer comprised the sum of the products of all input nodes to their respective assigned
connection weights. All hidden layer outputs were treated with sigmoid activation function
f1 (Figure 4), defined as follows.

S(x) =
1

1 + e−x (10)

where x is the input to the activation function, and S(x) is the sigmoid activation function.
The connections of all activation function outputs to the output layer nodes were also
assigned weights (Wo,1, Wo,2, · · · , Wo,10). For the final predicted output, a linear activation
function f2 (Figure 5) was applied to the summation of the products of all f1 function
outputs and their respective weights. This linear activation function is defined as follows.

L(x) = A ∗ x (11)
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where x is the input to the activation function, A is the slope of the activation function and
L(x) is the linear activation function. The above modelling procedure was individually
carried out for the estimations of SOC, SOE, and PL for a single cell of the FSEV battery
pack considered in the current study.

Figure 3. Two-layer feed-forward neural-network architecture for FSEV battery pack SOE/SOC/PL soft-sensor design:
sigmoid activation function ( f1) at the hidden layer and linear activation function ( f2) at the output layer.
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Figure 4. Sigmoid activation function.
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Figure 5. Linear activation function.

Next was the stepwise implementation of the neural-network-based soft sensors in
MATLAB.

1. Load the input current profile and SOC/SOE/PL dataset for the FSEV battery pack
considered in the current study.

2. Partition the dataset into training, validation, and testing sets. The total dataset
available for the current study was partitioned 70% for training, and 15% each for
validation and testing (Table 4).

3. Select the neural-network architecture for predictive modelling (two-layer feedfor-
ward network with sigmoid transfer function in the hidden layer and a linear transfer
function in the output layer).

4. Select the number of hidden neurons (selected as 10 in the present work).
5. Train the neural network using a supervised learning algorithm (Levenberg–Marquardt).
6. Validate and test the trained neural network.
7. Retrain the network if performance is poor in terms of the R-squared value of the

testing dataset.

Table 4. Dataset partitions for SOC/SOE/PL soft sensors.

Dataset Partitions Number of Samples Data%

Training 82,132 70
Validation 17,600 15

Testing 17,600 15

Total 117,332 100

Table 5 shows salient features of the feed-forward neural network architecture imple-
mented for soft-sensor design. The following subsection provides details of the training
algorithm employed in this neural network.
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Table 5. Two-layer feedf-orward neural-network features.

Training Method Levenberg-Marquardt

Sample division as shown in Table 4
Activation function ( f1) Sigmoid function
Activation function ( f2) Linear function
Initial weights and bias zero

Input layer nodes 2
Output layer nodes 1
Hidden layer nodes 10
Performance index Mean squared error (MSE)

Levenberg–Marquardt Training Algorithm

The artificial neural network (ANN) training algorithm formulates estimation error
as an objective function to be minimised through every training iteration (Figure 6). It
distributes the total estimation error among the nodal connection weights. Learning and
decay rates are defined to control the upper and lower limits, respectively, of these weights.
The optimization algorithm minimises the estimation error over successive training epochs.
The transformation function sums up the products of input nodes and respective weights,
and yields the output value in conjunction with a bias factor and an activation function.
The weighted sums are scaled up to the values of the input nodes by the bias factor to
guarantee that the input node values are preserved for further calculations. The activation
function ensures that at least the minimal threshold of the calculated nodal outputs is
contributed to the next layer [51].

Figure 6. Supervised learning flow.

The Levenber–Marquardt algorithm employs a Jacobian matrix in conjunction with
the gradient vector and expresses the loss function as the sum of squared errors ( f ).

f =
N

∑
r=0

e2
r (12)
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where N is the number of data set instances, and e is the difference between derived and
predicted SOC values [52,53]. The Jacobian matrix of this loss function is composed of the
error derivatives having N by P dimensions.

Ji,j =
∂ei

∂Wj
(13)

where i = 1, 2, · · · , N is the number of data set instances, J = 1, 2, · · · , P is the number
of neural network parameters and Wj is the weight vector corresponding to a particular
input. The gradient vector is determined for this loss function as follows.

∇ f = 2JT · e (14)

The Hessian matrix is approximated as follows.

Hf ≈ 2JT · J + µI (15)

where I is the identity matrix, and µ is the Hessian damping factor. Lastly, loss function
parameters are improved by the algorithm as per the following expression [54].

Wi+1 = Wi − (J(i)T · J(i) + µiI)−1 · (2J(i)T · ei) (16)

The network training process is terminated on the basis of the algorithm meeting any
one of the stopping criteria depicted in Table 6.

Table 6. Training algorithm stopping criteria.

Sr. No. Stopping Criteria Settings

1. Maximal epochs 1000
2. Maximal training time ∞
3. Performance goal 0
4. Minimal performance gradient 1.00 × 107

5. Maximal µ 1.00 × 1010

6. Maximal validation fails 6

For comparative analysis, the SOC, SOE, and PL of the FSEV considered in the current
study were also modelled using linear regression, nonlinear regression, and parametric
structures such as ARX, ARMAX, OE, and BJ models. Table 7 depicts the generalized forms
of these parametric model structures widely used in the system identification of various
systems. The prediction accuracy of all developed models was compared on the basis of
R-squared/FIT% and mean squared errors (MSE).

Table 7. Parametric model structures.

