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Abstract: In the context of the COVID-19 pandemic, the use of forecasting techniques can play an
advisory role in policymakers’ early implementation of non-pharmaceutical interventions (NPIs) in
order to reduce SARS-CoV-2 transmission. In this article, we present a simple approach to even day
and 14 day forecasts of the number of COVID-19 cases. The 14 day forecast can be taken as a proxy
nowcast of infections that occur on the calculation day in question, if we assume the hypothesis that
about two weeks elapse from the day a person is infected until the health authorities register it as a
confirmed case. Our approach relies on polynomial regression between the dependent variable y
(cumulative number of cases) and the independent variable x (time) and is modeled as a third-degree
polynomial in x. The analogy between the pandemic spread and the kinematics of linear motion
with variable acceleration is useful in assessing the rate and acceleration of spread. Our frame is
applied to official data of the cumulative number of cases in Spain from 15 June until 17 October 2020.
The epidemic curve of the cumulative number of cases adequately fits the cubic function for periods
of up to two months with coefficients of determination R-squared greater than 0.97. The results
obtained when testing the algorithm developed with the pandemic figures in Spain lead to short-term
forecasts with relative errors of less than ±1.1% in the seven day predictions and less than ±4.0% in
the 14 day predictions.

Keywords: polynomial regression; COVID-19 nowcasting and forecasting

1. Introduction

This study aims to provide solutions to one of the problems faced when managing
the COVID-19 pandemic, namely timely decisions regarding the implementation of non-
pharmaceutical interventions (NPIs) and preparation of the health system. In other words,
this involves adjusting the timing of decisions to anticipate the epidemic dynamics and
avoid uncontrolled spread in a country or territory, as well as ensure that the health system
has sufficient capacity to provide care to the sick. Obviously, these political decisions can
sometimes be difficult to understand for the population. An easy-to-understand model
may be helpful for the population to become aware of the necessity of stronger measures
before it is too late.

The spread of a pandemic initially involves an almost exponential growth, counter-
intuitive to the human mind. Although this type of growth is common in nature—bacterial
proliferation, nuclear and polymerization chain reactions, etc.—it is not something that
is perceived in the macroscopic world in which mankind lives since it opposes our life
experience, which is limited to the linearity and proportionality scale of our own lives [1].
Perhaps this explains both the lack of understanding of the general population about the
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need for NPIs, as well as the slowness and weakness of some governments to implement
them [2–4].

The pandemic has wreaked havoc worldwide. It has severely impacted the lives of
many people, affected the health of millions of COVID-19 patients and caused hundreds of
thousands of deaths (40.79 million confirmed cases and 1.12 million deaths as of 21 October
2020 [5]). In addition, it has had an extraordinary impact on the economy, employment,
and equality [6–8]. Furthermore, the pandemic will have deep implications regarding our
progress towards the Sustainable Development Goals (SDGs), having serious negative
effects on most of them [9].

COVID-19 has affected all countries of the world, but its impact has been quite different
between countries and even between regions within a country, even among neighboring
nations with similar socioeconomic characteristics and similar cultures. The set of NPIs [10]
adopted in all countries has been effective to flatten the epidemic curve [11–13] and has been
essentially the same in most countries, although they differ in intensity and severity, but its
effectiveness is closely related to the timing in which different measures and restrictions
were adopted to mitigate the spread of the disease. Like in a forest fire, the earlier an
intervention is applied, the greater its efficacy.

With regard to OECD countries, given that coronavirus-positive patients started to
be confirmed on the same date, the most reasonable explanation for the differences in the
pandemic impact would be the management of the pandemic. This has been the subject
of studies such as that published by the University of Cambridge in the 2020 Sustainable
Development Report [9]. This report includes a chapter that compares the early control of
COVID-19 in the 33 OECD countries and calculates a pilot index (Index COVID-19) between
4 March and 12 May. The highest score in the ranking, i.e., the optimum management, was
reached by South Korea (0.90), followed by Latvia (0.78). Spain is in the last position (0.39).

Orea and Álvarez [14] highlighted the effectiveness of NPIs’ implementation, as well
as the importance of their early application. They found a drastic reduction in coronavirus
spread in Spain since the date on which the state of alarm was decreed throughout the
country on 14 March [15]. They assessed that the lockdown was effective at stopping the
spread of the pandemic. Using a counterfactual essay, they estimated that the lockdown
reduced the number of potential COVID-19 cases by 79.5%. In addition, the number
of cases as of 30 April would have been reduced by an additional 12.8% if it had been
implemented a week earlier, which could have prevented the collapse of many hospitals in
Spain. They also established a relationship between the onset and intensity of provincial
epidemics and international mobility, suggesting that control measures for travelers from
previously affected areas, such as Italy, should have been implemented much earlier.
The authors suggested there was a lack of foresight on the part of the Spanish government,
since they were not able to anticipate the real development of the pandemic.

This paper focuses on the time factor’ role when managing an epidemic and specifi-
cally aims to overcome the time barrier between the spread of the pandemic (infections
that are actually happening today) and perception about the spread (information of cases
diagnosed and confirmed that comes to us). It is difficult to effectively manage a pandemic
when there is no information available in real time on current growth and expansion. This is
similar to the situation of a defense minister of a country that is being invaded and who
has to make decisions about the movements and operations of its armies when information
about the war front arrives days or weeks late, when the action has already occurred.

In this study, the objective is to develop an empirical methodology or algorithm to
obtain nowcasts that reduce the delay between the infection and the official number of
published cases. The nowcasting is the prediction of the present (what is happening now),
the very near future, and the very recent past and is usually used in meteorological predic-
tions [16] and in economics [17]. Nowcasting has recently become popular in economics
for the prediction of the current state of an economic indicator, as measures to assess the
state of an economy are often determined after a delay. In our research strategy, positives
to be confirmed in the future, in fact, reflect the surface of current, but still unobserved in
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the present, contagions. This is why this document proposes a data-driven approach to
nowcasting. It is essential to have easy-to-use indicators for people to use as a reference.

