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Abstract: Anomaly detection in the smart application domain can significantly improve the quality
of data processing, especially when the size of a dataset is too small. Internet of Things (IoT) enables
the development of numerous applications where sensor-data-aware anomalies can affect the decision
making of the underlying system. In this paper, we propose a scheme: IoTDixon, which works on
the Dixon’s Q test to identify point anomalies from a simulated normally distributed dataset. The
proposed technique involves Q statistics, Kolmogorov–Smirnov test, and partitioning of a given
dataset into a specific data packet. The proposed techniques use Q-test to detect point anomalies. We
find that value 76.37 is statistically significant where P = 0.012 < α = 0.05, thus rejecting the null
hypothesis for a test data packet. In other data packets, no such significance is observed; thus, no
outlier is statistically detected. The proposed approach of IoTDixon can help to improve small-scale
point anomaly detection for a small-size dataset as shown in the conducted experiments.

Keywords: IoT; anomaly detection; Dixon’s Q test; small-size data packets; Kolmogorov–Smirnov test

1. Introduction

IoT has brought enormous opportunities to allow the developments of a multitude of
smart applications, namely health monitoring, smart city, smart transportation, and smart
industry. Sensors are used in IoT-based ecosystems to generate data streams in regular
intervals to provide real-time monitoring support to the owner of the given IoT system [1].
Such sensors may sometimes become faulty or generate erroneous data which must be
detected at an early stage; otherwise, it can create serious troubles for decision making in
the following stage of the applications[2,3].

The problem becomes very difficult when the size of the dataset is too small. This can
happen due to an abrupt change of one of the data point values compared to the rest [4–6].
Thus, the detection of outliers in a small-size dataset is a trivial task. This situation may be
exaggerated when applied for an IoT-based system which is resource constrained in nature.

Performing high-end data analytics in a resource-limited IoT device is not always
feasible. With existing deep learning and machine learning algorithms, one can find outliers
from a dataset [7–9]. However, due to lack of hardware resources such as processor and
memory, an IoT device may face severe difficulty [10]. Further, depicting a point anomaly
from a very small-size dataset makes the whole process questionable [11,12].

In this paper, we propose the IoTDixon scheme to detect point anomalies from very
small-size dataset for the IoT-based environment. The IoTDixon uses both Dixon’s Q test
and Kolmogorov–Smirnov test statistics to help find the anomaly. We consider a small-size
dataset with 42 samples, which is assumed to be normally distributed. Such a dataset is
further subdivided into six equal data packets, each with seven samples. We then perform
the normality test of these data packets. Once this test is satisfied, the data packets are
fed to Dixon’s method for finding a point anomaly. Finally, we obtain an equal number of
anomalies as of the data packets which are further investigated against the P values. If the
P value is less than a given confidence level α, we infer it as statistically significant and
declare the point as an outlier.
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The key contributions of this work can be presented as follows:

• To propose IoTDixon scheme to detect point anomalies from small-size dataset;
• To integrate Dixon’s Q test as a key statistic for detection of outlier points from

small-size data packets;
• To integrate Kolmogorov–Smirnov test statistic as the normality checker.

Novelty of the work: Our work is the first ever study that uses Dixon’s Q test and
Kolmogorov–Smirnov test together to find small-size anomalies in IoT-based simulated
scenarios. The study provides a scheme to divide a small dataset into further smaller
data packets of constant size. We prefer to use the insertion sort to arrange the data
points in ascending order for each of the data packets due to its faster response time. The
presented IoTDixon algorithm has linear time complexity, thus making it appropriate for
IoT-based devices.

The rest of the paper is presented as follows: Section 2 presents the formulation and
derivation of Dixon’s Q test. Section 3 presents the IoTDixon methodology. Section 4
provides results. Section 5 concludes the paper.

2. Dixon’s Q Test

Dixon’s Q test can be used to detect an anomaly from a dataset as follows [13–15]:
We assume that a dataset contains n samples each denoted by xi. Such samples must be
arranged in ascending order as follows: x1 ≤ x2 ≤ x3 ≤ x4 · · · ≤ xn. We can define the
statistic as Equation (1).

rj,i−1 =
(xn − xn−j)

(xn − xi)
(1)

The j on r is denoted as the number of anomalies which the data analyst suspects at
the higher end of the given dataset. The i represents the number of anomalies that are
suspected to be deposited at the lower end of the dataset.