Sr. No. Model Name Model Structure

1 Output error (OE) y(t) = [B(z)/F(z)]u(t) + e(t)

2 Autoregressive moving average with
exogenous input (ARMAX) A(z)y(t) = B(z)u(t) + [C(z)/(1 − z−1)]e(t)

3 Box Jenkins (BJ) y(t) = [B(z)/F(z)]u(t) + [C(z)/D(z)]e(t)

4 Autoregressive with exogenous input
(ARX) A(z)y(t) = B(z)u(t) + e(t)

3. Results and Discussion

This section presents the various performance metrics of the proposed FSEV SOC/SOE/PL
soft sensors designed on the basis of two-layer feed-forward neural networks. The com-
parative performance of these soft sensors with regard to the regression and parametric
models is also discussed.
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3.1. State of Charge Soft Sensor

Table 8 shows the final hidden or output layer weights and biases for the FSEV SOC
neural network, and Table 9 depicts the mean squared error (MSE) and R squared (R-sq)
values of the proposed SOC soft sensor as per various dataset partitions. The training,
validation, and testing datasets attained very impressive MSEs of 8.28× 108, 8.30 × 108 and
8.34 × 108, respectively. All datasets achieved R squared values of 0.9996 each, showing
excellent prediction accuracy for the proposed FSEC SOC soft sensor. Figure 7 shows the
regression plot of the FSEV SOC sensor performance relative to various dataset partitions.

Figure 8 shows a graphical presentation of the derived versus soft-sensor-predicted
SOC values over one lap time of 118 s. The graph shows that the SOC decreased from
97% at the beginning of the lap to 93.5% at the end of the lap. The soft-sensor model
output closely matched that of the derived SOC. Figure 9 shows the error histogram for
the FSEV SOC soft-sensor predictions. It depicts a maximal number of testing instances
(around 4000) at an error bin of 1.99 × 10−5, followed by comparatively lower instances
(around 2500) at 1.34 × 10−4 and −9.4 × 10−5. There are around a 1000 instances at the
bin corresponding to 2.47 × 10−4 error. Remaining error bins (−4.3 × 10−4, −3.2 × 10−4,
−2.1 × 10−4, 3.61 × 10−4, 4.75 × 10−4 and others) contain lesser instances. This distribu-
tion of error instances at very low magnitudes supports the excellent predictability of the
proposed FSEV SOC soft-sensor design. Figure 10 depicts the gradient, mu, and validation
checks as indicators of the FSEV SOC soft-sensor training states. The gradient continuously
decreased till 5.76 × 10−8 at epoch 25, whereas mu settled at 1 × 10−10 at the same epoch.
The gradient is an indicator of the learning rate and step size of the training algorithm. The
sloping reduction in gradient over successive epochs indicated the systematic progression
of the training algorithm towards the global minimum of the proposed soft-sensor predic-
tion error. In fact, the training algorithm terminated further epochs because the stopping
criterion of minimal performance gradient of 1 × 10−7 (Table 6) had been attained. A
low mu indicated that the Levenberg–Marqaurdt algorithm moved towards Newton’s
method and away from the gradient descent methodology for faster and more accurate
convergence [55]. The Figure 10 validation check depicts that there was no validation fail
till epoch 25. Figure 11 shows that the best validation performance of the proposed soft
sensor was recorded to be a very low MSE value of 8.30 × 10−8 attained at epoch 25.

Table 8. Input and output weights and biases for two-layer feed-forward FSEV SOC soft sensor.

Weight Value Weight Value Weight Value Bias Value

W1,1 −6.7388 W2,1 0.1385 Wo,1 −0.3445 b1 5.2081
W1,2 1.5055 W2,2 4.4055 Wo,2 −0.1561 b2 −2.9739
W1,3 −2.2395 W2,3 0.1014 Wo,3 0.9477 b3 0.5772
W1,4 −4.0909 W2,4 5.0135 Wo,4 −0.0010 b4 0.5644
W1,5 −0.9409 W2,5 −4.7907 Wo,5 1.1354 b5 1.5813
W1,6 −3.0955 W2,6 −3.3766 Wo,6 −0.2886 b6 0.1238
W1,7 −9.3968 W2,7 0.4713 Wo,7 −0.8465 b7 −5.1520
W1,8 −18.7391 W2,8 0.6081 Wo,8 −0.8844 b8 −6.6339
W1,9 −3.9745 W2,9 0.9659 Wo,9 0.2007 b9 −4.1959
W1,10 3.7267 W2,10 −1.6611 Wo,10 −0.1511 b10 3.7865

bo1 0.1713

Table 9. FSEV SOC soft sensor performance.

Dataset Partitions MSE R-sq

Training 8.28 × 10−8 0.9996
Validation 8.30 × 10−8 0.9996

Testing 8.34 × 10−8 0.9996

Overall - 0.9996
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The y label of the test regression plot exhibits the following relation between derived
and soft-sensor-predicted SOC.

Output (predicted SOC) = Target (derived SOC) + 6.8× 10−8 (17)
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Figure 7. Regression plots of FSEV SOC soft sensor.
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The SOC of the FSEV considered in the current study was also modelled using linear
and nonlinear regression as follows: Regression–Linear

SOC = 0.9724− 0.0003157 ∗ t + 1.911× 10−6 ∗ I (18)

Regression—Nonlinear

SOC = 0.9721− 0.0002997 ∗ t + 2.342× 10−5 ∗ I − 1.191× 10−7 ∗ t2

−1.225× 10−7 ∗ t ∗ I − 2.432× 10−7 ∗ I2
(19)

The FSEV SOC was also modelled using parametric structures generally considered
for the system identification of control systems.

