A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes
Abstract
:1. Introduction
1.1. History of Glucose Sensors
1.2. Advantages of Glucose Sensing without the Enzyme
2. Electrochemical Properties of Graphene, Graphene Oxide (GO), and Reduced Graphene Oxide (rGO)
3. Mechanism of Cyclic Voltammetry Transducer
4. Synthesis of Graphene and Its Derivatives
5. Graphene-Based Electrode for Non-Enzymatic Glucose Biosensor
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patolsky, F.; Zheng, G.; Lieber, C.M. Nanowire sensors for medicine and the life sciences. Nanomedicine 2006, 1, 51–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapsford, K.E.; Bradburne, C.; Delehanty, J.B.; Medintz, I.L. Sensors for detecting biological agents. Mater. Today 2008, 11, 38–49. [Google Scholar] [CrossRef]
- Wilson, C.B. Sensors in medicine. BMJ 1999, 319, 1288. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Malik, P.; Katyal, V.; Malik, V.; Asatkar, A.; Inwati, G.; Mukherjee, T.K. Nanobiosensors: Concepts and Variations. ISRN Nanomater. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Touhami, A. Biosensors and Nanobiosensors: Design and Applications. Nanomedicine 2014, 15, 374–403. [Google Scholar]
- Ahlatcioglu Özerol, E.A.Ö.; İpek, Y. Biosensors and Their Principles, A Roadmap of Biomedical Engineers and Milestones; InTech: Vienna, Austria, 2012; Available online: https://www.researchgate.net/publication/280614632_Biosensors_and_Their_Principles (accessed on 30 July 2020).
- Grutter, P. An Introduction to Micromachined Biochemical Sensors-PPT Download. 2015. Available online: https://slideplayer.com/slide/6368321/ (accessed on 31 July 2020).
- Nikhil, B.; Pawan, J.; Nello, F.; Pedro, E. Introduction to Biosensor. Essays Biochem. 2016, 60, 1–8. [Google Scholar]
- Lin, H.-Y.; Chen, W.-H.; Huang, C.-H. Graphene in Electrochemical Biosensors. Biomedical Applications of Graphene and 2D Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 321–336. [Google Scholar]
- Wang, C.-F.; Sun, X.-Y.; Su, M.; Wang, Y.-P.; Lv, Y.-K. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules. Analyst 2020, 145, 1550–1562. [Google Scholar] [CrossRef]
- Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal. Chim. Acta 2015, 887, 17–37. [Google Scholar] [CrossRef]
- Justino, C.I.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T. Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Pirzada, M.; Altintas, Z. Nanomaterials for Healthcare Biosensing Applications. Sensors 2019, 19, 5311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansuriya, B.D.; Altintas, Z. Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. Materials 2019, 13, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Li, L.; Zhou, W.; Shao, Z.; Chen, X. Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 2016, 4, 7333–7349. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Kuca, K.; Bhatia, S.K.; Saini, K.; Kaushal, A.; Verma, R.; Bhalla, T.C.; Kumar, D. Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens. Sensors 2020, 20, 1966. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.C.; Lyons, C. ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. Ann. N. Y. Acad. Sci. 2006, 102, 29–45. [Google Scholar] [CrossRef]
- Hale, P.D.; Inagaki, T.; Karan, H.I.; Okamoto, Y.; Skotheim, T.A. A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator. J. Am. Chem. Soc. 1989, 111, 3482–3484. [Google Scholar] [CrossRef]
- Cass, A.E.G.; Davis, G.; Francis, G.D.; Hill, H.A.O.; Aston, W.J.; Higgins, I.J.; Plotkin, E.V.; Scott, L.D.L.; Turner, A.P. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 1984, 56, 667–671. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical Glucose Biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef]
- Liu, J.; Guo, C.X.; Li, C.M.; Li, Y.; Chi, Q.; Huang, X.; Liao, L.; Yu, T. Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem. Commun. 2009, 11, 202–205. [Google Scholar] [CrossRef]
- Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.F.; Willner, I. "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science 2003, 299, 1877–1881. [Google Scholar] [CrossRef]
- Wilson, R.; Turner, A.P. Glucose oxidase: An ideal enzyme. Biosens. Bioelectron. 1992, 7, 165–185. [Google Scholar] [CrossRef]
- Li, J.; Lin, X. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens. Bioelectron. 2007, 22, 2898–2905. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhang, G.; Shuang, S.; Choi, M.M.F. Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane. Talanta 2004, 64, 546–553. [Google Scholar] [CrossRef]
- Han, K.; Wu, Z.; Lee, J.; Ahn, I.-S.; Park, J.W.; Min, B.R.; Lee, K. Activity of glucose oxidase entrapped in mesoporous gels. Biochem. Eng. J. 2005, 22, 161–166. [Google Scholar] [CrossRef]
- Ohara, T.J.; Rajagopalan, R.; Heller, A. "Wired" Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances. Anal. Chem. 1994, 66, 2451–2457. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.L.; Formisano, N.; Carrara, S.; Tkac, J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toghill, K.E.; Compton, R.G. Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation. 2010. Available online: https://www.semanticscholar.org/paper/Electrochemical-non-enzymatic-glucose-sensors%3Aa-and-Toghill-Compton/23e793fd60eca87ddf9f0e63587d3368ff5c6eed (accessed on 31 July 2020).