The r values define six ways to perform different analytics based on the cumula-
tive and density distribution functions, such as r10, r11, r12, r20, r21, r22 as shown below
Equations (2)–(7) for n ≤ 30 under the one-tail distribution. The r values are speci-
fied for following range of samples in the dataset r10 : 3 ≥ n ≤ 7, r11 : 8 ≥ n ≤ 10,
r21 : 11 ≥ n ≤ 13, r22 : 14 ≥ n ≤ 30. However, it is slightly changed for a two-sided
scenario as follows r10 : 3 ≥ n ≤ 10, r11 : 8 ≥ n ≤ 10, and r21 : 11 ≥ n ≤ 13.

r10 =
(x2 − x1)

(xn − x1)
OR

(xn − xn−1)

(xn − x1)
(2)

r11 =
(x2 − x1)

(xn−1 − x1)
OR

(xn − xn−1)

(xn − x2)
(3)

r12 =
(x2 − x1)

(xn−2 − x1)
OR

(xn − xn−1)

(xn − x3)
(4)

r20 =
(x3 − x1)

(xn − x1)
OR

(xn − xn−2)

(xn − x1)
(5)

r21 =
(x3 − x1)

(xn−1 − x1)
OR

(xn − xn−2)

(xn − x2)
(6)

r22 =
(x3 − x1)

(xn−2 − x1)
OR

(xn − xn−2)

(xn − x3)
(7)

2.1. Probability Density of r

The Dixon’s ratio r follows Equation (1). However, joint probability density for xi, xn,
and xn−j can be obtained from Equation (8). We can use a combinatorial normalization
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factor along with the density functions multiplied by the integration of possible values
over the three variables excluding three points which are being used in the calculation. We
can express the formulation based on the three observations such as i− 1, n− j− i− 1,
and j− 1 which are below xj and within the range from xi to xn−j and from xn−j to xn,
respectively. L and M are two variables, as shown in Equations (9) and (10).

P(xi, xn−j, xn) =
n!

(i− 1)!(n− j− i− 1)!(j− 1)!
∗ L ∗M (8)

where,

L = [
∫ xi

−∞
φ(t)dt]i−1[

∫ n−j

xi

φ(t)dt]n−j−i−1 (9)

and

M = [
∫ xn

xn−j

φ(t)dt]j−1φ(xi)φ(xn−j)φ(xn) (10)

We can use φ(t) = (2π)−
1
2 exp[− x2

2 ] as the density function of the given standard
normal distribution. Equation (1) is obtained when j = i = 1, and we normally use r
instead of t10 to avoid the ambiguity.

2.2. Jacobian Probability Density of r

The three variables xi, xn−j, and xn can be expressed as {x, v, r}, where vdenotes
the Jacobian transformation. Now, the variables can be rearranged as follows: x = xn,

v = xn − xi,a dn r =
(xn−xn−j)

v . Now, to find the probability density of r on the Jaco-
bian, we can integrate −∞ < x < ∞ and 0 ≤ v < ∞. Equation (11) shows the Jaco-
bian evolved probability distribution of r. L̂ and M̂ present the variables as given in
Equations (12) and (13), respectively.

P(r) =
n!

(i− 1)!(n− j− i− 1)!(j− 1)!
∗ L̂ ∗ M̂ (11)

where,

L̂ =
∫ ∞

−∞

∫ ∞

0
[
∫ x−v

−∞
φ(t)dt]i−1[

∫ x−rv

x−v
φ(t)dt]n−j−i−1 (12)

and

M̂ = [
∫ x

x−rv
φ(t)dt]j−1φ(x− v)φ(x− rv)φ(x)v dv dx (13)

2.2.1. Derivation of r10

We can derive all the r with various i and j. We can find r10 when j = i = 1 as shown
in Equation (14) and part calculations in Equations (15) and (16).

P(r10) =
n!

(n− 3)!
∗ L̂ ∗ M̂ (14)

where,

L̂ =
∫ ∞

−∞

∫ ∞

0
[
∫ x−rv

x−v
φ(t)dt]n−3 (15)

and

M̂ = φ(x− v)φ(x− rv)φ(x)v dv dx (16)
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2.2.2. Derivation of r11

We can find r11 when j = 1 and i = 2 as shown in Equation (17) and part calculations
in Equations (18) and (19)

P(r11) =
n!

