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Abstract: Aiming at the problem of the large tracking error of the desired curve for the automatic train
operation (ATO) control strategy, an ATO control algorithm based on RBF neural network adaptive
terminal sliding mode fault-tolerant control (ATSM-FTC-RBFNN) is proposed to realize the accurate
tracking control of train operation curve. On the one hand, considering the state delay of trains in
operation, a nonlinear dynamic model is established based on the mechanism of motion mechanics.
Then, the terminal sliding mode control principle is used to design the ATO control algorithm, and
the adaptive mechanism is introduced to enhance the adaptability of the system. On the other hand,
RBFNN is used to adaptively approximate and compensate the additional resistance disturbance to
the model so that ATO control with larger disturbance can be realized with smaller switching gain,
and the tracking performance and anti-interference ability of the system can be enhanced. Finally,
considering the actuator failure and the control input limitation, the fault-tolerant mechanism is
introduced to further enhance the fault-tolerant performance of the system. The simulation results
show that the control can compensate and process the nonlinear effects of control input saturation,
delay, and actuator faults synchronously under the condition of uncertain parameters, external
disturbances of the system model and can achieve a small error tracking the desired curve.

Keywords: automatic train operation system (ATO); radial basis function neural network (RBFNN);
adaptive terminal sliding mode control (ATSMC); fault-tolerant control (FTC); tracking error

1. Introduction

Urban rail transit’s ATO (Automatic Train Operation system) is a direct unit respon-
sible for the train’s safe operation and control, and its advanced control algorithm is the
key to ensure the train’s efficiency, punctuality, control accuracy, comfort, and energy
conservation [1]. In the case of the changeable operation environment and the system state
changing, ATO control algorithm with high control accuracy, fast response speed, and less
braking times is the core to ensure the tracking operation control of multiple trains under
moving block [2].

In the process of the development of ATO, there are many different train operation
control algorithms, and some achievements have been made, such as PID control [3],
fuzzy control [4], adaptive control [5], iterative learning control [6], genetic algorithm
control [7], predictive control [8], etc. However, the response speed of PID control is slow,
which cannot meet the real-time requirements of train control. The adjustment of fuzzy
control parameters and control rules is time-consuming and labor-consuming and needs
experienced engineers to design, so it is not easy to implement in the project. Additionally,
in the design process of the controller, the quasi parameters of the model need to be known
in advance, but the parameters of the train operation model change with the changes of
the train load, performance, and operating environment. The authors of [9] introduced an
adaptive control to better overcome the control inaccuracy caused by the uncertainty of
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model parameters. However, there are certain limitations in the way of dealing with the
additional resistance of the route. When facing the line slope change point, the switching
of control input is too frequent, which affects the service life of the train braking system
equipment. In order to overcome the problem of frequent switching of control input
caused by adaptive control, [10] introduced an auxiliary system to control variable slope
points smoothly. Although the adaptive control algorithm can make the system stable,
when the route disturbance is large, the train operation state cannot converge quickly.
The authors of [11] applied iterative learning control to realized train precise control.
After repeated learning many times, the train can finally overcome the interference of
the operation environment, but the real-time performance of continuous iteration is poor.
The authors of [12] applied parameter estimation to realized on-line identification of train
model parameters, and a fuzzy predictive control algorithm is designed, which can better
deal with the uncertainty and external disturbance of model parameters. However, the
problem of control accuracy degradation due to the limit value, delay, and the fault of many
links such as an actuator, speed sensor, and interface equipment are not considered. In [13],
a robust adaptive and fault-tolerant control scheme for high-speed trains is established by
constructing a Lyapunov function with virtual parameter estimation error to ensure the
safe and reliable operation of trains in normal conditions or in case of traction or braking
failure. However, only the faults of the traction or braking mechanism are considered in
the literature, and the control problems caused by input saturation and speed delay are not
considered. In [14], an iterative learning control algorithm considering speed constraints
is proposed to realize train operating curve tracking under the condition of variable
parameters, but it does not involve the safe train operating control under input saturation
and actuator traction or braking failure. In [15], a train adaptive iterative learning control
method with speed delay and input saturation is designed, and the Lyapunov–Krasovskii
function method is used to solve the problem of speed delay. In [16], an adaptive fault-
tolerant ATO control method considering input saturation and speed delay is proposed,
and the convergence of speed tracking is guaranteed. However, ref. [15,16] do not consider
the problem of fault-tolerant control of traction or braking mechanism. In recent research
results, ref. [17] made up for the fault tolerance problem that was not considered in [15,16]
and designed a model-free adaptive fault-tolerant control (MFA-FTC). The controller only
uses the input and output data generated during train operation and does not need to
establish the train dynamics model, which has become a current research hot spot. What
needs our attention is in model-free adaptive control, the dynamic linear data model only
establishes the connection between the input and output data of the system and does not
have a clear physical meaning. It is impossible to predict and analyze the dynamic behavior
of the train based on the model. For the train operation environment with large external
interference, the current model-free adaptive control method is difficult to guarantee a
consistent train operation control performance index for a long time.

Based on the above problems, this paper considers the state tracking problem with
actuator failure, delay, and control input limitation and proposes a radial basis function
neural network adaptive terminal sliding mode fault tolerant control (ATSM-FTC-RBFNN)
method to realize the accurate tracking control of urban rail train operation curve.

Adaptive terminal sliding mode control is widely used in various fields because of its
complete adaptability to the intrinsic parameter disturbances and external disturbances of the
system and its convergence to the equilibrium point in finite time [18,19]. Literature [20–23]
shows that RBFNN has strong real-time performance, nonlinear mapping ability, and strong
adaptive ability and can approximate smooth nonlinear functions with any precision. Therefore,
this paper introduces the additional resistance caused by the route section into an adaptive
sliding mode controller in the form of disturbance by using RBFNN to enhance the anti-
interference ability of the system to deal with the additional interference caused by the route
slope and route radius. The following summarizes the main contributions of this paper.