As explained in more detail below, we assume that there is a delay of 14 days between
the infection and the registration of a positive case by the governmental authorities. This
14 day delay is a rough estimate, but a close estimate of the incubation period of the virus
and coincides with the typical quarantine imposed after some dangerous contact. Based
on these facts, the algorithm was designed to forecast the cumulative number of cases to
be published 14 days after the date of calculation. If the algorithm works correctly, it will
generate very valuable information on the spread of the pandemic, since we will have an
approximation on:

1. The number of infections that are occurring today, but will be detected within 14 days.
Naturally not all infections that occur now will be registered as cases, but we will
have an idea of the current rate of spread of the virus. This nowcast is the one that
should help decide which NPIs and restrictions should be adopted immediately.

2. The cumulative number of cases that will be recorded within 14 days allows us to deduce,
using appropriate ratios, the number of hospital beds, ICU, ventilators, medication, etc.,
that will be needed in two weeks and the amount of deaths that will occur.

Obviously, it is a single value of the total cumulative number of cases that is taken as
an indicator of current infections (nowcasting) and as a prediction of the total cumulative
number of cases that will be registered in 14 days (short-term forecasting). Because it is
very difficult to know the number of infections that have occurred today and that will
finally be registered as cases, the approximation capacity of the algorithm will be assessed
by comparing the results with the real values occurring in 14 days. These nowcasts and
forecasts can be expected to facilitate early interventions to flatten the curve and help
in healthcare systems’ preparedness, which are useful to minimize negative pandemic
impacts on health, the economy, employment, equality, and sustainability.

We apply the methodology to obtain the 14 day predictions to Spanish official data on
infections since the beginning of the second wave of COVID-19, which has been estimated
to have started around 15 June 2020.

2. Empirical Algorithm

In this section, we present the empirical algorithm that is employed for our estimations.
We depart from the approach followed by many studies on the epidemiology of COVID-19,
which using standard epidemiological analysis, assume an exponential growth in the
number of diseases, based on the idea of a fixed reproduction rate.

Our approach relies on kinematic motion models [18]. As in [19], we assume the
existence of a theoretical function that represents the epidemic spread over time in a
country or region, as follows:

y = f (x) (1)

In Equation (1), y represents the cumulative number of cases since the pandemic start,
and x is the number of days since the pandemic starting date.

The function employed for our research is, essentially, a third-degree polynomial
function (cubic function). This choice is empirical, since it is not based on any theoretical
model of epidemic development or on any previous hypothesis, but exclusively on the
observed capacity to fit satisfactorily, with longer or shorter sections, the epidemic curve
that represents the cumulative number of cases as a function of time (1).

The adaptability of the cubic function to epidemic curves has been studied in several
works, which are discussed below. This approach to epidemic propagation is an analogy to
the kinematic description of the rectilinear motion of an object with a variable acceleration,
since the equations used are the same:

Our kinematics-epidemiology analogy is described by the following equations:
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• Space (in meters) ≡ cumulative number of cases:

y = ax3 + bx2 + cx + d (2)

• Velocity (meters/second) ≡ daily cases:

dy
dx

= v = 3ax2 + 2bx + c (3)

• Acceleration (meters/second2) ≡ cases/day:2

dy
dx2 = w = 6ax + 2b (4)

This analogy imagines a pandemic as a truck with an engine that can reach any speed;
the brakes do not work, and the truck is accelerating more and more. The truck will only
stop when it runs out of fuel or when there are enough obstacles in its way to stop it.
This is also a good description of what happens in a pandemic. If there are no NPIs to
stop it, the pandemic will continue to spread until there are no more people susceptible
to becoming ill, which is what happens when the truck runs out of gas. The NPIs must
make the acceleration zero and then negative (deceleration). The longer it takes to brake
the truck, the greater the obstacle must be to stop it, which is equal to the stiffness of the
NPIs to be applied when implementation is delayed. Without NPIs, as Farr suggested
more than a century ago [20], the daily cases epidemic curve will assume the form of a
normal distribution and can be fit quite precisely to a section of the cubic function, except
for its asymptotic start and end.

As an example of the facility of the cubic function to fit the pandemic curve (y),
Figure 1 shows the fit with data from Spain between July 12 (x = 140) and September 19
(x = 209). The seventy values were adjusted to a cubic equation with R2 = 0.9997, median
relative error = 0.13%, and interquartile range (IQR) = 0.92%. The analytical curve in
this figure is not a predictor, since it was obtained when all the information was already
available on the corresponding dates, but shows a great facility of the cubic function to
reproduce the cumulative number of cases on pandemic curve.

Figure 1. Second pandemic wave in Spain: fit by linear regression of the observed cumulative number of cases to a
third-degree polynomial, y = 0.08307x3 + 42.281x2−16,584 x + 1,524,253 (red curve), from 12 July (x = 140) to 19 September
(x = 210).
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The analogy with kinematics equations and the ability to fit the epidemic curve
suggest their use for forecasting. Equation (2) describes a rectilinear motion with a variable
acceleration that increases or decreases linearly, since the acceleration equation is a line
whose slope is 6a. That is, Equation (2) ceases to be valid when there are increases or
decreases in w that deviate from linearity. These deviations, in the case of an epidemic,
are caused by NPIs that act either as obstacles that force a halt to the acceleration or, in
the opposite direction, the acceleration will grow faster due to external factors such as the
relaxation of restrictions on social distancing or mobility or climatic conditions.

Therefore, when using the cubic function to simulate the behavior of the pandemic,
given that the factors that favor or hinder the spread depend on unpredictable political
decisions and natural factors, the algorithm needs successive sections of cubic curves to
deviate from the pattern of a linear relationship of acceleration with time, which is implicit
in the third-order polynomial.