(n− 4)!
∗ L̂ ∗ M̂ (17)

where,

L̂ =
∫ ∞

−∞

∫ ∞

0
[
∫ x−v

−∞
φ(t)dt][

∫ x−rv

x−v
φ(t)dt]n−4 (18)

and

M̂ = φ(x− v)φ(x− rv)φ(x)v dv dx (19)

2.2.3. Derivation of r12

We can find r12 when j = 1 and i = 3 as shown in Equation (20) and part calculations
in Equations (21) and (22).

P(r12) =
n!

2!(n− 5)!
∗ L̂ ∗ M̂ (20)

where,

L̂ =
∫ ∞

−∞

∫ ∞

0
[
∫ x−v

−∞
φ(t)dt]2[

∫ x−rv

x−v
φ(t)dt]n−5 (21)

and

M̂ = φ(x− v)φ(x− rv)φ(x)v dv dx (22)

2.2.4. Derivation of r20

We can find r20 when j = 2 and i = 1 as shown in Equation (23) and part calculations
in Equations (24) and (25).

P(r20) =
n!

(n− 4)!
∗ L̂ ∗ M̂ (23)

where,

L̂ =
∫ ∞

−∞

∫ ∞

0
[
∫ x−rv

x−v
φ(t)dt]n−4 (24)

and

M̂ = [
∫ x

x−rv
φ(t)dt]φ(x− v)φ(x− rv)φ(x)v dv dx (25)

2.2.5. Derivation of r21

We can find r21 when j = 2 and i = 2 as shown in Equation (26) and part calculations
in Equations (27) and (28).

P(r21) =
n!

(n− 5)!
∗ L̂ ∗ M̂ (26)

where,

L̂ =
∫ ∞

−∞

∫ ∞

0
[
∫ x−v

−∞
φ(t)dt][

∫ x−rv

x−v
φ(t)dt]n−5 (27)

and
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M̂ = [
∫ x

x−rv
φ(t)dt]φ(x− v)φ(x− rv)φ(x)v dv dx (28)

2.2.6. Derivation of r22

We can find r22 when j = 2 and i = 3 as shown in Equation (29) and part calculations
in Equations (30) and (31).

P(r22) =
n!

2!(n− 6)!
∗ L̂ ∗ M̂ (29)

where,

L̂ =
∫ ∞

−∞

∫ ∞

0
[
∫ x−v

−∞
φ(t)dt]2[

∫ x−rv

x−v
φ(t)dt]n−6 (30)

and

M̂ = [
∫ x

x−rv
φ(t)dt]φ(x− v)φ(x− rv)φ(x)v dv dx (31)

2.3. Cumulative Distribution of R

we can rewrite Equations (8)–(10) in terms of cumulative normal distribution Φ(x) as
shown in Equation (32)

P(r) =
n!

(i− 1)!(n− j− i− 1)!(j− 1)!
∗ L ∗M (32)

where,

L =
∫ ∞

−∞

∫ ∞

0
[Φ(x− v)]i−1 (33)

and

M = [Φ(x− rv)−Φ(x− v)]n−j−i−1[Φ(x)−Φ(x− rv)]j−1φ(x− v)φ(x− rv)φ(x)v dv dx (34)

The cumulative distribution function CDF(R) can be expressed as Equation (35),
where 0 ≤ r ≤ 1 and CDF(0) = 0 and CDF(1) = 1. With a given probability α, we can find
the roots as the critical values from Equation (36) with monotonic increment from 0 to 1.

CDF(R) =
∫ R

0
P(r)dr (35)

CDF(R) = (1− α) (36)

2.4. Probability Density of r

Equation (32) can be rewritten on three φ terms with x2, v2 as shown in Equation (37)
and part variables as shown in Equations (38) and (39). Herein, N represents the normal-
ization factor with constant term [2π]−

3
2 , and J(x, r, v) depicts the terms with Φ.

P(r) =
n!