• An adaptive terminal sliding mode fault-tolerant algorithm based on RBFNN is
proposed. The algorithm is based on ATSMC, FTC, and RBFNN. The initial tracking
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and approximation errors are explicitly considered, and the error boundary of system
control parameters is given. At the same time, the boundary value can be adjusted to
any small value by selecting appropriate parameters.

• The RBFNN is introduced into the adaptive sliding mode controller in the form of distur-
bance, which can effectively reduce the acquisition of route information, such as route slope
and route radius, and restrain the disturbance caused by the train in the tunnel.

• In order to improve the engineering practicability of the ATO controller, uncertainty,
external interference, control input saturation, sensor time delay, and traction or
braking fault are considered in the design of the ATO controller to match the actual
train operation conditions.

• In order to further verify the effectiveness of the designed controller, the complex
route conditions are selected for simulation experiments. MATLAB simulation results
show that the proposed ATO control algorithm has excellent anti-interference ability,
can effectively reduce the system switching gain, smooth the control input, and make
the train zero error or very small error to track the desired curve in a shorter time.

The paper is structured as follows. Section 2 introduces the function and working
principle of ATO. Section 3 illustrates the nonlinear dynamic model of train operation.
Section 4 proposes the RBFNN adaptive terminal sliding mode fault-tolerant controller.
Section 5 provides the MATLAB simulation results to illustrate the proposed method.
Section 6 discusses the results. Section 7 concludes the article.

2. Automatic Train Operation

Automatic train control system (ATC) plays an important role in improving the
automation level of urban rail transit operation and ensuring the safe and reliable operation
of trains. ATC consists of three subsystems: automatic train protection (ATP), automatic
train operation (ATO), and automatic train supervision (ATS). The main function of ATO
is to adjust the traction or brake force of the train in real time according to different train
operation conditions to ensure the control of train operation speed so that the train can
track the desired train operation curve smoothly and accurately [24,25].

Operating principle of ATO: under the supervision of ATP, ATO automatically cal-
culates the desired curve of train operation in combination with route conditions, signal
state, time adjustment command, and train performance, and then uses ATO controller to
replace train driver to apply traction or brake control command to the train [26,27]. On
the premise of ensuring the safety of train operation and not triggering ATP emergency
brake, ATO controller can automatically adjust the operating speed of the train to meet the
performance indexes such as the operating interval between trains, parking accuracy of
a train arriving at the station, passenger comfort, etc. The composition principle of ATO
system is shown in Figure 1.

Because the train operates continuously for a long time, its load, operation environ-
ment, and performance will change with time, which makes the train motion characteristics
have strong uncertainty and external interference. In addition, the sensor time delay, trac-
tion, or brake actuator fault and control input saturation of the train exist for a long time.
Therefore, the good performance index of the train operation control system can only be
achieved by improving and perfecting the ATO control algorithm.
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Figure 1. Composition diagram of ATO system.

3. Train Dynamics Model

Considering the external resistance in the process of automatic train operation, the
nonlinear dynamic model of train operation can be described as{ .

p(t) = v(t)
m

.
v(t) = F(t)− g(v(t))− f (p(t), v(t), t)

(1)

where m is the total mass of the whole train, p(t), v(t) and
.
v(t) are train position, train

speed and train acceleration respectively, F(t) is the train traction or brake force, g(v(t))is
the basic resistance, and f (p(t), v(t), t) is additional resistance.

The basic resistance g(v(t)) refers to the resistance of the train operating along the
straight rail under the ideal route conditions, which exists in any case of the train operating.
The basic resistance is usually described by the Davis equation [28] as follows:

g(v(t)) = a0 + b0v(t) + c0v2(t) (2)

where a0,b0 andc0 are the basic resistance coefficient obtained by fitting historical data. Gen-
erally, the model can model the basic resistance. However, for different trains, routes, and
even different weather, the coefficient will change, which leads to the uncertainty of system
model parameters. Therefore, an adaptive control strategy is designed to identify the unknown
parameters of the basic resistance and ensure the good convergence of the system.

Additional resistance f (p(t), v(t), t) refers to the extra external resistance in the non-ideal
route environment, which mainly includes the route resistance formed by route curve, ramp,
and tunnel. The type of resistance mainly depends on the route where the train is operating.

f (p(t), v(t), t) = ωr + ωi + ωs (3)

where ωr, ωi and ωs are route curve, ramp, and tunnel additional resistance.
Considering the delay of speed sensor, based on the train operating dynamics (1), the

following train dynamic model is given{ .
p(t) = v(t)
.
v(t) = u− a0+b0v(t−τ)+c0v2(t−τ)

m − f (p(t),v(t),t)
m

(4)

where τ represents the delay of speed sensor transmission when the urban rail train is
operating at high speed, and u = F(t)

m is the control input of the ATO controller.
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Define x1 = p(t), x2 = v(t), thus, Equation (4) is rewritten as follows:{ .
x1 = x2.
x2 = u + g + f (x)

(5)

where x1 = p(t) and x2 = v(t) are the train position and train speed, f (x) = − f (x1,x2,t)
m

is the additional resistance, and g = − g(x2(t−τ))
m = − a0+b0x2(t−τ)+c0x2

2(t−τ)
m is the basic

resistance considering speed delay.

Assumption 1. The nonlinear train dynamics model given in Equation (5) is an input-state
stable system.

4. Controller Design

The objectives of ATO control design are described as follows:

• In the case of system model parameter uncertainty and external disturbance, the non-
linear effects such as control input saturation, sensor delay, and actuator failure can be
compensated and handled synchronously for desired speed and position curve; the train
can track it with zero error or very small error to ensure that the tracking error of the
system output converges to a small enough field quantified by the control parameters.

• The closed-loop system is stable; that is, all closed-loop signals are bounded.

4.1. Adaptive Terminal Sliding Mode Controller

Adaptive terminal sliding mode control not only has strong robustness but can also
can the system state converge to the desired trajectory in finite time. In addition, it also
has a strong adaptive processing function to ensure that when the system has parameter
uncertainty, there will be no unnecessary discontinuous switching.