- Park, S.; Boo, H.; Chung, T.D. Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 2006, 556, 46–57. [Google Scholar] [CrossRef]
- Chen, X.; Wu, G.; Cai, Z.; Oyama, M.; Chen, X. Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim. Acta 2013, 181, 689–705. [Google Scholar] [CrossRef]
- Carbone, M.; Gorton, L.; Antiochia, R. An Overview of the Latest Graphene-Based Sensors for Glucose Detection: The Effects of Graphene Defects. Electroanalysis 2015, 27, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Favero, G.; Fusco, G.; Mazzei, F.; Tasca, F.; Antiochia, R. Electrochemical Characterization of Graphene and MWCNT Screen-Printed Electrodes Modified with AuNPs for Laccase Biosensor Development. Nanomaterials 2015, 5, 1995–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Duan, H. 2D and 3D graphene materials: Preparation and bioelectrochemical applications. Biosens. Bioelectron. 2015, 65, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Luo, Y.; Zhu, C.; Li, H.; Dub, D.; Linb, Y. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 2016, 76, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.A.; Mahmoudi, M. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chem. Rev. 2013, 113, 3407–3424. [Google Scholar] [CrossRef]
- Sehrawat, P.; Islam, S.S.; Mishra, P.; Ahmad, S. Abid Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E.L.K.; Poh, H.L. Graphene for electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 2010, 29, 954–965. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Wilson, N.R.; Pandey, P.A.; Beanland, R.; Young, R.J.; Kinloch, I.A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J.P.; York, S.J.; et al. Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano 2009, 3, 2547–2556. [Google Scholar] [CrossRef]
- Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y.J.; Chhowalla, M.; Shenoy, V.B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Paredes, J.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascón, J.D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24, 10560–10564. [Google Scholar] [CrossRef] [PubMed]
- Lightcap, I.; Kosel, T.H.; Kamat, P.V. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Lett. 2010, 10, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.D.; Stankovich, S.; Jung, I.; Field, D.A.; Ventrice, C.A.; et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152. [Google Scholar] [CrossRef]
- Khan, Q.A.; Shaur, A.; Khan, T.A.; Joya, Y.F.; Awan, M. Characterization of reduced graphene oxide produced through a modified Hoffman method. Cogent Chem. 2017, 3, 1298980. [Google Scholar] [CrossRef]
- Gilje, S.; Han, S.; Wang, M.; Wang, K.L.; Kaner, R.B. A Chemical Route to Graphene for Device Applications. Nano Lett. 2007, 7, 3394–3398. [Google Scholar] [CrossRef]
- Montes-Navajas, P.; Asenjo, N.G.; Santamaria, R.; Menendez, R.; Corma, A.; Garcia, H. Surface Area Measurement of Graphene Oxide in Aqueous Solutions. Langmuir 2013, 29, 13443–13448. [Google Scholar] [CrossRef]
- Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.; Kuniyil, M.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753–18808. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Renteria, J.D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; I Cocemasov, A.; Nika, D.L.; Balandin, A.A. Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature. Adv. Funct. Mater. 2015, 25, 4664–4672. [Google Scholar] [CrossRef]
- Mahanta, N.K.; Abramson, A.R. Thermal conductivity of graphene and graphene oxide nanoplatelets. In Proceedings of the 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 30 May–1 June 2012; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012; pp. 1–6. [Google Scholar]