Hence, the algorithm variables are:
a. The number of days for which data of the cumulative number of cases fit a cubic

equation. b. The criterion for discarding a section and calculating a new one. c. The relative
error that determines the margin between favorable and unfavorable scenarios.

As can be seen in Figure 2, in Spain, there are biases in the daily values of cases
depending on the day of the week. It can be observed that Wednesday (15.19%) and
Thursday (16.03%) are the days with maximum values within the week, and Monday
(12.03%) and Sunday (11.96%) are the days with a lower registration of cases. These biases
are not related to the pandemic spread and are probably due to administrative problems in
the case registration and notification process and perhaps also to fewer tests and diagnoses
made on weekends. To avoid these biases that can negatively affect the predictive capacity
of the algorithm, it is preferable that the algorithm works with the moving average of the
cumulative number of cases of the last seven days (represented as y∗) instead of working
with y values.

Indeed, the visual observation of the wave followed by new contagions detected along
every week suggests the existence of measurement errors. The human resources employed
to detect new contagions decrease on weekends, and the data flows at the beginning of the
week include values that were buffered during the weekend, making Wednesday perhaps
the “more standard day”. Measurement errors are minimized when averaging the seven
days to complete a whole week.

Figure 2. Percentages of daily cases out of total weekly cases on each day of the week. Nineteen week averages between
1 June and 11 October (Spain).
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Although this algorithm is still in the testing phase and, for now, it has only been tested
with data from the cumulative number of cases from Spain between 1 June and 17 October,
its variables were adjusted to obtain results with good approximations. The algorithm
steps are as follows:

1. On day x, the first predictive equation is calculated, obtaining by linear regression
the third-degree polynomial equation that best fits the y∗ values observed for the
fourteen values between days (x − 13) and (x). The coefficients of Equation (2), a, b, c,
and d, are obtained. This equation is called the standard equation for day x.

2. From the standard equation forecast ŷ∗, the values for the days (x + 1), (x + 2), . . . ,
(x + 14) are projected. Two alternative predictions are calculated for a pandemic
scenario that is worse and better than the standard prediction. These are called the
unfavorable prediction and the favorable prediction, respectively. The calculation is
performed by applying variations of ±3% to the standard prediction values. Therefore,
a range [ŷ∗f - ŷ∗u] is defined. It is worth remarking that the ±3% limit is simply used
to calculate the range that imposes the limit that, when trespassed, will require a
re-estimation of the model.

3. From the standard equation, the forecasts of velocity and acceleration are calculated,
using the first and second derivatives: Equations (3) and (4).

4. A new set of predictor equations is calculated in one of these situations:

(a) One observed value y∗ is lower than those of the favorable prediction or
exceeds the unfavorable prediction.

(b) During 14 days, the observed values lie in the range [ŷ∗f - ŷ∗u].

(c) One predicted y∗ value is less than the previous day, which denotes a max-
imum in the equation that would lead to the absurdity that the cumulative
number of cases decreases.

5. The process is restarted in Step 1.

The ±3% range relative to the estimates does not represent a confidence interval
for the prediction, but it is just used to represent favorable and unfavorable predictions
relative to estimated values. The ±3% value was arbitrarily chosen, based solely on the
empirical verification that with this margin, the value of the 14 day predictions does not
differ excessively from the observed values. In this way, the ±3% margin is a sort of
“rule-of-thumb” to re-calculate, if surpassed, a new arc of the cubic curve. It is intended to
obtain a limited number of arcs of the epidemic curve that, in the context of the irregularity
of the historical series of y∗ values, facilitate the qualitative understanding of the epidemic
moment. This qualitative interpretation can probably be translated into an assessment of
both the NPIs that are adopted at each moment and the influence of external factors that
favor the spread. The “jumps” that occur between the different arcs of the predictor curve
undoubtedly have a meaning, and we believe that it can be correlated with the favorable
and unfavorable pandemic spreading factors.

The next section offers the results obtained by applying this algorithm to the official
data of the of the pandemic’s second wave in Spain, until 17 October.

3. Data and Results
3.1. The Data

The historical data matrix used in this work was constructed from the daily data of the
cumulative number of cases since the beginning of the pandemic, which are daily released
by the Centre for the Coordination of Health Alerts and Emergencies of the Ministry of
Health and correspond to the day prior to its publication. It is a set of 230 reports (until 19
October 2020) in pdf format, from which the daily values of the variable y were extracted.
These reports can be found on the website of the Ministry of Health (https://www.mscbs.
gob.es/), and one of them is referenced as an example [21]. As the Ministry has not
provided information on weekends since July, the total cases corresponding to Fridays

https://www.mscbs.gob.es/
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and Saturdays were obtained by linear interpolation between the values of Thursdays and
Sundays.

The y value is defined by the Spanish Ministry of Health as “total cases confirmed by
polymerase chain reaction test (PCR) until 10 May, and by PCR and IgM antibodies against
SARS-CoV-2 (only if compatible symptoms) according to the new surveillance strategy”
since 11 May. Therefore, in this study, all y values are confirmed cases by PCR or IgM
compatible with symptoms. As explained in the previous section, the algorithm works
with the moving average of total cumulative number of cases of seven days, represented
as y∗, that are directly calculated from the historical cumulative number of cases matrix.
This value is related to the “Cumulative number for 7 days of COVID-19 cases per 100,000”,
a rate usually used as an indicator, calculated as the number of new cases of disease in
seven days multiplied by 100,000 and divided by the total number of individuals in the
population at risk (CI 7d/100k).

The theoretical border between the first and second pandemic wave was evaluated
fitting y values from 16 May to 16 July, to a third-degree polynomial function (R2 = 0.9980)
and setting the second derivative equal to zero, so 15 June is obtained as the inflection
point. At this point, the curvature changes from convex to concave and marks hypothet-
ically the end of the first wave and the start of the second (Figure 3). Thus, our study
covers from 15 June, although it uses data from 14 days before to calculate the first of the
predictive equations.