Train position and speed tracking errors are defined as

e1 = x1 − xd (6)

e2 = x2 −
.
xd (7)

where xd and
.
xd are the known train position and speed information, that is, desired

position and desired position.

Assumption 2. The desired position xd and its derivatives
.
xd and

..
xd are known and bounded.

The two sides differential of the e2 is obtained

.
e2 =

.
x2 −

..
xd = u + g + f (x)− ..

xd (8)

In the process of train operation, in order to meet the requirements of safety and punc-
tuality, it is necessary to accurately track the desired position and speed curve. Therefore,
the sliding hyperplane design needs to introduce the train position tracking error e1 and
train speed tracking error e2 to ensure the rapid convergence of the error. The terminal
sliding mode function is designed as

s = βe1 + ep/q
2 (9)

where β > 0 is control parameters to be designed, p and q are positive odd numbers, and
1 < p/q < 2.

The terminal sliding mode controller is designed to realize the on-line tracking of the
train desired position and speed.
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The two sides differential of the s is obtained

.
s = βe2 +

p
q (u + g + f (x)− ..

xd)e
p/q−1
2

= βe2 +
p
q ep/q−1

2 (u− a0
m −

b0
m x2 − c0

m x2
2 + f (x)− ..

xd)

= βe2 +
p
q ep/q−1

2 (u− a∗ − b∗x2 − c∗x2
2 + f (x)− ..

xd)

(10)

where a0
m = a∗, b0

m = b∗, and c0
m = c∗.

Assumption 3. The control input u is time-varying and bounded; that is, there is an unknown
constant u∗ satisfying the inequality|u| ≤ u∗.

Based on the principle of sliding mode controller, the input form of sliding mode
control is as follows:

u = ueq + usw (11)

where ueq and usw are equivalent control term and nonlinear switching control term of the
system.

Let Equation (10) approach zero, and we can get

ueq = − q
p

βe2−p/q
2 + a∗ + b∗x2 + c∗x2

2 − f (x) +
..
xd (12)

According to the design principle of sliding mode control, the nonlinear switching
term of the system is designed as

usw = −ηsgns (13)

where η > 0 is control gain.
Then the input of terminal sliding mode control is designed as

u = − q
p

βe2−p/q
2 + a∗ + b∗x2 + c∗x2

2 − f (x) +
..
xd − ηsgns (14)

Define Lyapunov function

V =
1
2

s2 (15)

The two sides differential of the V and substituting Equation (14), we can get

.
V = s

.
s = s(−η

p
q

ep/q−1
2 sgns) ≤ (−η

p
q

ep/q−1
2 )|s| < 0 (16)

Then the system is stable, and the disturbance in train operation can be well controlled
due to the existence of switching term. However, to enhance the robustness, it will increase
the control burden of the switching term and ultimately increase the possibility of chat-
tering in the control system because the parameters a0,b0, andc0 are obtained by fitting
historical data. Generally, the model can model the basic resistance. However, for different
trains, routes, and even different weather, the parameters will change, which leads to the
uncertainty of system model parameters. Therefore, based on the principle of adaptive
terminal sliding mode control, this paper introduces a parameter adaptive mechanism. the
controller is modified to

u = − q
p

βe2−p/q
2 + â + b̂x2 + ĉx2

2 − f (x) +
..
xd − ηsgns (17)

where â, b̂, and ĉ are respectively estimated value of a∗, b∗, and c∗.

Assumption 4. The Davis equation coefficients of basic resistance satisfy inequality |a∗| ≤ a† ,
|b∗| ≤ b† and |c∗| ≤ c† where a† , b†and c† are unknown bounded values.
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Define Lyapunov function

V =
1
2

s2 +
1

2λ1
ã2 +

1
2λ2

b̃2 +
1

2λ3
c̃2 (18)

where λi > 0, i = 1, 2, 3 is the adaptive gain of corresponding parameters.
The two sides differential of Equation (18) is obtained

.
V = s

.
s +

1
λ1

ã
.
ã +

1
λ2

b̃
.

b̃ +
1

λ3
c̃

.
c̃ (19)

where ã = â− a∗, b̃ = b̂− b∗, and c̃ = ĉ− c∗ are respectively estimated error values.
By substituting Equations (10) and (17) into Equation (19), we can get

.
V = p

q ep/q−1
2 s(â− a∗) + p

q ep/q−1
2 s(b̂− b∗)x2 +

p
q ep/q−1

2 s(ĉ− c∗)x2
2

− p
q ep/q−1

2 sηsgn(s) + 1
λ1

ã
.
ã + 1

λ2
b̃

.

b̃ + 1
λ3

c̃
.
c̃

(20)

In order to satisfy the stability of Lyapunov, formula (20) is further organized to obtain
the parameter adaptation law as follows:

.
â = −λ1

p
q ep/q−1

2 s
.
b̂ = −λ2

p
q ep/q−1

2 sx2
.
ĉ = −λ3

p
q ep/q−1

2 sx2
2

(21)

In order to improve the robustness of the controller, based on the σ modified robust
adaptive control theory [29], the parameter adaptive law is redesigned

.
â = −λ1(

p
q ep/q−1

2 s + σ1 â)
.
b̂ = −λ2(

p
q ep/q−1

2 sx2 + σ2b̂)
.
ĉ = −λ3(

p
q ep/q−1

2 sx2
2 + σ3 ĉ)

(22)

where σi > 0, i = 1, 2, 3 is a newly introduced parameter.
According to the adaptive terminal sliding mode control law designed above, because

of the existence of a discontinuous switching function ηsgn(s), ATO will send discontin-
uous control signals to keep the operating state of the train on the sliding mode surface.
However, in the actual operation process of the train, due to the additional resistance of the
route, the basic resistance or the measurement deviation, and other factors, the operating
state of the train cannot stay on the sliding surface, and the state error repeatedly passes
through the ideal sliding surface, finally forming the chattering phenomenon [30]. In order
to avoid frequent switching of train operation control input caused by excessive chattering,
the sign function sgn(s) in the control switching term of Equation (17) is replaced by the
saturation function

sat(s) =


1 s > φ
s |s| ≤ φ
−1 s < −φ

(23)

4.2. RBFNN Adaptive Terminal Sliding Mode Controller

The additional resistance interference caused by the route section in the actual opera-
tion process of the train is likely to be large, especially under the route conditions of large
slope and curve, which will cause inaccurate train control and other problems. Therefore,
RBFNN is used to learn and evaluate the additional resistance interference to solve the
problem of large switching gain caused by uncertain factors such as environment effect,
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modeling error, and model simplification so as to enhance the anti-interference ability of
the system.