- Kumar, P.; Shahzad, F.; Yu, S.; Hong, S.M.; Kim, Y.-H.; Koo, C.M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 2015, 94, 494–500. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Srivastava, S.; Yadav, B.K.; Lee, S.H.; Sharma, J.G.; Doval, D.C.; Malhotra, B. Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosens. Bioelectron. 2015, 73, 114–122. [Google Scholar] [CrossRef]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, J.; Wang, B.; Sha, J.; Li, Y.; Zheng, D.; Amjadipour, M.; MacLeod, J.; Motta, N. Supercapacitor Electrodes with Remarkable Specific Capacitance Converted from Hybrid Graphene Oxide/NaCl/Urea Films. ACS Appl. Mater. Interfaces 2017, 9, 22588–22596. [Google Scholar] [CrossRef]
- Ojha, K.; Kumar, B.; Ganguli, A. Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors. J. Chem. Sci. 2017, 129, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, X.; Zhang, D.; Yu, P.; Ma, Y.-W. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 2011, 49, 573–580. [Google Scholar] [CrossRef]
- Ke, Q.; Liu, Y.; Liu, H.; Zhang, Y.; Hu, Y.; Wang, J. Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Adv. 2014, 4, 26398–26406. [Google Scholar] [CrossRef]
- Yun, Y.S.; Yoon, G.; Park, M.; Cho, S.Y.; Lim, H.-D.; Kim, H.; Park, Y.W.; Kim, B.H.; Kang, K.; Jin, H.-J. Restoration of thermally reduced graphene oxide by atomic-level selenium doping. NPG Asia Mater. 2016, 8, e338. [Google Scholar] [CrossRef] [Green Version]
- Benchirouf, A.; Müller, C.; Kanoun, O. Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material. Nanoscale Res. Lett. 2016, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yan, L.; Bangal, P.R. Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. J. Phys. Chem. C 2010, 114, 19885–19890. [Google Scholar] [CrossRef]
- Goumri, M.; Lucas, B.; Ratier, B.; Baitoul, M. Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study. Opt. Mater. 2016, 60, 105–113. [Google Scholar] [CrossRef]
- De, S.; Coleman, J.N. Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? ACS Nano 2010, 4, 2713–2720. [Google Scholar] [CrossRef] [PubMed]
- Liuab, J.; Tang, J.; Gooding, J.J. Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 2012, 22, 12435. [Google Scholar] [CrossRef]
- Morales-Narváez, E.; Baptista-Pires, L.; Zamora-Gálvez, A.; Merkoçi, A. Graphene-Based Biosensors: Going Simple. Adv. Mater. 2016, 29, 1604905. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, N.; Maekawa, T.; Sakthikumar, D.N. Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. J. Mater. Res. 2017, 32, 2860–2882. [Google Scholar] [CrossRef] [Green Version]
- Janegitz, B.C.; Silva, T.A.; Wong, A.; Ribovski, L.; Vicentini, F.C.; Sotomayor, M.D.P.; Fatibello-Filho, O. The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens. Bioelectron. 2017, 89, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205–212. [Google Scholar] [CrossRef]
- Pumera, M. Graphene in biosensing. Mater. Today. 2011, 14, 308–315. [Google Scholar] [CrossRef]
- Sabine, S.; Boukherroub, R. Graphene-Based Biosensors. Interface Focus 2018, 8, 20160132. [Google Scholar] [CrossRef]
- Park, C.S.; Yoon, H.; Kwon, O. Graphene-based nanoelectronic biosensors. J. Ind. Eng. Chem. 2016, 38, 13–22. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777. [Google Scholar] [CrossRef] [PubMed]
- Lawal, A.T. Progress in utilisation of graphene for electrochemical biosensors. Biosens. Bioelectron. 2018, 106, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Rao, H.; Zhang, Z.; Ge, H.; Liu, X.; Zou, P.; Wang, X.; Wang, Y. Enhanced amperometric sensing using a NiCo2O4/nitrogen-doped reduced graphene oxide/ionic liquid ternary composite for enzyme-free detection of glucose. New J. Chem. 2017, 41, 3667–3676. [Google Scholar] [CrossRef]
- Zhang, X.; Ju, H.; Wang, J. Electrochemical Sensors, Biosensors and their Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Chemistry. Cyclic Voltammetry. Chemistry LibreTexts. 2013. Available online: https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules(Analytical_Chemistry)/Instrumental_Analysis/Cyclic_Voltammetry (accessed on 30 June 2020).