ARX 441 A(z)y(t) = B(z)u(t) + e(t)

A(z) = 1− 0.3499z−1 − 0.1942z−2 − 0.2977z−3 − 0.1582z−4

B(z) = −1.964× 10−7z−1 − 6.007× 10−8z−2 − 6.836× 10−8z−3 + 4.473× 10−9z−4

ARMAX 2221 A(z)y(t) = B(z)u(t) + C(z)e(t)

A(z) = 1− 1.647z−1 + 0.6465z−2

B(z) = −1.663× 10−7z−1 + 1.162× 10−7z−2

C(z) = 1− 1.42z−1 + 0.4327z−2

BJ 22221 y(t) = [B(z)/F(z)]u(t) + [C(z)/D(z)]e(t)

B(z) = −2.316× 10−7z−1 − 9.932× 10−9z−2

C(z) = 1− 0.3207z−1 − 0.4296z−2

D(z) = 1− 0.5763z−1 − 0.402z−2

F(z) = 1− 0.2971z−1 − 0.7029z−2

OE 221 y(t) = [B(z)/F(z)]u(t) + e(t)

B(z) = −1.886× 10−7z−1 + 8.593× 10−8z−2

F(z) = 1− 1.276z−1 + 0.2759z−2

Figure 12 shows the composite plot of R-squared (regression) and FIT% (system
identification) models explored in the current study. The ANN-based soft sensor attained
the highest accuracy among all models. However, the parametric models scored lower
mean squared errors as compared to ANN and regression models (Figure 13). All models
attained comparable performance with regard to SOC estimation. However, ANN is
capable of handling unseen data better than other structures are [56]. Therefore, the
ANN-based soft sensor is expected to exhibit higher robustness in real-time applications
involving system variations and dynamic operating conditions. The ANN modelling
procedure incorporates the partitioning of data into training, validation, and testing sets,
ensuring the reliable predictability of the final model. Other modelling techniques such as
regression and system identification do not provide this advantage, making them inferior
to ANN with regard to soft-sensor applications.
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Figure 12. SOC model prediction accuracy: R squared values (linear regression, nonlinear regression,
ANN soft sensor) and FIT% (ARX, ARMAX, OE, BJ).

Figure 13. SOC models mean squared errors (MSE).

3.2. State of Energy Soft Sensor

Table 10 shows the input weights, output weights, and biases optimised for the two-
layer feed-forward FSEV SOE soft sensor. Table 11 depicts higher MSE of the training
(MSE 7.426), validation (MSE 7.4900) and testing (MSE 7.4774) SOE datasets as compared
to those of the SOC dataset partitions (Table 9). Nevertheless, the SOE soft sensor attained
perfect R squared values of 0.9996 for all datasets. Figure 14 shows the regression plots
for the SOE testing, training, and validation datasets. SOE soft-sensor prediction was
determined to be correlated with the derived SOE values as follows.

Output (predicted SOE) = Target (derived SOE) + 4× 10−4 (20)
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Table 10. Input and output weights and biases for the two-layer feed-forward FSEV SOE soft sensor.

Weight Value Weight Value Weight Value Bias Value

W1,1 6.8392 W2,1 −0.0811 Wo,1 −0.1686 b1 −5.2122
W1,2 1.5481 W2,2 1.9788 Wo,2 −0.0767 b2 −1.6627
W1,3 −2.7665 W2,3 2.5017 Wo,3 0.0277 b3 2.2216
W1,4 2.6111 W2,4 −0.0231 Wo,4 −0.3693 b4 −0.6678
W1,5 1.1701 W2,5 9.4484 Wo,5 0.0191 b5 2.1594
W1,6 −2.6643 W2,6 −2.7645 Wo,6 0.0396 b6 −0.0218
W1,7 −23.6749 W2,7 0.7517 Wo,7 0.1327 b7 −8.4033
W1,8 −1.0208 W2,8 7.0473 Wo,8 0.0214 b8 7.0193
W1,9 8.2776 W2,9 8.9437 Wo,9 −0.0232 b9 6.5266
W1,10 3.856 W2,10 −0.076 Wo,10 −-0.2172 b10 2.0931

bo1 −0.0677

Table 11. FSEV SOE soft sensor performance.

Dataset Partitions MSE R-sq

Training 7.4276 0.9996
Validation 7.4900 0.9996

Testing 7.4774 0.9996

Overall - 0.9996
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Figure 14. Regression plots of FSEV SOE soft sensor.
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Figure 15 shows the plots of derived and predicted SOE outputs for one lap time
(118 s) as per the FSEV drive cycle. It is evident that the predicted SOE plot closely matches
the derived SOE curve. The figure shows that the SOE dropped from 97% to approximately
93.8% during one lap time period. The final SOE was slightly better than the SOC (93.5%)
at 118 s. Figure 16 shows the error histogram for the SOE soft sensor. The maximal number
of testing error instances (around 2500) were generated at the error value of 3.88 × 10−5.
More than 2000 testing error instances were detected at the −6.5 × 10−6 error bin. Other
major instances numbered approximately 2000, 1900, 1800, and 1700 corresponding to error
values of 1.43 × 10−4, 2.47 × 10−4, 1.7 × 10−4 and 2.7 × 10−4, respectively. The remaining
testing error instances measured approximately 1500 or lesser for bins corresponding to
3.51 × 10−4, 4.55 × 10−4, 3.8 × 10−4, and 4.8 × 10−4. Thus, the majority of testing error
instances were found at very low values of deviations, confirming the high prediction
accuracy of the developed SOE soft sensor. Figure 17 shows the training state indicators
for the SOE datasets. The gradient settled at a value of 9.574 × 10−8 at epoch 32, triggering
the stopping criterion of the training algorithm. The mu finished at 1 × 10−10, whereas
there were zero validation fails till the epoch 32. Figure 18 indicates that the best validation
performance for the FSEV SOE soft sensor was achieved at 7.4901 × 10−8 corresponding to
epoch 32. The validation performance of the SOC soft sensor (8.30 × 10−8) was superior
than that of its SOE counterpart. As discussed in the case of SOC modelling, the FSEV SOE
was also modelled using regression and system identification methods for performance
comparisons with the proposed ANN-based soft sensor: Regression–Linear

SOE = 0.9722− 0.0002885 ∗ t + 1.258× 10−6 ∗ I (21)

Regression—Nonlinear

SOE = 0.9718− 0.0002669 ∗ t + 2.022× 10−5 ∗ I − 1.695× 10−7 ∗ t2

−1.005× 10−7 ∗ t ∗ I − 2.25× 10−7 ∗ I2
(22)