RBFNN is an efficient and locally convergent forward network, so it has a fast conver-
gence speed. It has been proved theoretically that it can approximate smooth nonlinear
functions with any accuracy and can be regarded as a universal approximator [31,32]. The
structure of RBFNN is shown in Figure 2, which is composed of a three layers forward
network, including input layer, hidden layer, and output layer. The mapping from input
to output is nonlinear, while the mapping from hidden layer to output space is linear,
which speeds up the learning speed and effectively avoids the local minimum problem
where x = [x1, x2, · · · , xn]

T ⊂ Rn is network input, n is the dimension of the input vector,
W = [w1, w2, · · · , wm]

T is an adjustable weight parameter vector, m is the number of neu-
rons in the hidden layer, h(x) = [h1(x), h2(x), · · · , hm(x)]T is the output vector of Gaussian
function for the hidden layer, and hj(x) is the output of the jth neuron in the hidden layer
can be expressed as follows:

hj(x) = exp

(
−
∥∥x− cj

∥∥2

2b2
j

)
j = 1, 2, · · · , m (24)

where ‖ · ‖is a Euclidean norm, cjand bj are the center parameter vector and width param-
eter of Gaussian function of the jth neuron in the hidden layer, and bj is a number greater
than zero.

Figure 2. Structure of RBFNN.

The output of the RBFNN output layer is as follows:

f (x) = W∗Th(x) + ε(x) (25)

where W* is the ‘optimal’ weight vector that minimizes W* among all the estimated values
of the weight vector W, in which

W* = arg min
W∈Rm

{
sup
x∈Θx

∣∣∣ f (x)−WTh(x)
∣∣∣} (26)

where ε(x) is a bounded approximation error; that is, there is a small normal number ε∗

satisfying inequality |ε(x)| ≤ ε∗.
The performance index of the RBFNN output layer is as follows:

E = 0.5[ f (x)− fd(x)]
2 (27)
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where fd(x) is desired output.
In RBFNN structure, reasonable selection of hidden layer node center, basis function

width, and weight parameters can improve convergence speed and approximation accuracy.
According to the gradient descent method, the iterative algorithm of output weight, node
center, and node basis function width parameters is as follows:

∆wj(t) = χ[ f (x)− fd(x)]hj (28)

wj(t) = wj(t− 1) + ∆wj(t) + α
[
wj(t− 1)− wj(t− 2)

]
(29)

∆bj = χ[ f (x)− fd(x)]wjhj

∥∥x− cj
∥∥2

b3
j

(30)

bj(t) = bj(t− 1) + ∆bj + α
[
bj(t− 1)− bj(t− 2)

]
(31)

∆cji = χ[ f (x)− fd(x)]wjhj
xi − cji

2

b2
j

(32)

cji(t) = cji(t− 1) + ∆cji + α
[
cji(t− 1)− cji(t− 2)

]
(33)

where χ ∈ (0, 1) is the learning rate, and α ∈ (0, 1) is the momentum factor.
RBFNN input is x =

[
x1 x2

]T, and the output is as follows:

f̂ (x) = ŴTh(x) (34)

Define error function

f̃ (x) = f (x)− f̂ (x) = W∗Th(x) + ε(x)− ŴTh(x) = W̃
T

h(x) + ε(x) (35)

where W̃ = W* − Ŵ is the estimation error of the weight vector.

Assumption 5. f (x) is time-varying and bounded; that is, there is an unknown constant f ∗ ,
which satisfies the inequality | f (x)| ≤ f ∗.

The control law and adaptive law of RBFNN parameters are designed as follows:

u = − q
p

βe2−p/q
2 + â + b̂x2 + ĉx2

2 − f̂ (x) +
..
xd − ks− ηsgns (36)

.
Ŵ = Γ

[
p
q

ep/q−1
2 sh(x)− σ4Ŵ

]
(37)

where Γ = ΓT > 0 is an adaptive parameter matrix, and σ4 > 0 is a control parameter.

Theorem 1. According to the train dynamics model described by Equation (5), under the
Assumption of 1–5, an adaptive law (22) for the coefficients of the basic resistance Davis equa-
tion, a controller (36) for the system, and an adaptive law (37) for approximating the weight vector
of the neural network with additional resistance disturbance are designed. When the Davis equation
coefficients are uncertain, the additional resistance disturbance cannot be accurately modeled, the
train can track the desired train operation curve in real time, the tracking error converges to a small
enough neighborhood quantified by the control parameters, and the closed-loop system is stable. The
initial state of the closed-loop system is as follows:

1
2

s2(0) +
1

2λ1
ã2(0) +

1
2λ2

b̃2(0) +
1

2λ3
c̃2(0) +

1
2

Γ−1W̃
2
(0) ≤ ζ

where,ζ is an any positive constant, β , p ,q ,Γλi and σi ,i = 1, 2, 3, 4 are control parameters.