Figure 3. Cumulative number of cases in Spain from 23 February until 20 September. The arrow marks an inflection point
at 15 June, which theoretically separates the two pandemic waves. Data source: Centro de Coordinación de Alertas y
Emergencias Sanitarias (CCAES).

It is important to note that the information provided in Spain by the Ministry of
Health has been the subject of controversy and criticism, being considered insufficient to
understand the dynamics of COVID-19 and to take action, excluding ongoing retrospective
series corrections [21].
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3.2. Prediction Sections Obtained

The algorithm described previously was applied to the y∗ matrix obtaining a total of
nine third-order function sections covering from 15 June to 18 October, as shown in Table 1.

The polynomial regressions are estimated for each sub-period using the standard least
squares methodology. Hence, standard tests, such as the mean squared error or R2, are
employed to measure the quality of fit for the estimations of the model obtained.

Equations (2)–(4) summarize the features of each section, indicating the days of
duration of them, the range of the relative errors er between y∗ and ŷ∗, the determina-
tion coefficient R2, the type of curvature, and the averages of the pandemic velocity v
(cases/day) and acceleration w (cases/day2).

Table 1. Characteristics of the sections of the standard prediction, using arcs of cubic curves, indicating for each one the
date on which it was constructed, the duration in days, the relative error (er) range, the coefficient of determination (R2), the
curvature, the average velocity of propagation (v), and the average acceleration (w).

Section Date Days εr Min εr Max R2 Curvature vAverage wAverage

T-1 14 June 14 −3.21% −0.05% 0.9728 CONCAVE 968 94.4
T-2 28 June 14 −0.05% 0.39% 0.9880 CONVEX 346 −3.7
T-3 12 July 14 0.00% 1.38% 0.9994 CONCAVE 1082 72.7
T-4 26 July 14 −0.37% 0.38% 0.9984 CONCAVE 2892 106.6
T-5 9 August 14 −0.83% 1.15% 0.9966 CONCAVE 4846 90.7
T-6 23 August 14 0.03% 3.30% 0.9984 CONCAVE-CONVEX 6893 −35.4
T-7 6 September 13 0.08% 3.38% 0.9965 CONVEX 8078 −136.8
T-8 19 September 14 −3.29% 0.06% 0.9970 CONCAVE 12,785 276.7
T-9 3 October 13 −0.08% 3.31% 0.9937 CONVEX 7734 −219.9

As an example, in Figure 4, the curves from section T-6 are represented. In this section,
there exists a transition from positive to negative acceleration (from concavity to convexity)
with an inflection point in x = 188 (28 August). The set of 14 values corresponding to
the total number of cumulative number of cases from 10 August (x = 169) and 23 August
(x = 182) was adjusted by linear regression to a cubic polynomial (R2 = 0.9995), and from
the equation, the three predictive curves were obtained: ŷ∗, ŷ∗f , and ŷ∗u (standard, favorable,
and unfavorable). In order to compare the forecasts with the observed values, the y∗ values
from August 24 were represented with a different symbol (rhombuses). In this section, it
can be seen that they are located between the curves y∗ and ŷ∗u until 6 September (x = 196),
when the observed y∗ is higher than unfavorable forecast ŷ∗u. According to the criteria
established in the algorithm, on the day that the section is considered finished, three new
predictor curves are calculated. Obviously, in the last observed point, the relative error
exceeds the criterion value of ±3% and reaches a value of 3.30%, indicating the need for a
new section.
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Figure 4. T-6 predictive segment calculated on 23 August between 10 and 23 August (x = 169 to 182). The black circles
represent the 14 values used to obtain the curve y∗ by linear regression. The rhombuses are the observed y∗ values since 24
August. The ŷ∗u and ŷ∗f curves were obtained by increasing and reducing the values of y∗ by 3%. The standard equation:

ŷ∗ = −3.658x3+ 2061.89x2−380,298.77 x+ 23,354,382.14 ; R2 = 0.9999.

Figure 5 shows the arcs of the corresponding predictive curves (ŷ∗) in the sections T-1
to T-9 together with the values of the total cumulative number of cases observed between
15 June and 17 October 2020.

Figure 5. Predictive arcs (red line) calculated from 15 June (x = 113) to 17 October (x = 237). The black circles represent all
the observed values of cumulative number of cases for a seven day average.
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All observed y∗ values are within the established range of ±3% (unfavorable
—favorable), except five points (in T-1, T-6, T-7, T-8, and T-9), which are milestones of
the algorithm, which indicates that a new forecast curve should be calculated. In the four
sections (T-2, T-3, T-4, and T-5), all the points are within the range, and new curve sections
are calculated due to the algorithm restriction to limit in 14 days each section.

As an initial approach to the forecast quality, the coefficient of determination R2 is
used. The value of this coefficient R2 = 0.9994 for the arrays ŷ∗ and y∗ is the set of the
nine calculated predictive sections. This indicates a very high capacity of the algorithm to
replicate, with an anticipation until two weeks, the observed results. In Figure 6, the values
of ŷ∗ are represented as a function of those of y∗ with very good correlation between both
arrays: ŷ∗ = 0.9943y∗ (R2 =0.9997).

Figure 6. Arrays of observed and forecasted values between 15 June and 17 October (ŷ∗ vs. y∗).

As expected, in each of the sections of the predictive curves, increasing x increases
the relative standard errors of prediction. This can be seen very well in Figure 7, where

er =
(y∗ − ŷ∗)

y∗
is plotted versus x. We also observed that between x = 127 (29 June) and

x = 191 (1 September), the relative errors are in the range of −0.83% to 1.48%, and therefore,
all the observed values fall between the favorable and unfavorable scenario. This fact will
be interpreted later.
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Figure 7. Relative standard errors for each of the nine predictor curves.