ARX 441 A(z)y(t) = B(z)u(t) + e(t)

A(z) = 1− 0.3732z−1 − 0.198z−2 − 0.3342z−3 − 0.09464z−4

B(z) = −2.078× 10−7z−1 − 2.821× 10−8z−2 − 4.796× 10−8z−3 + 3.061× 10−9z−4

ARMAX 2221 A(z)y(t) = B(z)u(t) + C(z)e(t)

A(z) = 1− 0.3427z−1 − 0.6573z−2

B(z) = −2.076× 10−7z−1 − 8.8× 10−9z−2

C(z) = 1 + 0.06146z−1 − 0.469z−2

BJ 22221 y(t) = [B(z)/F(z)]u(t) + [C(z)/D(z)]e(t)

B(z) = −2.236× 10−7z−1 + 3.515× 10−8z−2

C(z) = 1− 0.3365z−1 − 0.2003z−2

D(z) = 1− 0.7011z−1 − 0.2989z−2

F(z) = 1− 0.5538z−1 − 0.4461z−2

OE 221 y(t) = [B(z)/F(z)]u(t) + e(t)

B(z) = −1.591× 10−7z−1 + 1.517× 10−7z−2

F(z) = 1− 1.939z−1 + 0.9392z−2
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Figure 15. Derived versus soft sensor outputs of FSEV SOE.
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Figure 16. Error histogram of FSEV SOE soft sensor.
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Figure 18. Validation performance of FSEV SOE soft sensor.

Figures 19 and 20 depict the composite plots of R-squared/FIT% and mean squared
errors of the explored models respectively. The R-squared metric of ANN was once
again superior to that of all other model structures. However, its mean squared error is
significantly higher at 7.4276 and was not included in Figure 20 to allow for the better
visual comparison of the MSE of the remaining models. Figure 20 shows that system
identification-based parametric models achieve lower mean squared errors than that of
their regression counterparts.

Figure 19. SOE model prediction accuracy: R squared values (linear regression, nonlinear regression,
ANN soft sensor) and FIT% (ARX, ARMAX, OE, BJ).
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Figure 20. SOE models mean squared errors (MSE).

3.3. Power-Loss Soft Sensor

Table 12 shows the final input weights, output weights, and biases obtained for the
two-layer feed-forward FSEV PL soft sensor design. Table 13 shows the details of the
R-squared (0.9999) and MSE values for the training (MSE 5.74 × 10−3), validation (MSE
5.76 × 10−3), and testing (5.55 × 10−3) sets of the FSEV PL data. The FSEV PL soft sensor
attained higher R-squared metrics over the SOC as well as the SOE soft sensors. Its MSE
values fared better than those of the SOE neural network but poorer in comparison to the
SOC soft sensor. Figure 21 shows the PL soft-sensor regression plots under the various
dataset partitions. The y label of the test regression plot indicates the following relation
between output (predicted) and target (derived) PL values.

Output (predicted PL) = Target (derived PL) + 4× 10−4 (23)

Table 12. Input and output weights and biases for two-layer feed-forward FSEV PL soft sensor.

Weight Value Weight Value Weight Value Bias Value

W1,1 15.2388 W2,1 3.0079 Wo,1 −0.0034 b1 −12.3583
W1,2 −0.6052 W2,2 1.0072 Wo,2 −0.0947 b2 1.3888
W1,3 2.1241 W2,3 4.8293 Wo,3 −0.0131 b3 −3.1843
W1,4 0.7149 W2,4 −1.4651 Wo,4 −6.1720 b4 3.5928
W1,5 0.0627 W2,5 −0.935 Wo,5 −1.7267 b5 0.7731
W1,6 −7.2401 W2,6 −1.1123 Wo,6 −0.0037 b6 0.0887
W1,7 −24.7311 W2,7 −11.2042 Wo,7 −0.0027 b7 −13.0898
W1,8 4.5421 W2,8 −0.9068 Wo,8 1.2184 b8 2.7065
W1,9 4.5675 W2,9 −0.9336 Wo,9 −1.1994 b9 2.7071
W1,10 0.2263 W2,10 1.8252 Wo,10 −0.3606 b10 2.2972

bo1 7.0070

Table 13. FSEV PL soft sensor performance.

Dataset Partitions MSE R-sq

Training 5.74 × 10−3 0.9999
Validation 5.76 × 10−3 0.9999

Testing 5.55 × 10−3 0.9999

Overall - 0.9999
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Figure 21. Regression plot of FSEV PL soft sensor.

Figure 22 shows the extremely nonlinear behaviour of the PL (watts) spikes experi-
enced by the FSEV during one lap of the designated track. This figure depicts the dynamic
effects of charging and discharging cycles of the FSEV battery on PL characteristics. In spite
of the depicted power fluctuations, the proposed neural-network-based PL soft sensor can
accurately follow the actual output throughout the lap. Figure 23 shows the error histogram
of the data predicted by the PL soft sensor. It depicts the maximal number of testing data
instances (around 10,000) at the error bin of −0.01007 followed by comparatively lower
instances at 0.03951 (around 4000) and −0.05965 (approximately 2500) bins. The remaining
error bins (0.08909, 0.1387, −0.1092 and others) contained lesser instances. The error his-
togram shows the concentration of a majority of testing error instances at low magnitudes
contributing towards the almost perfect predictability of the proposed FSEV PL soft-sensor
design. Figure 24 presents the training state indicators for the PL soft-sensor generation. In
this case, the training algorithm is terminated at epoch 211 because of reaching the maximal
number (6) of validation fails permissible (Table 6). The gradient and mu at epoch 211 were
0.0034063 and 0.0001, respectively. Figure 25 shows that the best validation performance of
the proposed PL soft sensor was recorded at 0.00057628, attained at epoch 205. This value
was comparatively higher than the best validation performance metrics of the SOC and
SOE soft sensors.
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Figure 22. Derived versus soft-sensor outputs of FSEV PL.
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Figure 23. Error histogram of FSEV PL soft sensor.
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Figure 24. Training states of FSEV PL soft sensor.
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Figure 25. Validation performance of FSEV PL soft sensor.