Proof. of Theorem 1. The Lyapunov function is chosen as
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V =
1
2

s2 +
1

2λ1
ã2 +

1
2λ2

b̃2 +
1

2λ3
c̃2 +

1
2

W̃
T

Γ−1W̃ (38)

The two sides differential of the V is obtained

.
V = s

.
s +

1
λ1

ã
.
â +

1
λ2

b̃
.
b̂ +

1
λ3

c̃
.
ĉ− 1

Γ
W̃

T .
Ŵ (39)

By substituting the Equations (10), (22), (36), and (37) into Equation (39), we can get

.
V = s

[
βe2 +

p
q

ep/q−1
2

(
u− a∗ − b∗x2 − c∗x2

2 + f (x)− ..
xd

)]
+

1
λ1

ã
.
â +

1
λ2

b̃
.
b̂ +

1
λ3

c̃
.
ĉ− 1

Γ
W̃

T .
Ŵ

= s
[

βe2 +
p
q

ep/q−1
2 (− q

p
βe2−p/q

2 + ã + b̃x2 + c̃x2
2 − ks− ηs + W̃

T
h(x) + ε(x)

]
−ã
(

p
q

ep/q−1
2 s + σ1 â

)
− b̃
(

p
q

ep/q−1
2 sx2 + σ2b̂

)
− c̃
(

p
q

ep/q−1
2 sx2

2 + σ3 ĉ
)

−W̃
T
[

p
q

ep/q−1
2 sh(x)− σ4Ŵ

]
=

p
q

ep/q−1
2 sã +

p
q

ep/q−1
2 sb̃x2 +

p
q

ep/q−1
2 sc̃x2

2 − k
p
q

ep/q−1
2 s2 − p

q
ep/q−1

2 η|s|

+
p
q

ep/q−1
2 sW̃

T
h(x) +

p
q

ep/q−1
2 sε(x)− ã

(
p
q

ep/q−1
2 s + σ1 â

)
− b̃
(

p
q

ep/q−1
2 sx2 + σ2b̂

)
−c̃
(

p
q

ep/q−1
2 sx2

2 + σ3 ĉ
)
− W̃

T
[

p
q

ep/q−1
2 sh(x)− σ4Ŵ

]
= −k

p
q

ep/q−1
2 s2 − p

q
ep/q−1

2 η|s| − σ1 ãâ− σ2b̃b̂− σ3 c̃ĉ + σ4W̃
T

Ŵ +
p
q

ep/q−1
2 sε(x)

(40)

According to Young’s inequality properties, we can get

− p
q

ep/q−1
2 η|s| ≤ p

2q
ep/q−1

2 η2 +
p

2q
ep/q−1

2 s2 (41)

− σ1 ãâ ≤ −1
2

σ1 ã2 +
1
2

σ1a∗2 (42)

− σ2b̃b̂ ≤ −1
2

σ2b̃2 +
1
2

σ2b∗2 (43)

− σ3 c̃ĉ ≤ −1
2

σ3 c̃2 +
1
2

σ3c∗2 (44)

σ4W̃
T

Ŵ ≤ −1
2

σ4W̃
T

W̃ +
1
2

σ4W∗2 (45)

p
q

ep/q−1
2 sε(x) ≤ p

2q
ep/q−1

2 s2 +
p

2q
ep/q−1

2 ε∗2 (46)

By substituting Equations (41)–(46) into Equation (40), we can get

.
V ≤ −(k− 1) p

q ep/q−1
2 s2 − 1

2 σ1 ã2 − 1
2 σ2b̃2 − 1

2 σ3 c̃2 − 1
2 σ4W̃

T
W̃

+ p
2q ep/q−1

2 η2 + p
2q ep/q−1

2 ε∗2 + 1
2 σ1a∗2 + 1

2 σ2b∗2 + 1
2 σ3c∗2 + 1

2 σ4W∗2
(47)

Define

µ = min[
2p(k− 1)

q
ep/q−1

2 , λ1σ1, λ2σ2, λ3σ3, Γσ4] (48)

l =
p

2q
ep/q−1

2 η2 +
p

2q
ep/q−1

2 ε∗2 +
1
2

σ1a∗2 +
1
2

σ2b∗2 +
1
2

σ3c∗2 +
1
2

σ4W∗2 (49)
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Thus .
V ≤ −µ

[
1
2 s2 + 1

2λ1
ã2 + 1

2λ2
b̃2 + 1

2λ3
c̃2 + 1

2 W̃
T

Γ−1W̃
]
+ l

≤ −µV + l
(50)

By selecting the appropriate design parameters k, p, q, λi, σi and Γ, satisfy µ > l
ζ . If

V ≥ ζ, then
.

V < 0, that is, V ≤ ζ is an invariant set. If V(0) ≤ ζ holds, then for ∀t ≥ 0,
that is V(t) ≤ ζ.

According to the definition of V and Equation (50), we can know V is bounded. Thus,
closed-loop error signals e1, e2, W̃, ã, b̃, and c̃ are bounded, so, Ŵ, â, b̂, and ĉ are bounded.
According to Equation (50), it can be concluded that

0 ≤ V(t) ≤ l
µ
+ [V(0)− l

µ
] exp−µt (51)

The above inequality (51) means that there is a moment T, and for ∀t > T, 0 ≤ V(t) ≤ l
µ

is always established. According to the definition of V, it is easy to know that e1, e2, W̃, ã, b̃,
and c̃ converge to the following compact sets respectively:

Ωe1 =

{
e1

∣∣∣∣∣|e1| ≤
1
β

√
2l
µ

}
(52)

Ωe2 =

{
e2

∣∣∣∣∣|e2| ≤ (
2l
µ
)

q/2p
}

(53)

Ωã,b̃,c̃ =

{
ã, b̃, c̃

∣∣∣∣∣∣∣∣ã, b̃, c̃
∣∣∣ ≤ √2λil

µ

}
(54)

ΩW̃ =

{
W̃

∣∣∣∣∣∣∣∣W̃∣∣∣ ≤
√

2‖Γ‖l
µ

}
(55)

From the above conclusion, it can be seen that the tracking error of the system can
be adjusted to any small value by selecting the appropriate design parameters. At the
same time, the influence of initial estimation error W̃(0), ã(0), b̃(0), and c̃(0) on system
performance can be adjusted to any small value by selecting appropriate design parameters.
Therefore, the introduction of RBFNN to estimate the additional resistance interference
in the system will weaken the gain of the switching function to a certain extent to avoid
chattering and improve the anti-interference ability of the control system.