3.3. Nowcasting and Short-Term Forecasting Results

From the equations of each of the nine sections, the seven day forecasts and 14 day
nowcasts/forecast were calculated.

In Tables 2 and 3, these predictions are summarized by comparing them with the
values observed on each date.

Table 2. Seven day forecasts.

Section Calculation Day Forecast For: ŷ∗ y∗ er

T-1 14 June 21 June 247,367 245,510 −0.76%
T-2 28 June 5 July 250,586 250,529 −0.02%
T-3 12 July 19 July 259,508 260,450 0.36%
T-4 26 July 2 August 289,618 288,548 −0.37%
T-5 9 August 16 August 344,827 342,503 −0.68%
T-6 23 August 30 August 434,097 438,028 0.90%
T-7 6 September 13 September 558,756 564,592 1.03%
T-8 19 September 26 September 708,587 704,672 −0.56%
T-9 3 October 10 October 841,119 847,748 0.78%

Table 3. Fourteen day forecasts/nowcasts.

Section Calculation Day Forecast For: ŷ∗ y∗ er

T-1 14 June 28 June 256,043 248,069 −3.21%
T-2 28 June 12 July 252,933 253,917 0.39%
T-3 12 July 26 July 268,568 272,331 1.38%
T-4 26 July 9 August 312,108 313,303 0.38%
T-5 9 August 23 August 380,721 385,135 1.15%
T-6 23 August 6 September 481,845 498,302 3.30%
T-7 6 September 20 September 612,775 638,020 3.96%
T-8 19 September 3 October 803,787 778,216 −3.29%
T-9 3 October 17 October 886,367 923,150 3.98%



Appl. Syst. Innov. 2021, 4, 2 12 of 18

On the calculation day, the seven day forecasts predict the cumulative number of
cases (seven day average) that will be recorded seven days later. At the same time, if we
assume the hypothesis that there is a time lapse of 14 days between the infection and the
cases’ registration, we also obtain an approximation of the cumulative number of infections
(seven day average) that occurred one week ago. In turn, the 14 day forecasts predict
the cumulative number of cases (seven day average) that will be registered 14 days later,
and at the same time, a nowcast is obtained that is an approximation of the cumulative
number of infections that are happening today. As the cumulative number of infections are
very difficult to verify, the validation of the algorithm’s predictive capacity is evaluated
by comparing the values of the cumulative number of cases (seven day average) observed
seven and 14 days after the calculation date.

In Table 2, the seven day forecasts are presented. The relative error range is (−0.76%,
1.03%), and the median is −0.02. Clearly, all forecasts are inside the favorable-unfavorable
scenarios margins (±3%).

In Table 3, the 14 day forecasts are shown, and therefore, nowcasts are less accurate
than seven day forecasts. The median of the relative errors is 1.15%, and the range is
(−3.29%, 3.98%). Four of the nine 14 day forecasts lie within the margin between the
favorable and unfavorable scenarios. In the other five predictions, the relative error does
not in any case exceeded ±4.0% with respect to the standard prediction.

The results of seven and 14 day forecasts are represented in Figure 8, including the
margins of the favorable and unfavorable scenarios, together with the observed curve of
the seven day average of the cumulative number of cases.

Figure 8. Favorable and unfavorable scenarios versus observed curve of the seven day average of the cumulative number
of cases: y∗ (dashed line), ŷ∗ 14 days (green), and ŷ∗ seven days (red).
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4. Discussion

In this research, we show the adaptability of the cubic function to the epidemic curve
of the cumulative number of cases, obtaining very good adjustments when applying it to
the second wave of the COVID-19 pandemic in Spain.

The suitability of third and fourth degree equations for pandemic prediction has
already been suggested in the literature. For example, the cubic function has been used
for the prediction of mortality associated with COVID-19 because of its ability to reflect
growth in the peak of daily cases [22,23] and has been tested, together with other equations,
to predict the future development of the pandemic [24,25]. The approach that is described
in this work is different, since, on the one hand, it does not intend to make long-term
predictions, nor predict the peak nor the end of the pandemic, and on the other, a totally
empirical approach to the problem is made, which avoids an epidemiological hypothesis.
The objective is also different, since a nowcasting methodology is developed and tested
that offers real-time approximations of the situation of the spread of infections, which can
be of great value to adequately manage the pandemic.

When the seven day average of the cumulative number of cases (y∗) is used as a
variable, very good estimates are obtained with the cubic function for periods of up to two
months. For 65 days, between 29 June (x = 127) and 1 September (x = 191), the values of y∗

in Spain fit almost perfectly the equation:

y = 0.4033x3 − 126.19x2 + 12, 699.01x − 156, 382.60 (5)

Essentially, the algorithm is a kinematic analogy that describes the space, velocity, and
acceleration of a moving object with varying acceleration. The use of successive sections
of the cubic curve is motivated by the similarity between the obstacles that slow down
a moving body and the NPIs that are implemented to mitigate the propagation or the
factors or circumstances that accelerate it, such as the increase of mobility or easing of
previous interventions. An epidemic in which no type of intervention is adopted could
probably be represented almost entirely by a third-degree equation, excluding the initial
and final phases with asymptotic behavior. Therefore, the corrections that are made in the
algorithm when a new curve section is calculated indicate that unfavorable circumstances
are occurring or that the adopted NPIs are effective.

The results obtained in the predictions were satisfactory. The seven day predictions
offer relative errors between −0.76% and 1.03% (all of them within the margins of the
favorable-unfavorable scenarios). The 14 day predictions present relative errors between
−3.29% and 3.98% (only four of them within the margins of the favorable-unfavorable
scenarios). With the exception of seven of the observed y∗ values, the remaining 117 are
within the ±3% range defined by the favorable and unfavorable predictions.