(i− 1)!(n− j− 1− 1)!(j− 1)!
[2π]−

3
2

∫ ∞

−∞
e−

3x2
2

∫ ∞

0
e−

(1+r2)v2
2 ∗ C ∗ D (37)

P(r) = N
∫
−∞ ∞e−

3x2
2
∫ ∞

0 e−
(1+r2)v2

2 J(x, v, r)exv(1+r)v dv dx , where

C = [Φ(x− v)]i−1[Φ(x− rv)−Φ(x− v)]n−j−i−1[Φ(x)−Φ(x− rv)]j−1 (38)
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D = exv(1+r)v dv dx (39)

We can modify variable t2 = (1+r2)v2

2 and u2 = 3x2

2 to change the integration

into the Gauss–Hermite quadrants as shown in Equation (40), where x(u) = u
√

2
3 and

v(t, r) = t
√

2
(1+r2)

.

P(r) = N

√
2
3

√
2

(1 + r2)

∫ ∞

−∞
e−u2

∫ ∞

0
e−t2

J(x(u), v(t, r), r)e
2ut(1+r)√

3(1+r2) dt du (40)

Thus, the quadrature rules can be formulated as follows: Equations (41) and (42),
where wl , tl represent weights and abscissas of the nhh point belonging to half-range
Hermite quadrature.

∫ ∞

0
e−t2

f (t)dt ≈
nhh

∑
l=1

wl f (tl) (41)

∫ ∞

−∞
e−t2

g(u)du ≈
n f h

∑
k=1

wkg(uk) (42)

Now, the CDF(R) can be computed as Equation (43), where wm, ym refer to the Gauss–
Legendre weights and abscissas on the given range of [−1, 1] with y = 2r

R − 1 as the variable
transformation on the range [0, R] to [−1, 1].

CDF(R) ≈ R
2

ng l

∑
m=1

wmP(
Rym

2
) (43)

2.5. Range Test

The data analyst must use the Dixon’s Q test once on any dataset. The Q test is
performed by Equation (44). The gap denotes an absolute difference |x− y|, where x, y are
real numbers. The metric properties on such absolute difference should hold the following
inequalities, (i) |x− y| ≥ 0, (ii) |x − y| = 0 when x = y, (iii) |x − y| = |y − x|, and (iv)
|x− z| ≤ |x− y|+ |y− z|.

Q =
Gap

Range
(44)

The Q is then tested against the Qcritical , i.e., table-wise reference value based on a
given confidence interval and provided number of observations. A rejection is provided
when Q > Qcritical ; otherwise, an acceptance is made.

3. System Design

The IoTDixon flow chart is shown in Figure 1. The flow chart shows the process
behind the proposed methodology where a small test data stream can be fed for anomaly
detection. Initially, the small test dataset was divided into m data packets each with seven
samples. We then performed each of the data packets for a test of normal distribution by
using the Kolmogorov–Smirnov test. Upon notification as the normal distribution, the
respective data packet was then processed for the Dixon’s test. Finally, all the anomalies
from each of the data packets were collected by the data analysts for further investigations.
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Figure 1. IoTDixon flow chart.

3.1. IoTDixon Algorithm

We present the IoTDixon algorithm for detection of single anomaly from a packet
of samples taken from an small test data stream X = {x1, x2, x3, · · · , xn}. The IoTDixon
technique works as follows: We assume that IoT-based health sensor data are being
streamed on a regular interval to an edge device. We assume that small test data stream is
divided into m = d len(X)

η e number of packets, where η is a given as the amount of samples
in each data packet. We select the appropriate r statistic based on the sample size η. By
default, we use r10 as the Dixon statistic where a sample of data packet must lie within the
range of [3, 7]. However, one can change the range and r statistic according to the need to
adjust with the packet size. The partitioning task required O(m) that depends on the η. We
then perform the insertion sort on the jth generated data packet xη j. In this study, we select
η = 7; however, as mentioned earlier, it can be changed to other values, though keeping
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the minimum limit to three samples. We select insertion sort due to its faster response time
for small datasets typically less than 10. Thus, we expect the sorting time to be around
O(1), i.e., negligible. Then, we perform the normality checking procedure by using the
Kolmogorov–Smirnov test in O(η) time. Once the given data packet is statistically proven
to be normally distributed, then the data packet is forwarded for the two-sided Dixon’s
Q test. Finally, the outlier oη j from the sample data packet is returned. Thus, we can find
the maximum m number of outliers as the total number of data packets is m. It is the duty
of the data analyst to further investigate the obtained outliers to find the most effective
anomaly. The overall time complexity of the proposed algorithm can be obtained in a linear
time O(m + η). The IoTDixon Algorithm is shown in Algorithm 1.