4.3. RBFNN Adaptive Terminal Sliding Mode Fault Tolerant Controller

In the urban rail ATO, the control method without fault-tolerant function is difficult to
meet the requirements of high-precision control due to the limit value, delay and fault of many
links such as an actuator, speed sensor, and interface equipment. On the one hand, the factors
of comfort and the not infinite traction or brake force of the train lead to the input saturation
problem; on the other hand, when the speed sensor detects the speed value of the urban
rail train and transmits it to the on-board control unit, as well as the on-board software data
preprocessing process, there is a time lag in the data transmitted to the on-board control unit.
Furthermore, after a long-time high-speed operation of urban rail trains, the traction or brake
actuator of the train will inevitably experience mechanical fatigue damage and accumulated
wear due to the complicated work, which will lead to traction or brake failures of the train. This
puts forward higher requirements for ATO; ATO systems must have adaptive fault tolerance
to ensure the safe operation of urban rail trains [33,34].

Considering the faults of the train traction or brake system and physical limitations,
the actual control input of the train traction or brake system uc is usually constrained by
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scalar function, upper and lower limits; that is, the relationship between uc and designed
control law u is as follows:

uc = δ̂sat(u) =


δ̂u+ u > u+

δ̂u − u− ≤ u ≤ u+

δ̂u− u < −u−
(56)

Design adaptive control law for scalar function

.
δ̂ = −γ

[
p
q

ep/q−1
2

s−vδ̂

]
(57)

where γ > 0 and v > 0 are parameters to be designed, u+ and u− represent the constant of
the upper limit value of traction acceleration and the lower limit value of brake deceleration,
respectively, and δ̂ is an estimate of a time-varying scalar function σ(t). Scalar function σ(t)
satisfies 0 ≤ σ(t) ≤ 1, which represents the efficiency factor or health index of train traction
or brake. σ(t) = 1 means that the train control mechanism can work normally. σ(t) = 0
means that the train control mechanism is completely invalid. 0 < σ(t) < 1 means that the
train control mechanism is partially invalid. This paper assumes that 0 < σ(t) ≤ 1.

5. Simulation Experiment

In order to verify the effectiveness of the proposed control algorithm, MATLAB 2018a
simulation results are given in this paper. The control effects of ATSM-FTC without RBFNN
and ATSM-FTC-RBFNN are compared. In the simulation model, the train operating route
length is 53.88 km, the train operating time is 2000 s, and the desired position and speed
curve of train tracking are shown in Figure 3. The parameter information of train routes
such as slope and curve are shown in Table 1.

Figure 3. Desired speed and position profiles of train operation.
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Table 1. Parameters for route condition.

Parameters Range Value

Slope/(‰)

0–3800 2
3800–9200 −1.5

9200–21,400 0
21,400–23,900 5
23,900–29,900 2.5
29,900–32,300 −3
32,300–50,000 0
50,000–53,880 1.2

Curve (m)

0–4600 1000
4600–18,000 1200

18,000–24,200 800
24,200–29,300 1500
29,300–34,000 700
34,000–48,000 1300
48,000–53,880 1200

The additional resistance caused by the route condition.

In the simulation environment, the delay of the speed sensor is set as τ = 1.5, the input
saturation is quantified as the upper limits of acceleration u+ = 1.5, and the lower limits
of deceleration u− = 1.5. The basic resistance simulation parameters are set as a∗ = 0.3,
b∗ = 4× 10−3, c∗ = 1.6× 10−4. The structure of RBFNN is 2-5-1, χ = 0.2, α = 0.04.
The control parameters are set as β = 0.05, p = 13, q = 11, k = 30, η = 0.4, λ1 = 0.01,
λ2 = 0.01, λ3 = 0.01, σ1 = 0.005, σ2 = 0.005, σ3 = 0.005, σ4 = 0.001, Γ = diag[0.1], γ = 0.01,
v = 0.002. When the simulation time is greater than or equal to 5, take δ = 0.2. The initial
state is selected as x1(0) = 0, x2(0) = 0, â = 0.3, b̂ = 0, ĉ = 0, and δ̂ = 0.2.

For the given curve of train desired position and desired speed, Figures 4 and 5
respectively show the performance diagrams of position tracking and speed tracking of
ATO control algorithm based on ATSM-FTC-RBFNN. It can be seen from Figures 4 and 5
that the ATSM-FTC-RBFNN algorithm has good tracking performance and can realize
high-precision tracking of the desired position and speed curve. According to the enlarged
diagram shown in Figure 4, it can be seen that the position tracking error of the control
algorithm at the parking point is −2 mm. According to the enlarged diagram shown in
Figure 5, when the control algorithm approaches the parking position, the speed tracking
error gradually decreases and finally approaches zero. Therefore, the ATSM-FTC-RBFNN
control method can achieve high-precision tracking of train desired position and speed
curve, and the position signal and speed signal are bounded under the conditions of input
saturation limit, speed delay, actuator failure, uncertain Davis equation coefficient of basic
resistance, and additional resistance disturbance.

As shown in Figure 6, the position error of ATSM-FTC-RBFNN is the largest when the
train is just started. With the normal operation of the train for 630 s, the position tracking
error is reduced to zero. In the process of train operation, due to the influence of the
uncertainty of Davis equation coefficient of basic resistance and the interference of route
additional resistance, the position tracking error increases negatively to −0.155 m in 1148 s,
and then increases continuously. After 96 s, the position error increases to 0.13 m and
then decreases continuously. The final parking accuracy is −2 mm. Although the position
tracking error of train operation changes continuously, the position control accuracy at any
time is less than ±0.2 m, which meets the requirements of accurate train control.



Appl. Syst. Innov. 2021, 4, 51 14 of 23

Figure 4. Position tracking performance ATSM-FTC-RBFNN.

Figure 5. Speed tracking performance of ATSM-FTC-RBFNN.