Below are the regression and parametric model structures explored for the FSEV PL
considered in the current work: Regression—Linear

PL = 2.074− 0.02694 ∗ t + 0.3897 ∗ I (24)

Regression—Nonlinear

PL = −0.04033− 0.006566 ∗ t + 0.05491 ∗ I − 8.419× 10−5 ∗ t2 − 0.0009587 ∗ t ∗ I + 0.006543 ∗ I2 (25)

ARX 441 A(z)y(t) = B(z)u(t) + e(t)

A(z) = 1− 1.345z−1 + 0.2108z−2 + 0.07419z−3 + 0.06137z−4

B(z) = −0.03105z−1 + 0.02019z−2 + 0.009579z−3 + 0.0006876z−4

ARMAX 2221 A(z)y(t) = B(z)u(t) + C(z)e(t)

A(z) = 1− 1.818z−1 + 0.8182z−2

B(z) = −0.02764z−1 + 0.02738z−2

C(z) = 1− 0.4853z−1 − 0.03206z−2

BJ 22221 y(t) = [B(z)/F(z)]u(t) + [C(z)/D(z)]e(t)

B(z) = −0.03171z−1 + 0.03051z−2

C(z) = 1− 0.4834z−1 − 0.04278z−2

D(z) = 1− 1.823z−1 + 0.823z−2

F(z) = 1− 1.718z−1 + 0.7183z−2

OE 221 y(t) = [B(z)/F(z)]u(t) + e(t)

B(z) = 0.3303z−1 − 0.3212z−2

F(z) = 1− 0.735z−1 − 0.2457z−2

Figures 26 and 27 show the R-squared/FIT% and mean squared errors of the FSEV PL
models. The ANN and nonlinear regression PL models attained near perfect prediction
accuracy. Linear regression and OE models achieved comparatively worse estimation
performance. The mean squared error of the linear regression model was 47.7908 and is
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excluded from Figure 27 to allow for visual comparisons among the MSEs of the remaining
models.

Figure 26. PL model prediction accuracy: R squared values (linear regression, non linear regression,
ANN soft sensor) and FIT% (ARX, ARMAX, OE, BJ).

Figure 27. PL models mean squared errors (MSE).

4. Conclusions

In the current work, two-layer feed-forward neural networks were employed to
develop soft sensors for estimations of SOC, SOE, and PL in an FSEV. The FSEV battery-
pack system was first designed on the basis of the formula student competition guidelines.
It included the construction of an FSEV powertrain model in MATLAB Simulink based
on the designed vehicle and track parameters. The required input current profile for a
single cell was obtained from the powertrain model and was utilised in conjunction with
the cell parameters to derive the total PL over the circuit components. The total PL was
used to yield the operating temperature and capacity; capacity was utilised to derive the
SOC as per the current profile required by the powertrain model. Similarly, the SOE was
determined using the input current profile and the terminal voltage (computed on the basis
of the OCV). Lastly, the input current profile and derived SOC/SOE/PL datasets were
loaded into separate two-layer feed-forward artificial neural-network-based soft-sensor
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designs. All developed soft sensors were tested for MSE and R-squared metrics of the
dataset partitions; equations relating the derived and predicted outputs; error histograms of
the training, validation and testing datasets; training state indicators such as gradient, mu
and validation fails; validation performance curves over successive epochs and predicted
versus derived plots over one lap time. Moreover, the performance of the proposed soft
sensors was compared to predictions obtained by linear or nonlinear regression and the
parametric models used in the system identification of complex systems. Below are the
performance highlights of the proposed soft sensors.

1. Testing dataset accuracy of the proposed FSEV SOC, SOE, PL soft sensors was 99.96%,
99.96%, and 99.99%, respectively.

2. The MSEs of testing dataset partitions for the SOC, SOE, PL soft sensors were 8.34 × 10−8,
7.4774 and 5.55 × 10−3, respectively.

3. The R-squared prediction metrics of the proposed ANN-based soft sensors were
superior to the R-squared values of the linear or nonlinear regression models and
FIT% of the system identification-based parametric models.

4. The mean squared errors of the parametric model structures were lower than those
of the ANN and linear or nonlinear regression models (except for the OE 221 PL
parametric model).

5. The best validation performance (MSE) for the SOC, SOE, PL soft sensors was
8.3017 × 10−8 at epoch 25, 7.4901 × 10−8 at epoch 32, and 5.7628 × 10−3 at epoch 205,
respectively.

6. The SOC and SOE dropped from 97% to 93.5% and 97% to 93.8%, respectively, during
the FSEV running time of 118 s (one lap time).

Thus, two-layer feed-forward neural-network-based soft sensors can be effectively
utilised to monitor and predict the SOC, SOE, and PL profile of an FSEV. The future
scope of this work includes the modelling and estimation of other EV parameters such as
regenerative power.

Author Contributions: Provided the EV cell data and reviewed the manuscript, S.P., R.F., C.S., M.F.
and M.-K.T.; planned the study and wrote the manuscript, R.S.; worked on ANN based soft sensor
design, P.S.; worked on Simulink modelling and battery pack design, K.P., S.S., V.N. and V.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data available for this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tran, M.K.; Akinsanya, M.; Panchal, S.; Fraser, R.; Fowler, M. Design of a Hybrid Electric Vehicle Powertrain for Performance

Optimization Considering Various Powertrain Components and Configurations. Vehicles 2021, 3, 20–32. [CrossRef]
2. Pappalardo, C.; Lombardi, N.; Guida, D. A model-based system engineering approach for the virtual prototyping of an electric

vehicle of class l7. Eng. Lett. 2020, 28, 215–234.
3. Vita, V.; Koumides, P. Electric vehicles and distribution networks: Analysis on vehicle to grid and renewable energy sources

integration. In Proceedings of the 2019 11th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 11–14 September
2019; pp. 1–4.