- Chooto, P. Cyclic Voltammetry and Its Applications. Voltammetry. 2019. Available online: https://www.intechopen.com/books/voltammetry/cyclic-voltammetry-and-its-applications (accessed on 30 June 2020).
- Lee, K.J.; Elgrishi, N.; Kandemir, B.; Dempsey, J.L. Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nat. Rev. Chem. 2017, 1, 39. [Google Scholar] [CrossRef]
- Anonymous. Introduction. 2019. Available online: https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/introduction (accessed on 30 June 2020).
- Sudhakar, Y.N.; Selvakumar, M.; Bhat, D.K. Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2017, 95, 197–206. [Google Scholar] [CrossRef]
- Brain, R. Chemical Sensors and Biosensors. Google Books. 2020. Available online: https://books.google.com.eg/books?hl=en&lr=&id=54PcKt5bT58C&oi=fnd&pg=PP1&ots=ZtZ1AAQXIV&sig=Cv449j0WGXnn8tDNatVjLZYFuV0&redir_esc=y#v=onepage&q&f=false (accessed on 30 June 2020).
- Heyrovský, J. The development of polarographic analysis. Analyst 1956, 81, 189–192. [Google Scholar] [CrossRef]
- Pei, R.; Cheng, Z.; Wang, E.; Yang, X. Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy. Biosens. Bioelectron. 2001, 16, 355–361. [Google Scholar] [CrossRef]
- Li, Y.; Tremblay, P.-L.; Zhang, T. Anode Catalysts and Biocatalysts for Microbial Fuel Cells. In Progress and Recent Trends in Microbial Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2018; pp. 143–165. Available online: https://www.sciencedirect.com/science/article/pii/B9780444640178000099 (accessed on 30 June 2020).
- PS, J.; Sutrave, D.S. A Brief Study of Cyclic Voltammetry and Electrochemical Analysis. Int. J. ChemTech Res. 2018, 11, 77–88. [Google Scholar] [CrossRef]
- Veloso, A.J.; Cheng, X.R.; Kerman, K. Electrochemical biosensors for medical applications. In Biosensors for Medical Applications; Woodhead Publishing: Sawston, UK, 2012; Available online: www.sciencedirect.com/science/article/pii/B9781845699352500012 (accessed on 30 June 2020).
- Tian, Y.; Liu, Y.; Wang, W.-P.; Zhang, X.; Peng, W. CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochim. Acta 2015, 156, 244–251. [Google Scholar] [CrossRef]
- Luan, V.H.; Han, J.H.; Kang, H.W.; Lee, W. Ultra-sensitive non-enzymatic amperometric glucose sensors based on silver nanowire/graphene hybrid three-dimensional nanostructures. Results Phys. 2019, 15, 102761. [Google Scholar] [CrossRef]
- Sreejesh, M.; Dhanush, S.; Rossignol, F.; Nagaraja, H. Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications. Ceram. Int. 2017, 43, 4895–4903. [Google Scholar] [CrossRef]
- Taniselass, S.; Arshad, M.M.; Gopinath, S.C. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron. 2019, 130, 276–292. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, S.-J.; Choi, J.-W. Electrical Property of Graphene and Its Application to Electrochemical Biosensing. Nanomater. 2019, 9, 297. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, Y.; Hu, S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 2016, 184, 1–44. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Narita, A.; Müllen, K. Precision synthesis versus bulk-scale fabrication of graphenes. Nat. Rev. Chem. 2017, 2, 100. [Google Scholar] [CrossRef]
- Bonanni, A.; Loo, A.H.; Pumera, M. Graphene for impedimetric biosensing. TrAC Trends Anal. Chem. 2012, 37, 12–21. [Google Scholar] [CrossRef]
- Wei, D.; Liu, Y. Controllable Synthesis of Graphene and Its Applications. Adv. Mater. 2010, 22, 3225–3241. [Google Scholar] [CrossRef]
- Xu, C.; Shi, X.; Ji, A.; Shi, L.; Zhou, C.; Cui, Y. Fabrication and Characteristics of Reduced Graphene Oxide Produced with Different Green Reductants. PLoS ONE 2015, 10, e0144842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Deng, S.; Lei, J.; Ju, H.; Gunasekaran, S. Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens. Bioelectron. 2011, 29, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Mohamed, A.R. Photocatalytic reduction of CO 2 with H 2 O over graphene oxide-supported oxygen-rich TiO 2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies. Chem. Eng. J. 2017, 308, 248–255. [Google Scholar] [CrossRef]
- Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H.Y.; Shin, H.S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 2016, 353, 1413–1416. [Google Scholar] [CrossRef] [Green Version]
- Faucett, A.C.; Flournoy, J.N.; Mehta, J.S.; Mativetsky, J.M. Evolution, structure, and electrical performance of voltage-reduced graphene oxide. FlatChem 2017, 1, 42–51. [Google Scholar] [CrossRef]
- Luo, D.; Zhang, G.; Liu, J.; Sun, X. Evaluation Criteria for Reduced Graphene Oxide. J. Phys. Chem. C 2011, 115, 11327–11335. [Google Scholar] [CrossRef]
- Akolpoglu, M.B.; Bozuyuk, U.; Erkoc, P.; Kizilel, S. Biosensing–Drug Delivery Systems for In Vivo Applications. In Advanced Biosensors for Health Care Applications; Elsevier: Amsterdam, The Netherlands, 2019; Available online: www.sciencedirect.com/science/article/pii/B9780128157435000093 (accessed on 29 July 2020).