Figure 6. Position error of ATSM-FTC-RBFNN.
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As shown in Figure 7, the overall speed error of ATSM-FTC-RBFNN is −0.04~0 m/s,
which does not exceed the desired speed, ensuring the safety of train operation. When
the train operates to 1148 s, the control accuracy of the ATSM-FTC-RBFNN controller is
reduced due to the sudden change of desired speed, the uncertainty of Davis equation
coefficient of basic resistance, and the interference of route additional resistance, and the
speed error is −0.06 mm. In order to overcome the mutation, uncertainty, and disturbance
of the outside condition, the controller enhances the discontinuous nonlinear switching
control in this period to maintain the control accuracy, as shown in Figure 8, which not
only ensures the stable operation of the train on the route under the influence of various
factors and disturbances, but also the final speed control error is close to zero.

For the given curve of train desired position and desired speed, Figures 9 and 10
respectively show the performance diagrams of position tracking and speed tracking of
the ATO control algorithm based on ATSM-FTC. It can be seen from Figures 9 and 10 that
the ATSM-FTC algorithm can track desired position and speed curve. According to the
enlarged diagram shown in Figure 9, the position tracking error of the control algorithm at
the parking point is−0.42 m. According to the enlarged diagram shown in Figure 10, when
the control algorithm is close to the parking position, the speed tracking error is almost zero.
Therefore, the ATSM-FTC control method can basically meet the control requirements of
the given train position and speed curve tracking under the conditions of input saturation
limit, speed delay, actuator failure, uncertain Davis equation coefficient of basic operating
resistance, and additional operating resistance disturbance.

Figure 7. Speed error of ATSM-FTC-RBFNN.

Figure 8. Control input of ATSM-FTC-RBFNN.
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Figure 9. Position tracking performance of ATSM-FTC.

Figure 10. Speed tracking performance of ATSM-FTC.

As shown in Figure 11, the position tracking error of ATSM-FTC is −0.4~0.42 m. In
the process of train operation, the position tracking error and speed tracking error have
fluctuations due to the influence of train performance and external interference. The speed
tracking error of ATSM-FTC is shown in Figure 12, which is between −0.11 and 0.02 m/s.
When the train just starts, it exceeds the expected speed by 0.02 m/s. After the train
operates normally, its speed does not exceed the given desired speed. However, when the
train operates between 846 and 1148 s, the control accuracy of the ATSM-FTC controller
decreases due to the sudden change of desired speed and the influence of the operation
environment. In order to overcome the mutation and influence of the outside environment,
the controller enhances the nonlinear switching control in this period to maintain the
control accuracy, as shown in Figure 13.
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Figure 11. Position error of ATSM-FTC.

Figure 12. Speed error of ATSM-FTC.

Figure 13. Control input of ATSM-FTC.

In order to further explore the performance of the controller, ATSM-FTC-RBFNN
controller, ATSM-FTC controller, MFAC, and MFA-FTC controller in reference [17] are
used for comparison. The actuator fault coefficient in reference [17] is shown in Table 2. In
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addition, in [17], the parameter settings of RBFNN remain unchanged, and the remain-
ing parameters of the controller are set as us(1) = 0.001, us(2) = 0.414, vs(1) = 0.001,
vs(2) = 0.001, ϕ1(1) = 0.001, ρ1 = 0.874, ρ2 = 0.001, λ1 = 0.002, and λ2 = 0.0015.

Table 2. Actuator failure factor table.

Time (s) Health Index Additive Failure Factor

[0, 400) 0.7 5
[400, 700) 0.6 10

[700, 1500) 0.4 −5
[1500, 2000] 0.2 −10

The health indexes and additive failure factors are different in different periods.

Figures 14–16 show the simulation comparison results of four controllers. Figure 14
is the position tracking error of the four controllers; Figure 15 is the speed tracking error
of the four controllers; and Figure 16 is the control input of the four controllers. It can be
seen from Figures 14 and 15 that when facing external interference, the ATSM-FTC-RBFNN
controller has fast adjustment speed, fast convergence of the whole process state, strong anti-
disturbance ability, good control performance, and strong fault tolerance, and can ensure
the safe and reliable operation of the train. When the ATSM-FTC control is faced with
external interference, its state error converges slowly. That is to say, in the whole process
of train operation, the position error and speed error of the train are large. The position
tracking error and speed tracking error of the MFAC controller in reference [17] gradually
diverge with the increase of fault degree, and the tracking performance is significantly
reduced. Compared with MFAC, the position tracking error and speed tracking error of
the MFA-FTC control algorithm in [17] are significantly improved. But when the degree of
external interference and fault is large, there will be large oscillations, and the fault-tolerant
control performance is poor.

It can be seen from Figure 16 that the train needs to overcome its own gravity and
other resistance when it just starts, and the control input value is relatively large. After the
train operates normally, the control input of ATSM-FTC-RBFNN controls the train with
small fluctuations, and the train operates the most smoothly, which meets the comfort
requirements of passengers. Although the overall oscillation amplitude of ATSM-FTC
is relatively small, large oscillations occur at both 846 and 1148 s when the external dis-
turbance is large, which affects the fault-tolerant performance. The control input of the
MFAC and MFA-FTC controllers in [17] has large oscillations. Compared with MFAC, the
oscillation amplitude of MFA-FTC has been improved, but the constantly changing control
input will increase the traction and brake switching times. The number of times shortens
the service life of the actuator, and it is also not conducive to safe driving. It can be seen
that the ATSM-FTC-RBFNN controller has better system dynamic response quality, optimal
adaptive control performance, and strong anti-disturbance and fault tolerance capabilities.

In order to better investigate the control performance of the ATSM-FTC-RBFNN con-
trol algorithm, a simulation test is carried out for the uncertainty of the model parameters
of the controller. The parameters of the train model were changed within the range of
±10%, and the simulation experiment of 100 times train operations and precise parking
was performed. The simulation results are shown in Table 3. It can be seen from Table 3
that the control algorithm for the train dynamics model with random changes in model
parameters, the control effect is still good, and the position errors are all within 0.2 m, of
which 70% are within 0.1 m. The simulation results show that the ATSM-FTC-RBFNN
control algorithm can synchronously compensate and deal with the nonlinear effects of
control input saturation, time delay, actuator failure, etc. It can adapt to changes in train
control system model parameters and has good robustness and anti-interference.
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Figure 14. Position error comparison.