4. Sen, C.; Kar, N.C. Battery pack modeling for the analysis of battery management system of a hybrid electric vehicle. In
Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009; pp. 207–212.
[CrossRef]

5. Jaguemont, J.; Boulon, L.; Dubé, Y. Characterization and Modeling of a Hybrid-Electric-Vehicle Lithium-Ion Battery Pack at Low
Temperatures. IEEE Trans. Veh. Technol. 2016, 65, 1–14. [CrossRef]

6. Cui, W.H.; Wang, J.S.; Chen, Y.Y. Equivalent circuit model of lead-acid battery in energy storage power station and its state-of-
charge estimation based on extended kalman filtering method. Eng. Lett. 2018, 26, 504–517.

http://doi.org/10.3390/vehicles3010002
http://dx.doi.org/10.1109/VPPC.2009.5289848
http://dx.doi.org/10.1109/TVT.2015.2391053


Appl. Syst. Innov. 2021, 4, 78 26 of 27

7. Li, J.; Mazzola, M.S. Accurate battery pack modeling for automotive applications. J. Power Source 2013, 237, 215–228. [CrossRef]
8. Liu, C.; Liu, W.; Wang, L.; Hu, G.; Ma, L.; Ren, B. A new method of modeling and state of charge estimation of the battery.

J. Power Sources 2016, 320, 1–12. [CrossRef]
9. Ting, T.; Man, K.; Lei, C.U.; Lu, C. State-of-charge for battery management system via Kalman filter. Eng. Lett. 2014, 22, 75–82.
10. Shah, P.; Sekhar, R. Closed Loop System Identification of a DC Motor using Fractional Order Model. In Proceedings of the 2019

International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE), Bali, Indonesia, 4–6 December 2019;
pp. 69–74.

11. Sekhar, R.; Singh, T.; Shah, P. Complex Order PIα+jβDγ+jθ Design for Surface Roughness Control in Machining CNT Al-Mg
Hybrid Composites. Adv. Sci. Technol. Eng. Syst. J. (ASTESJ) 2020, 5, 299–306. [CrossRef]

12. Sekhar, R.; Singh, T. Determination of Johnson Cook Parameters in Turning of Micro and Nano Reinforced Aluminum Composites
using Trust Region Reflective Algorithm. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1712–1716. [CrossRef]

13. Sekhar, R.; Shah, P. Predictive Modeling of a Flexible Robotic Arm using Cohort Intelligence Socio-Inspired Optimization. In
Proceedings of the 2020 1st International Conference on Information Technology, Advanced Mechanical and Electrical Engineering
(ICITAMEE), Yogyakarta, Indonesia, 13–14 October 2020; pp. 193–198. [CrossRef]

14. Sekhar, R.; Singh, T.; Shah, P. System identification of tool chip interface friction while machining CNT-Mg-Al composites. AIP
Conf. Proc. 2021, 2317, 1–9. [CrossRef]

15. Sekhar, R.; Singh, T.; Shah, P. ARX/ARMAX Modeling and Fractional Order Control of Surface Roughness in Turning Nano-
Composites. In Proceedings of the 2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE),
Bali, Indonesia, 4–6 December 2019; pp. 97–102. [CrossRef]

16. Sekhar, R.; Singh, T.; Shah, P. Micro and Nano Particle Composite Machining: Fractional Order Control of Surface Roughness. In
Proceedings of the Third International Conference on Powder, Granule and Bulk Solids: Innovations and Applications PGBSIA
2020, Patiala, India, 26–28 February 2020; pp. 35–42.

17. Shah, P.; Sekhar, R. Predictive Modeling and Control of Clamp Load Loss in Bolted Joints Based on Fractional Calculus. In
Advances in Computing and Network Communications; Thampi, S.M., Gelenbe, E., Atiquzzaman, M., Chaudhary, V., Li, K.C., Eds.;
Springer: Singapore, 2021; pp. 15–32.

18. Shah, P.; Sekhar, R.; Singh, P. Predictive Modeling of A Bio-Fuelled Diesel Engine Using System Identification Approach. In
Proceedings of the International Conference on Renewable Energy: Generation and Applications (ICREGA), Al Ain, United Arab
Emirates, 2–4 February 2021; pp. 95–100. [CrossRef]

19. Sekhar, R.; Singh, T.; Shah, P. Machine learning based predictive modeling and control of surface roughness generation while
machining micro boron carbide and carbon nanotube particle reinforced Al-Mg matrix composites. Part. Sci. Technol. 2021, 1–18.
[CrossRef]

20. Jatti, V.S.; Sekhar, R.; Shah, P. Machine Learning Based Predictive Modeling of Ball Nose End Milling using Exogeneous
Autoregressive Moving Average Approach. In Proceedings of the 2021 IEEE 12th International Conference on Mechanical and
Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 13–15 May 2021; pp. 68–72.

21. Shah, P.; Sekhar, R.; Kulkarni, A.J.; Siarry, P. Metaheuristic Algorithms in Industry 4.0; CRC Press: Boca Raton, FL, USA, 2021.
22. Li, C.; Xiao, F.; Fan, Y. An Approach to State of Charge Estimation of Lithium-Ion Batteries Based on Recurrent Neural Networks

with Gated Recurrent Unit. Energies 2019, 12, 1592. [CrossRef]
23. Castano, S.; Gauchia, L.; Voncila, E.; Sanz, J. Dynamical modeling procedure of a Li-ion battery pack suitable for real-time

applications. Energy Convers. Manag. 2015, 92, 396–405. [CrossRef]
24. Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Dorrell, D.G. Fractional-order modeling and State-of-Charge estimation for ultracapacitors.