Algorithm 1: IoTDixon Algorithm

1 Input: IoT-based small test data stream X where 1 ≤ i ≤ n and select appropriate
rj,i−1 statistic for Dixon’s Q test depending on sample packet size η

2 Output: Possible anomalies
3 Make packet xη j of each η amount of small test data samples

4 while (m=d len(X)
η e > 0) do

5 Perform insertion sort on the jth data packet xη j
6 Evaluate for normality by the Kolmogorov–Smirnov test where α = 0.05
7 if ((xη j)==Normally Distributed) then
8 Perform two-sided Dixon’s Q test on xη j
9 Return an outlier oη j from the sample data packet

3.2. Kolmogorov–Smirnov Algorithm

The Kolmogorov–Smirnov (KS) test is used to evaluate whether a random sample
selected from a dataset is drawn from a fixed normal distribution function F(x), i.e., one-
sample test [16,17]. It can also be used to evaluate whether two datasets belong to the
same fixed distribution, i.e., two-sample test. The KS test requires no a-priori knowledge
about the distribution of samples under consideration. In this study, we use a one-sample
KS test on the data packet xη j. We find D+

max =
√

η max{ t
η − F(xt)}, ∀t, 1 ≤ t ≤ η,

D−max =
√

η max{F(xt)− t−1
η }, ∀t, 1 ≤ t ≤ η, and Dmax = max{D+

max, D−max}, where D+
max

represents the maximum positive), D−max refers to the maximum negative, and Dmax denotes
the maximum absolute. The null hypothesis H0 is expressed as the data packet xη j follows
the normal distribution. The alternative hypothesis H1 is that the data do not follow the
normal distribution. The H0 can be rejected when the Dmax > Dcα at the confidence level
α = 0.05. This infers that the data packet xη j is not normally distributed. Otherwise, we
fail to reject the H0 and infer that xη j is normally distributed. The Kolmogorov–Smirnov
Algorithm is shown in Algorithm 2.

3.3. Dixon’s Q Algorithm

We present the Dixon’s Q algorithm where we provide the normally distributed small
test data packet xη j which is ranked or ordered. A potential outlier sample xt can be tested

as follows: Q = r10 = |(xt−xt+1)|
|(xmax−xmin)|

. If Q<Qcα, we fail to reject the null hypothesis H0, which
implies that the sample xt is not an outlier. Otherwise, we infer to accept the null hypothesis
H0, which implies that the sample xt is an outlier. In both cases, the null hypothesis H0
can be stated as follows: there is no significant difference between the suspected data
and the rest of xη j; thus, it is not an outlier. Dixon’s Q two–sided algorithm is shown in
Algorithm 3.
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Algorithm 2: Kolmogorov–Smirnov Algorithm

1 Input: IoT data packet xη j
2 Output: Kolmogorov–Smirnov estimate Dmax

3 D+
max =

√
η max{ t

η − F(xt)}, ∀t, 1 ≤ t ≤ η

4 D−max =
√

η max{F(xt)− t−1
η }, ∀t, 1 ≤ t ≤ η

5 Dmax = max{D+
max, D−max}

6 if (Dmax > Dcα=0.05) then
7 Reject the null hypothesis H0, implying that the xη j data packet is not normally

distributed
8 else
9 Fail to reject the null hypothesis H0, implying that the data packet xη j is

normally distributed

Algorithm 3: Dixon’s Q two-sided Algorithm

1 Input: Normally distributed small test data packet xη j Output: A point outlier

2 Calculate Q statistic Q = r10 = |(xt−xt+1)|
|(xmax−xmin)|

3 if (Q>Qcα) then
4 Reject the null hypothesis H0, which implies that the sample xt is an outlier

5 else
6 Fail to reject the null hypothesis H0, which implies that the the sample xt is not

an outlier

3.4. IoTDixon Dataset

We performed the study under the R distribution framework where we used the
dixonTest package for performing the Q test. We created a dataset that has 42 samples with
a mean of 72 and standard deviation of 2 to simulate the pulse rate per minute of a human
being. The dataset is then partitioned into six equally sized subset of data packets having
η = 7 named x1, x2, x3, x4, x5, x6. Such partitioned subsets are then used for checking
anomalies per packet level.