The most stable part of the curve reflected in Figure 9, between 29 June and 1 Septem-
ber, represents an accelerated growth without obstacles, so the values predicted by the
curves of sections T-2 to T-6 have very low relative errors with respect to the observed
values (between −0.83% and 1.48%). In this period, the acceleration grew linearly with a
slope of 3.9 cases/day2, which caused the speed to multiply by 26 in just over two months
(the seven day moving average of daily cases went from 326 to 8529). During this period
in Spain, there was a notable absence of decisive interventions to stop the second wave,
which is most likely reflected in the fact that the data fit the cubic equation very well. It was
not until 20 August when the Spanish health authorities recognized that the situation
was worrying: “. . . do not be fooled. If we still allow transmission to continue upwards,
we will have many hospitalized, many admitted to the intensive care units (ICU), and
many deceased”, declared the director of the Centre for Coordination of Health Alerts and
Emergencies of the Spanish Ministry of Health [26].
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Figure 9. Seven day average estimation between 29 June and 2 September.

The 14 day predictions are used as nowcasting to know in real time the evolution of
infections. For this, the hypothesis was assumed that an average of 14 days elapse between
infection and registration as a case of COVID-19. Although this is very approximate, it is
possible to make a rough estimate of the delay time between the day of infection and the
date of inclusion and publication as a confirmed case by the health authorities. For COVID-
19, it was estimated by Lauer et al. [27] that the median incubation period is 5.1 days (95%
CI, 4.5 to 5.8 days) and that less than 2.5% of infected people will present symptoms within
2.2 days (CI, 1.8 to 2.9 days) of exposure, while the onset of symptoms will appear in
11.5 days (CI, 8.2 to 15.6 days) for 97.5% of infected people. There is also a variable number
of days of delay between the onset of symptoms until the date of registration as a confirmed
case of COVID-19 by the health authorities and its inclusion in the epidemic statistics.
In Spain, this delay, according to information from RENAVE(National Epidemiological
Surveillance Network) [28], includes a median of two days (IQRs 1-4) from the onset
of symptoms to consultation and a median of one day (IQRs 1-2) from consultation to
diagnosis. There is no information on the delay between diagnosis and inclusion and
data released by the Ministry, but it can be assumed that this delay should be about 1–
2 days. Therefore, it is not risky to estimate an average total delay of about two weeks from
infection to inclusion in official statistics.

Table 4 shows the information that would have been available applying the nowcast
values obtained using the algorithm developed in this work.
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Table 4. Nowcast estimations.

Observed Cumulative Cases Nowcasts Cumulative Infections

Date Cumulative
Number of Cases

Average 14d
Daily Cases

Favorable-
Unfavorable

Average 14 Days
Daily Infections

28 June 2020 248,069 354 245,345–260,450 −215–1238
12 July 2020 253,917 418 260,511–276,626 1083–1150
26 July 2020 272,331 1315 302,745–321,471 3017–3203

9 August 2020 313,303 2927 369,300–392,143 4754–5048
23 August 2020 385,135 5131 467,390–496,301 7006–7440

6 September 2020 498,302 8083 594,392–631,159 7007–9633
19 September 2020 626,918 9187 779,674–827,901 13,723–14,572

3 October 2020 778,216 10,807 859,776–912,958 6810–7232

On 28 June, the favorable nowcast indicated that the infections were controlled (the
negative value makes no more sense than to indicate that in this scenario, there were no
more new infections). However, the unfavorable scenario showed that more than three
times more infections could be occurring than cases registered that day. Obviously, the
nowcast shows a notable lack of definition about how the pandemic would evolve. How-
ever, two weeks later, the situation had changed, since both the favorable and unfavorable
scenarios indicated that on 12 July, there were between 2.6 and 2.8 times more infections
than the registered cases, and the 28 June unfavorable scenario was confirmed with more
than 1000 new infections daily. These nowcasts clearly show the advisability of adopting
restrictions and implementing NPIs, at least in the highest incidence geographic areas.
On 26 July, the situation had notably worsened: the registered cases had multiplied by more
than three, and there were between 2.3 and 2.4 times more infections than the registered
cases. Many experts criticized the late reaction of central and regional authorities, the
slowness of decision-making processes, and the low dependence on scientific advice [29].

On 6 September, the number of cases and the unfavorable nowcast indicated that
pandemic spread had acquired a very high rate. However, between 19 September and
3 October, there were sudden changes in the immediate predictions, perhaps due to the
confluence of negative factors (opening of schools) and positive factors (decreased mobility
associated with holidays) together with the implementation of new NPIs.

The irregularities shown by the nowcasts of 19 September and 3 October are a reflection
of those that occur in the records of the cumulative number of cases that, at the time of
writing this work, indicate an indefiniteness of trends, as can be observed in the epidemic
curve of daily cases in Figure 10, with numerous irregularities since mid-September. It
can be affirmed that the growing trend of infections began to slow down in the first half
of September, which indicates that the curve began to flatten because the measures that
began to be adopted at that time were effective; although, today, it cannot be known yet if
they were sufficient.

To sum up, the developed nowcasting methodology is useful to anticipate the adoption
of interventions. As was seen in the case of Spain, the nowcasts indicated very well the July
dates in which the NPIs, that had relaxed greatly in the second half of June, should have
been retaken. However, they did not begin to resume until the beginning of September,
with greater effort and with less efficiency than if they had advanced to July.

When compared to alternative estimation methodologies, the algorithm provides
similar numerical results to estimating rolling regressions, but our approach also provides
the location of the negative and positive “jumps” that facilitate the understanding of the
epidemiological moment and the need to undertake new measures.
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Figure 10. Daily cases and seven day moving average (red lines).

In addition to the short-term forecast and nowcast capacity, the algorithm developed
in this work has the potential for its simplicity and easy implementation, and at the same
time, it can be useful in the public communication of the evolution of the pandemic, which
is also an important NPI, to explain to the general public how the spread is taking place and
why it is necessary to apply interventions that anticipate the dynamics of the pandemic.