J. Power Sources 2016, 314, 28–34. [CrossRef]
25. Xiao, R.; Shen, J.; Li, X.; Yan, W.; Pan, E.; Chen, Z. Comparisons of Modeling and State of Charge Estimation for Lithium-Ion

Battery Based on Fractional Order and Integral Order Methods. Energies 2016, 9, 184. [CrossRef]
26. Meng, J.; Luo, G.; Ricco, M.; Swierczynski, M.; Stroe, D.I.; Teodorescu, R. Overview of Lithium-Ion Battery Modeling Methods for

State-of-Charge Estimation in Electrical Vehicles. Appl. Sci. 2018, 8, 659. [CrossRef]
27. He, W.; Williard, N.; Chen, C.; Pecht, M. State of charge estimation for Li-ion batteries using neural network modeling and

unscented Kalman filter-based error cancellation. Int. J. Electr. Power Energy Syst. 2014, 62, 783–791. [CrossRef]
28. Charkhgard, M.; Farrokhi, M. State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF. IEEE Trans.

Ind. Electron. 2010, 57, 4178–4187. [CrossRef]
29. Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Emadi, A. State-of-charge estimation of Li-ion batteries using deep neural networks: A

machine learning approach. J. Power Source 2018, 400, 242–255. [CrossRef]
30. Li, I.; Wang, W.; Su, S.; Lee, Y. A Merged Fuzzy Neural Network and Its Applications in Battery State-of-Charge Estimation. IEEE

Trans. Energy Convers. 2007, 22, 697–708. [CrossRef]
31. Weigert, T.; Tian, Q.; Lian, K. State-of-charge prediction of batteries and battery–supercapacitor hybrids using artificial neural

networks. J. Power Source 2011, 196, 4061–4066. [CrossRef]
32. Offer, G.J.; Yufit, V.; Howey, D.A.; Wu, B.; Brandon, N.P. Module design and fault diagnosis in electric vehicle batteries. J. Power

Source 2012, 206, 383–392. [CrossRef]
33. Carraro, E.; Degano, M.; Morandin, M.; Bianchi, N. Formula SAE electric competition: Electrical motor design. In Proceedings of

the 2013 International Electric Machines Drives Conference, Chicago, IL, USA, 12–15 May 2013; pp. 1142–1148. [CrossRef]

http://dx.doi.org/10.1016/j.jpowsour.2013.03.009
http://dx.doi.org/10.1016/j.jpowsour.2016.03.112
http://dx.doi.org/10.25046/aj050636
http://dx.doi.org/10.35940/ijitee.L3183.1081219
http://dx.doi.org/10.1109/ICITAMEE50454.2020.9398382
http://dx.doi.org/10.1063/5.0036176
http://dx.doi.org/10.1109/MoRSE48060.2019.8998654
http://dx.doi.org/10.1109/ICREGA50506.2021.9388305
http://dx.doi.org/10.1080/02726351.2021.1933282
http://dx.doi.org/10.3390/en12091592
http://dx.doi.org/10.1016/j.enconman.2014.12.076
http://dx.doi.org/10.1016/j.jpowsour.2016.01.066
http://dx.doi.org/10.3390/en9030184
http://dx.doi.org/10.3390/app8050659
http://dx.doi.org/10.1016/j.ijepes.2014.04.059
http://dx.doi.org/10.1109/TIE.2010.2043035
http://dx.doi.org/10.1016/j.jpowsour.2018.06.104
http://dx.doi.org/10.1109/TEC.2007.895457
http://dx.doi.org/10.1016/j.jpowsour.2010.10.075
http://dx.doi.org/10.1016/j.jpowsour.2012.01.087
http://dx.doi.org/10.1109/IEMDC.2013.6556303


Appl. Syst. Innov. 2021, 4, 78 27 of 27

34. Munaro, M.; Bianchi, N.; Meneghetti, G. The Formula SAE Electric Vehicle Competition: A High-Torque Density Permanent
Magnet Motor. IEEE Ind. Appl. Mag. 2020, 26, 76–86. [CrossRef]

35. Zhang, Y.; Xiong, R.; He, H.; Shen, W. Lithium-Ion Battery Pack State of Charge and State of Energy Estimation Algorithms Using
a Hardware-in-the-Loop Validation. IEEE Trans. Power Electron. 2017, 32, 4421–4431. [CrossRef]

36. Zhang, W.; Shi, W.; Ma, Z. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for
lithium-ion battery. J. Power Source 2015, 289, 50–62. [CrossRef]

37. He, H.; Zhang, Y.; Xiong, R.; Wang, C. A novel Gaussian model based battery state estimation approach: State-of-Energy. Appl.
Energy 2015, 151, 41–48. [CrossRef]

38. Zheng, L.; Zhu, J.; Wang, G.; He, T.; Wei, Y. Novel methods for estimating lithium-ion battery state of energy and maximum
available energy. Appl. Energy 2016, 178, 1–8. [CrossRef]

39. Li, K.; Wei, F.; Tseng, K.J.; Soong, B.H. A Practical Lithium-Ion Battery Model for State of Energy and Voltage Responses Prediction
Incorporating Temperature and Ageing Effects. IEEE Trans. Ind. Electron. 2018, 65, 6696–6708. [CrossRef]

40. Lin, C.; Mu, H.; Xiong, R.; Cao, J. Multi-model probabilities based state fusion estimation method of lithium-ion battery for
electric vehicles: State-of-energy. Appl. Energy 2017, 194, 560–568. [CrossRef]

41. Zhang, X.; Wang, Y.; Wu, J.; Chen, Z. A novel method for lithium-ion battery state of energy and state of power estimation based
on multi-time-scale filter. Appl. Energy 2018, 216, 442–451. [CrossRef]