4. Results

We obtained the IoTDixon normal distribution and evaluate them against (i) histogram
with density curve (top left), (ii) plot of data points (top right), (iii) box plot (bottom left),
and (iv) QQ plot (bottom right) for each of the six data packets. Figure 2 shows the packet
wise evaluation of normality for following (a) x1 dataset, (b) x2 dataset, (c) x3 dataset, (d) x4
dataset, (e) x5 dataset, and (f) x6 dataset. We also present the overall normality evaluation
for the whole dataset comprising 42 samples as in Figure 3.

We perform KS-test on each of the data packets. The cumulative distribution plots for
each of the six data packets are shown in Figure 4, where x1, x2, x3, x4, x5, and x6 datasets
are considered separately. All the six data packets are considered as normally distributed
for proceeding the Dixon’s Q test.

We perform the Dixon test on each of the 6 packets: x1, x2, x3, x4, x5, and x6. We find
the Q statistic value for each of them as shown in Table 1. The probability of the Dixon
test is shown as P. The position of selected anomaly from each data packet is mentioned
under the POS column, and the corresponding value of anomaly point is shown under the
anomaly column.

We find that value 76.37 is statistically significant where P = 0.012 < α = 0.05, thus
rejecting the null hypothesis for x6 data packet. In other data packets, no such significance
is observed; thus, no outlier is statistically detected.

The proposed work is performed for the first time to showcase the use of the Dixon’s
Q-test for detecting point anomalies from a small-scale dataset. In this study, we used a
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health dataset as a case study to validate the applicability of the proposed methodology.
This approach can be deployed at a resource-constrained IoT-edge device connected to a
health sensor as a proof of concept for the purpose of detection of point anomalies from
a small-scale dataset. IoT devices are less processing capacity aware; thus, such systems
should be fed with a lightweight scheme with a minimal amount dataset at their vicinity.
Doing so can certainly improve the existing scenario of large-scale dataset-aware anomaly
detection schemes toward minimalistic processing consumption deployments. Thus, the
proposed technique can support at the edge real-life implications where small numbers
of samples are collected and mitigated for localized anomaly detection. This can further
minimize the overhead of a high amount anomaly eradication procedure in the later phase
of application.

Figure 2. IoTDixon normal distribution evaluation (i) histogram with density curve (top-left), (ii) plot of data points, (iii)
box plot, and (iv) QQ plot. (a) x1 dataset, (b) x2 dataset, (c) x3 dataset, (d) x4 dataset, (e) x5 dataset, and (f) x6 dataset.

Figure 3. IoTDixon complete dataset normal distribution evaluation (i) histogram with density curve
(top-left), (ii) plot of data points, (iii) box plot, and (iv) QQ plot.
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Figure 4. IoTDixon cumulative distribution function of x1, x2, x3, x4, x5, and x6 dataset (from top-left
row-wise).

Table 1. IoTDixon aware anomaly detection.

Q P POS Anomaly

x1 0.477 0.1343 5 75.69

x2 0.300 0.533 5 67.56

x3 0.378 0.311 2 68.86

x4 0.365 0.344 6 75.58

x5 0.090 1 7 73.85

x6 0.665 0.012 *** 3 76.37 ***

5. Conclusions

This paper presents a novel IoTDixon methodology that can work on small-size
data packets obtained from the given IoT dataset. As the Q test only provides a single
anomaly from a small data packet, it can be useful for sensor data gathering wherein a few
repetitions of averaging are performed. The proposed techniques uses Q-test to detect point
anomalies. We find that value 76.37 is statistically significant where P = 0.012 < α = 0.05,
thus rejecting the null hypothesis for a test data packet. The IoTDixon algorithm can be
useful in real-life applications with a small fragment of data analytics scenario, for example
gathering small number of health data by an IoT sensor and identifying any anomaly
present therein. Thus, anomaly detection can be imposed at the IoT-edge devices to detect
possible point anomalies from a small set of data instead of searching them from a very
large dataset that can be difficult in terms of power and processing capacity utilization by
the resource-constrained IoT devices.
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