Noticeably, this algorithm, which was developed during the second wave in Spain,
must be readjusted to offer more accurate predictions and forecasts and must be tested
with historical series from other countries to confirm its validity. Likewise, its predictive
ability to project hospital needs and other epidemic parameters should also be tested.

Moreover, positive deviations from the estimated might indicate either a failure of
the current containment efforts, while negative deviations might indicate a success in
mitigation strategies.

Regarding the issue of the limitations associated with the significance of the results,
in the field of forecasting, it is difficult to compute a test for the fitness of a model over a
non-existing set of data. However, this difficulty grows in cases like the present one, since
the evolution of COVID is determined by a multiplicity of factors, such as government
intervention, external factors, such as weather, or even genetic factors. This makes it
extremely difficult to use sample tests in this model. Nevertheless, we carried out sample
tests weekly during the last month, and it worked fairly well. A good example to prove
this is the small number of recalculations we needed to do when the actual data fall out
of bounds.

5. Conclusions

It is observed that the epidemic curve of the cumulative number of COVID-19 cases
fits adequately to a third-degree polynomial function for periods of up to two months with
coefficients of determination R2 greater than 0.97. This fact has been used as the basis for
developing an algorithm that predicts the spread of the COVID-19 pandemic up to two
weeks in advance.

The results obtained when testing this algorithm with the figures for the second
pandemic wave in Spain, between 15 June and 17 October 2020, lead to short-term forecasts
with relative errors of less than ±1.1 in the seven day predictions, all of them within the
favorable-unfavorable scenarios defined.
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The relative errors of 14 day predictions are less than ±4.0% and, only in four of them,
within the favorable-unfavorable scenarios previously defined.

To avoid the bias observed in Spain depending on the day of the week in the values of
published daily cases, the seven day moving averages of the cumulative number of cases
were used. The use of this variable leads to more accurate predictions than the daily values
of the cumulative number of cases and allows the predictions of two epidemiological
indicators that are being widely used in many countries: seven day and 14 day notification
rate of new COVID-19 cases per 100,000 inhabitants.

The 14 day predictions are used as nowcasting to know in real time the evolution of
infections. For this, the hypothesis is that, on average, it must be assumed that 14 days
elapse between infection and registration as a COVID-19 case. This information is of great
practical value for the correct management of the pandemic.

One of the most relevant contributions of this work is, perhaps, the nowcasting of the
daily “unobserved” infections, assessed by means of estimating the detections that will
occur in 14 days, which serve as a nowcast of today’s infections. In this sense, if a rolling
calculation had been used, many more predictive values would have been obtained, but for
the days in which 14 day prediction of detections were calculated in this work, the results
would have been the same. Furthermore, to interpret the “jumps” between the different
arcs of the cubic curve, their number has to be limited, which leads to a model similar to
the one used here. Therefore, although it is not the usual procedure, the results are similar
to those that would be obtained using a rolling regression, while obtaining, at the same
time, the location of the “jumps”.

The results obtained suggest that the algorithm developed can be used to know in real
time the dynamics of the spread of the pandemic and to be able to adopt NPIs at the right
time and properly prepare the health system. Nevertheless, the algorithm will be assayed
and can be improved by studying other COVID-19 historical series.

Author Contributions: All authors contributed equally to this work. All authors read and agreed to
the published version of the manuscript.

Funding: This work was supported by the AEI/Ministerio de Economía, Industria y Competitividad
(MINEIC) and FEDER Project ECO2017-83255-C3-3-P and the Generalitat Valenciana (PROME-
TEO/2018/102 and GV/2017/052). The authors also acknowledge the support from the “Betelgeux-
Christeyns” Chair for Sustainable Economic Development. This paper is part of the research thematic
network ECO2016-81901-REDT financed by MINEIC. The usual disclaimer applies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request from the authors.

Acknowledgments: We thank the Editor and three anonymous reviewers for their helpful comments
on earlier drafts of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Giráldez, F. Por qué los Humanos no Entendimos lo que Estaba Pasando? Available online: comunidaddeloslibros.com (accessed

20 November 2020).
2. BMJ. BMJ Newsroom: UK’s Response to Covid-19 “Too Little, Too Late, Too Flawed”, 15/15/2020; BMJ: London, UK, 2020.
3. Silv, M. COVID-19: Too little, too late? Lancet 2020, 395, 755. [CrossRef]
4. MSF. Poco, Tarde y Mal. El Inaceptable Desamparo de Las Personas Mayores en Las Residencias Durante la COVID-19 en España;

Technical Report; Médicos Sin Fronteras: Geneva, Switzerland, 2020.
5. Johns Hopkins University of Medicine. Animated Maps—Johns Hopkins Coronavirus Resource Center; Johns Hopkins University of

Medicine: Baltimore, MD, USA, 2020.
6. Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of

the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [CrossRef] [PubMed]

comunidaddeloslibros.com
http://dx.doi.org/10.1016/S0140-6736(20)30522-5
http://dx.doi.org/10.1016/j.ijsu.2020.04.018
http://www.ncbi.nlm.nih.gov/pubmed/32305533


Appl. Syst. Innov. 2021, 4, 2 18 of 18

7. Baldwin, R.; Mauro, B.W.D. Economics in the Time of COVID-19; Centre for Econnomic Policy Research Press: London, UK, 2020;
pp. 105–109.

8. Eurostat. GDP and Employment Flash Estimates for the Second Quarter of 2020: GDP Down by 12.1% and Employment Down by 2.8% in
the Euro Area—Product—Eurostat; Eurostat: Luxembourg, 2020.

9. Sachs, J.; Schmidt-Traub, G.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. The Sustainable Development Report. The Sustainable
Development Goals and COVID-19; Technical Report; Cambridge University Press: Cambridge, UK, 2020.