42. Li, X.; Pan, K.; Fan, G.; Lu, R.; Zhu, C.; Rizzoni, G.; Canova, M. A physics-based fractional order model and state of energy
estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery. J. Power
Source 2017, 367, 202–213. [CrossRef]

43. Apostolaki-Iosifidou, E.; Codani, P.; Kempton, W. Measurement of power loss during electric vehicle charging and discharging.
Energy 2017, 127, 730–742. [CrossRef]

44. Category Archives: Rules. Available online: https://www.formulabharat.com/category/rules/ (accessed on 6 August 2021).
45. Technical Data and Manual for EMRAX Motors/Generators. Available online: https://emrax.com/wp-content/uploads/2017/1

0/user_manual_for_emrax_motors.pdf (accessed on 6 August 2021).
46. Battery Pack Design Validation and Assembly Guide A123 Systems AMP20M1HD-A Nanophosphate Cell. Available online:

https://www.buya123products.com/uploads/vipcase/b24d4f5b63934c59d43e93b3bb4db60a.pdf (accessed on 6 August 2021).
47. Panchal, S.; Mcgrory, J.; Kong, J.; Fraser, R.; Fowler, M.; Dincer, I.; Agelin-Chaab, M. Cycling degradation testing and analysis of a

LiFePO4 battery at actual conditions. Int. J. Energy Res. 2017, 41, 2565–2575. [CrossRef]
48. Saidani, F.; Hutter, F.X.; Scurtu, R.G.; Braunwarth, W.; Burghartz, J.N. Lithium-ion battery models: A comparative study and a

model-based powerline communication. Adv. Radio Sci. 2017, 15, 83–91. [CrossRef]
49. Weber, T.; Sossenheimer, J.; Schäfer, S.; Ott, M.; Walther, J.; Abele, E. Machine Learning based System Identification Tool for

data-based Energy and Resource Modeling and Simulation. In Proceedings of the Procedia CIRP, 26th CIRP Conference on Life
Cycle Engineering (LCE) Purdue University, West Lafayette, IN, USA, 7–9 May 2019. [CrossRef]

50. Nguyen-Truong, H.T.; Le, H.M. An implementation of the Levenberg–Marquardt algorithm for simultaneous-energy-gradient
fitting using two-layer feed-forward neural networks. Chem. Phys. Lett. 2015, 629, 40–45. [CrossRef]

51. El-Banbi, A.; Alzahabi, A.; El-Maraghi, A. Artificial Neural Network Models for PVT Properties; Gulf Professional Publishing: Oxford,
UK, 2018; pp. 225–247. [CrossRef]

52. Jenkal, S.; Kourchi, M.; Rachdy, A.; Oussalem, O.; Ajaamoum, M.; Oubella, M. Modeling a photovoltaic emulator using four
methods and buck-boost converter. Eng. Lett. 2021, 29, 408–415.

53. Dahunsi, O.; Pedro, J. Neural network-based identification and approximate predictive control of a servo-hydraulic vehicle
suspension system. Eng. Lett. 2010, 18, 4.

54. Quesada, A. 5 Algorithms to Train a Neural Network. Available online: https://www.neuraldesigner.com/blog/5_algorithms_
to_train_a_neural_network#Levenberg-Marquardt (accessed on 15 March 2021).

55. Mathworks, L. Levenberg-Marquardt Backpropagation. Available online: https://in.mathworks.com/help/deeplearning/ref/
trainlm.html (accessed on 16 March 2021).

56. Paolucci, R. Linear Regression v.s. Neural Networks. 2020. Available online: https://towardsdatascience.com/linear-regression-
v-s-neural-networks-cd03b29386d4 (accessed on 16 March 2021).

http://dx.doi.org/10.1109/MIAS.2020.2982730
http://dx.doi.org/10.1109/TPEL.2016.2603229
http://dx.doi.org/10.1016/j.jpowsour.2015.04.148
http://dx.doi.org/10.1016/j.apenergy.2015.04.062
http://dx.doi.org/10.1016/j.apenergy.2016.06.031
http://dx.doi.org/10.1109/TIE.2017.2779411
http://dx.doi.org/10.1016/j.apenergy.2016.05.065
http://dx.doi.org/10.1016/j.apenergy.2018.02.117
http://dx.doi.org/10.1016/j.jpowsour.2017.09.048
http://dx.doi.org/10.1016/j.energy.2017.03.015
https://www.formulabharat.com/category/rules/
https://emrax.com/wp-content/uploads/2017/10/user_manual_for_emrax_motors.pdf
https://emrax.com/wp-content/uploads/2017/10/user_manual_for_emrax_motors.pdf
https://www.buya123products.com/uploads/vipcase/b24d4f5b63934c59d43e93b3bb4db60a.pdf
http://dx.doi.org/10.1002/er.3837
http://dx.doi.org/10.5194/ars-15-83-2017
http://dx.doi.org/10.1016/j.procir.2018.12.021
http://dx.doi.org/10.1016/j.cplett.2015.04.019
http://dx.doi.org/10.1016/B978-0-12-812572-4.00010-2
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network#Levenberg-Marquardt
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network#Levenberg-Marquardt
https://in.mathworks.com/help/deeplearning/ref/trainlm.html
https://in.mathworks.com/help/deeplearning/ref/trainlm.html
https://towardsdatascience.com/linear-regression-v-s-neural-networks-cd03b29386d4
https://towardsdatascience.com/linear-regression-v-s-neural-networks-cd03b29386d4

	Introduction
	Methodology
	FSEV Battery Pack Modelling
	Soft-Sensor Design

	Results and Discussion
	State of Charge Soft Sensor
	State of Energy Soft Sensor
	Power-Loss Soft Sensor

	Conclusions
	References