- Lawal, A.T. Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 2015, 131, 424–443. [Google Scholar] [CrossRef]
- Thangamuthu, M.; Hsieh, K.Y.; Kumar, P.V.; Chen, G.-Y. Graphene- and Graphene Oxide-Based Nanocomposite Platforms for Electrochemical Biosensing Applications. Int. J. Mol. Sci. 2019, 20, 2975. [Google Scholar] [CrossRef] [Green Version]
- Ciesielski, A.; Samorì, P. Grapheneviasonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398. [Google Scholar] [CrossRef]
- Gomez, C.V.; Tene, T.; Guevara, M.; Usca, G.T.; Colcha, D.; Brito, H.; Molina, R.; Bellucci, S.; Tavolaro, A. Preparation of Few-Layer Graphene Dispersions from Hydrothermally Expanded Graphite. Appl. Sci. 2019, 9, 2539. [Google Scholar] [CrossRef] [Green Version]
- Ou, E.-C.; Xie, Y.; Peng, C.; Peng, H.; Xiong, Y.; Song, Y.; Xu, W. High concentration and stable few-layer graphene dispersions prepared by the exfoliation of graphite in different organic solvents. RSC Adv. 2013, 3, 9490. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Sui, X.; Riaz, M.A.; Xu, M.; Wei, L.; Chen, Y. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 2019, 1, 173–199. [Google Scholar] [CrossRef] [Green Version]
- Resmi, P.; Palaniayappan, A.; Ramachandran, T.; Babu, T.S. Electrochemical synthesis of graphene and its application in electrochemical sensing of glucose. Mater. Today Proc. 2018, 5, 16487–16493. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Velmurugan, M.; Chen, S.-M.; Hwa, K.-Y. Optimized electrochemical synthesis of copper nanoparticles decorated reduced graphene oxide: Application for enzymeless determination of glucose in human blood. J. Electroanal. Chem. 2017, 807, 128–136. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- De Heer, W.A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X.; Hu, Y.; Zhang, B.; Hankinson, J.; Conrad, E. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. USA 2011, 108, 16900–16905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Shin, D.; Bae, S.; Hong, B.H. Graphene transfer: Key for applications. Nanoscale 2012, 4, 5527. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Loan, P.T.K.; Hsu, C.-L.; Lee, Y.-H.; Wang, J.T.-W.; Wei, K.H.; Lin, C.-T.; Li, L.-J. Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens. Bioelectron. 2013, 41, 103–109. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Z.; Jauregui, L.A.; Yu, Q.; Pillai, R.; Cao, H.; Bao, J.; Chen, Y.P.; Pei, S.-S. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sens. Actuators B Chem. 2010, 150, 296–300. [Google Scholar] [CrossRef]
- Obraztsov, A.N. Making graphene on a large scale. Nat. Nanotechnol. 2009, 4, 212–213. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.-C.; Xu, H.; Wang, X.-W.; Huang, Y.-X.; Chan-Park, M.B.; Zhang, H.; Wang, L.-H.; Huang, W.; Chen, P. 3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano 2012, 6, 3206–3213. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xiong, Q.; Xiao, F.; Duan, H. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens. Bioelectron. 2017, 89, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Saini, D. Synthesis and functionalization of graphene and application in electrochemical biosensing. Nanotechnol. Rev. 2016, 5, 393–416. [Google Scholar] [CrossRef]