10. Sachs, J.D.; Abdool Karim, S.; Aknin, L.; Allen, J.; Brosbøl, K.; Cuevas Barron, G.; Daszak, P.; Espinosa, M.F.; Gaspar, V.; Gaviria, A.;
et al. Lancet COVID-19 Commission Statement on the occasion of the 75th session of the UN General Assembly. Lancet 2020,
396, 1102–1124. [CrossRef]

11. Matrajt, L.; Leung, T. Evaluating the Effectiveness of Social Distancing Interventions to Delay or Flatten the Epidemic Curve of
Coronavirus Disease. Emerg. Infect. Dis. 2020, 26, 1740–1748. [CrossRef]

12. Chaccour, C. COVID-19: Five Contrasting Public Health Responses to the Epidemic. Available online: https://www.isglobal.org/
(accessed on 17 March 2020).

13. Lai, S.; Ruktanonchai, N.W.; Zhou, L.; Prosper, O.; Luo, W.; Floyd, J.R.; Wesolowski, A.; Santillana, M.; Zhang, C.; Du, X.; et al. Effect of
non-pharmaceutical interventions to contain COVID-19 in China. Nature 2020, 585, 410–413. [CrossRef]

14. Orea, L.; Álvarez, I.C. How effective has the Spanish lockdown been to battle COVID-19? A spatial analysis of the coronavirus
propagation across provinces. Available online: https://navarra.opennemas.com/media/navarra/files/2020/04/16/dt2020-03
.pdf (accessed on 30 December 2020).

15. Bank of England. Central Bank Digital Currency. Opportunities, Challenges and Design; Technical Report March; Bank of England:
London, UK, 2020.

16. Schmid, F.; Wang, Y.; Harou, A. Arcimís: Guías Generales Para la Predicción Inmediata: Resumen; Technical Report; AEMET: Madrid,
Spain, 2019.

17. Kapetanios, G.; Papailias, F. Big Data & Macroeconomic Nowcasting: Methodological Review. In Economic Statistics Centre of
Excellence (ESCoE) Discussion Papers; ESCoE: London, UK, 2018.

18. Bregler, C. Kinematic Motion Models. In Computer Vision; Ikeuchi, K., Ed.; Springer: Boston, MA, USA, 2014; pp. 437–440.
[CrossRef]

19. Vazquez, A. Polynomial Growth in Branching Processes with Diverging Reproductive Number. Phys. Rev. Lett. 2006, 96, 038702.
[CrossRef]

20. Susser, M.; Adelstein, A. An introduction to the work of William Farr. Am. J. Epidemiol. 1975, 101, 469–476. [CrossRef]
21. Centro de Coordinación de Alertas y Emergencias Sanitarias. Actualización nº 1 a 211. Enfermedad Por el Coronavirus (COVID-19);

Centro de Coordinación de Alertas y Emergencias Sanitarias: Madrid, Spain, 2020.
22. Gerli, A.; Centanni, S.; Miozzo, M.; Sotgiu, G. Predictive models for COVID-19-related deaths and infections. Int. J. Tuberc.

Lung Dis. 2020, 24, 647–650. [CrossRef]
23. Sotgiu, G.; Gerli, A.G.; Centanni, S.; Miozzo, M.; Canonica, G.W.; Soriano, J.B.; Virchow, J.C. Advanced forecasting of SARS-CoV-

2-related deaths in Italy, Germany, Spain, and New York State. Allergy 2020, 75, 1813–1815. [CrossRef]
24. Akhtar, I.U.H.Understanding the CoVID-19 pandemic Curve through statistical approach. medRxiv 2020, [CrossRef]
25. Amar, L.A.; Taha, A.A.; Mohamed, M.Y. Prediction of the final size for COVID-19 epidemic using machine learning: A case study

of Egypt. Infect. Dis. Model. 2020, 5, 622–634. [CrossRef]
26. Fernando Simón Enciende la Alarma: “Las Cosas No Van Bien. Está Fuera de Control en Algunos Puntos”. Available online:

https://www.elespanol.com/ (accessed on 20 August 2020).
27. Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period

of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med.
2020, 172, 577–582. [CrossRef]

28. Equipo COVID-19. Situación de COVID-19 en España a 16 de Septiembre de 2020, Equipo Covid-19 and RENAVE. Available
online: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Paginas/
InformesCOVID-19.aspx (accessed on 16 September 2020).

29. García-Basteiro, A.; Alvarez-Dardet, C.; Arenas, A.; Bengoa, R.; Borrell, C.; Del Val, M.; Franco, M.; Gea-Sánchez, M.; Otero, J.J.G.;
Valcárcel, B.G.L.; et al. The need for an independent evaluation of the COVID-19 response in Spain. Lancet 2020, [CrossRef]

http://dx.doi.org/10.1016/S0140-6736(20)31927-9
http://dx.doi.org/10.3201/eid2608.201093
https://www.isglobal.org/
http://dx.doi.org/10.1038/s41586-020-2293-x
https://navarra.opennemas.com/media/navarra/files/2020/04/16/dt2020-03.pdf
https://navarra.opennemas.com/media/navarra/files/2020/04/16/dt2020-03.pdf
http://dx.doi.org/10.1007/978-0-387-31439-6_587
http://dx.doi.org/10.1103/PhysRevLett.96.038702
http://dx.doi.org/10.1093/oxfordjournals.aje.a112117
http://dx.doi.org/10.5588/ijtld.20.0196
http://dx.doi.org/10.1111/all.14327
http://dx.doi.org/10.1101/2020.04.06.20055426
http://dx.doi.org/10.1016/j.idm.2020.08.008
https://www.elespanol.com/
http://dx.doi.org/10.7326/M20-0504
https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Paginas/InformesCOVID-19.aspx
https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Paginas/InformesCOVID-19.aspx
http://dx.doi.org/10.1016/S0140-6736(20)31713-X

	Introduction
	Empirical Algorithm
	Data and Results
	The Data
	Prediction Sections Obtained
	Nowcasting and Short-Term Forecasting Results

	Discussion
	Conclusions
	References