Figure 15. Speed error comparison.

Figure 16. Control input comparison.
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Table 3. Position error distribution condition.

Position error (m) [−0.2, −0.1) [−0.1, 0) [0, 0.1) [0.1, 0.2]

Percentage (%) 15.3 32.2 37.8 12.7
Position error data obtained by 100 experiments.

6. Discussion

One of the most important functions of ATO is to control the train to accurately track
the speed curve according to different train models and operating conditions (such as
tunnels, curves, and steep slopes) so that the train can run safely and smoothly. The most
widely used control method in ATO is PID controller (such as Beijing Metro Yizhuang Line,
Changping Line, etc.) and the combination of PID and other intelligent control, such as
fuzzy PID [35], sliding mode PID [36], RBF neural network PID [37], etc. Although the
controller based on PID can obtain better tracking performance in the practical application
of ATO, the ride comfort based on PID controller is poor due to the frequent switching
of PID control commands. In addition to the mainstream PID control, other research on
ATO control algorithms can be divided into two categories. One is the ATO controller
designed by using train dynamics model information to ensure the accuracy of curve
tracking, which is called model-based control method in this paper. The second category is
to use the input and output data generated during train operation to estimate the system
parameters online so as to realize the model-free adaptive control of the train, which is
called the model-free adaptive control method in this article. The model-free adaptive
control method only establishes the connection between the input and output data of the
system, and does not have a clear physical meaning. It cannot predict and analyze the train
dynamic behavior based on the dynamic input and output data model. For the straight
routes, this method can track the position and speed curve with less error, but for the train
operation environment with large external interference, the current model-free adaptive
control method is difficult to ensure a consistent train operation control performance index
for a long time, which needs to be further improved.

Model-based control methods include single-particle dynamics models and multi-
particle dynamics models. Since train dynamics is related to multiple factors, it is too
complicated to establish a multi-particle dynamics model that can describe many factors,
such as describing seven cars dynamics requires 84 differential equations [38]. The overly
complex models are not conducive to the design of ATO controllers. Therefore, the main-
stream research on the ATO control algorithm is based on the single-particle dynamics
model. The research on the ATO control method in this paper is based on the single-particle
train dynamics model. The establishment of the train dynamics model is an important part
of ATO controller design. The accuracy of the model is directly related to the controller
design and control effect. The dynamic behavior of train motion is related to many factors.
It is very difficult to establish an accurate model. Besides its own traction and braking
force, it is also affected by a variety of external and internal forces, including bearing
friction resistance, wheel rolling and sliding resistance, impact and vibration resistance, air
resistance, ramp resistance, curve resistance, tunnel resistance, etc. However, for different
models, routes, and even different weather conditions, the model parameters will change,
resulting in the uncertainty of the system model parameters. Therefore, it is necessary
to design an adaptive control strategy that can identify unknown parameters and ensure
good convergence. It is the first step to study the ATO control algorithm. The automatic
train operating process also needs to consider multiple performance goals, namely energy
consumption, punctuality, and ride comfort. In addition, under the long-term high-speed
operation of urban rail trains, the traction or braking mechanism of the train is prone to
failure due to factors such as high-temperature friction and severe vibration. Therefore, the
fault-tolerant ability should also be considered in the design of the ATO system to ensure
the operation safety of urban rail trains.
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Combining the above contents, this paper comprehensively considers the uncertainty
of the train dynamics model, multiple train performance indicators, and fault tolerance
and proposes the ATSM-FTC-RBFNN control algorithm, which is compared with [17]. In
contrast, the ATSM-FTC-RBFNN control algorithm has better control effects, can adapt to
the changes in train parameters, can well overcome external interference, and can ensure
higher control accuracy. At the same time, it effectively reduces the chattering caused by
sliding mode control, improves the robustness and dynamic characteristics of the controller,
and has a wide range of practicability.

7. Conclusions

Taking the automatic train driving system of urban rail as the research object, the
precise control algorithm of urban rail trains is studied in this paper. Combined with
the train dynamics model, the mathematical description of the train control process is
given. Aiming at the precise control technology in automatic train operation, an adaptive
terminal sliding mode controller is proposed. The terminal sliding mode control is used
to design the control algorithm, and the parameter adaptive mechanism is introduced
to enhance the control system adaptability. Based on the ATO algorithm of adaptive
terminal sliding mode control, the RBFNN disturbance approximator is designed, and the
disturbance value of the RBFNN disturbance approximator is introduced into the control
algorithm to enhance the robustness and anti-disturbance ability of the system. At the same
time, the problem of input saturation caused by train traction or braking force cannot be
infinite, the transmission delay of speed sensor and the partial failure of traction or braking
actuator in ATO system are considered, and the fault-tolerant mechanism is introduced.
The simulation results show that when the model has parameter uncertainty and external
disturbance, the designed control algorithm can synchronously compensate and deal with
the nonlinear effects such as control input saturation, time delay, and actuator failure to
ensure the accurate control of train operation.

Combined with the research content of this paper, the future work that should be
carried out in-depth research is as follows:

• Research on the optimization strategy and control method of automatic train operation
based on deep learning and knowledge automation. In this paper, from the perspective
of mechanism modeling, the train dynamics model is obtained by analyzing the force
of the train. However, the massive data generated during the actual operation of
the train is not fully utilized and excavated. Mining rules from historical data and
accurate prediction will help to grasp the train operation status in detail and provide
more decision support for the dispatching command;

• Research on the optimization strategy and control method of multi-train intelligent
operation for multi-train cooperative operation. Under the conditions of high-density
and long-period operation of urban rail trains, multi-train collaborative control is a
solution to achieve global optimization and ensure system performance. The devel-
opment of advanced train-to-train communication, virtual marshalling, and other
technologies and their application in multi-train operation control systems are the
development trend and inevitable trend in recent years.
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