- Singh, R.K.; Nalajala, N.; Kar, T.; Schechter, A. Functionalization of Graphene—A Critical Overview of its Improved Physical, Chemical and Electrochemical Properties; Carbon Nanostructures; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Mei, X.; Meng, X.; Wu, F. Hydrothermal method for the production of reduced graphene oxide. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 68, 81–86. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, X.; Zhang, X.; Li, P.; Qian, X. Facile synthesis of layered CuS/RGO/CuS nanocomposite on Cu foam for ultrasensitive nonenzymatic detection of glucose. J. Electroanal. Chem. 2017, 785, 172–179. [Google Scholar] [CrossRef]
- Seekaew, Y.; Arayawut, O.; Timsorn, K.; Wongchoosuk, C. Synthesis, Characterization, and Applications of Graphene and Derivatives. Carbon-Based Nanofillers and Their Rubber Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 259–283. [Google Scholar] [CrossRef]
- Urhan, B.K.; Demir, Ü.; Özer, T.Ö.; Doğan, H.Ö. Electrochemical fabrication of Ni nanoparticles-decorated electrochemically reduced graphene oxide composite electrode for non-enzymatic glucose detection. Thin Solid Films 2020, 693, 137695. [Google Scholar] [CrossRef]
- Alexander, S.; Baraneedharan, P.; Balasubrahmanyan, S.; Ramaprabhu, S. Modified graphene based molecular imprinted polymer for electrochemical non-enzymatic cholesterol biosensor. Eur. Polym. J. 2017, 86, 106–116. [Google Scholar] [CrossRef]
- Mazaheri, M.; Aashuri, H.; Simchi, A. Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sens. Actuators B Chem. 2017, 251, 462–471. [Google Scholar] [CrossRef]
- Guan, P.; Li, Y.; Zhang, J.; Li, W. Non-enzymatic glucose biosensor based on CuO-decorated CeO2 nanoparticles. Nanomaterials 2016, 6, 159. [Google Scholar] [CrossRef] [Green Version]
- Si, P.; Huang, Y.; Wang, T.; Ma, J. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 2013, 3, 3487. [Google Scholar] [CrossRef]
- Sakr, M.A.; Elgammal, K.; Delin, A.; Serry, M. Performance-Enhanced Non-Enzymatic Glucose Sensor Based on Graphene-Heterostructure. Sensors 2019, 20, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Gao, W.; Li, P.; Wang, X.; Zheng, Q.; Wu, H.; Ma, Y.; Guan, W.; Wu, S.; Yu, Y.; et al. Highly sensitive nonenzymatic glucose sensor based on nickel nanoparticle–attapulgite-reduced graphene oxide-modified glassy carbon electrode. Talanta 2016, 159, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, S.; Souissi, M.; Karimzadeh, F.; Kharaziha, M.; Sahara, R.; Ahadian, S. Ni nanoparticle-decorated reduced graphene oxide fornon-enzymatic glucose sensing: An experimental and modeling study. Electrochim. Acta 2017, 240, 388–398. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Yu, J.; He, J.; Yang, H.; Ye, Y.; Song, Y. A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing. Sens. Actuators B Chem. 2017, 239, 172–179. [Google Scholar] [CrossRef]
- Lv, W.; Jin, F.-M.; Guo, Q.; Yang, Q.-H.; Kang, F. DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor. Electrochim. Acta 2012, 73, 129–135. [Google Scholar] [CrossRef]
- Yuan, B.; Xu, C.; Deng, D.; Xing, Y.; Liu, L.; Pang, H.; Zhang, D.-J. Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim. Acta 2013, 88, 708–712. [Google Scholar] [CrossRef]
- Subramanian, P.; Niedziolka-Jonsson, J.; Leśniewski, A.; Wang, Q.; Li, M.; Boukherroub, R.; Szunerits, S. Preparation of reduced graphene oxide–Ni(OH)2 composites by electrophoretic deposition: Application for non-enzymatic glucose sensing. J. Mater. Chem. A 2014, 2, 5525–5533. [Google Scholar] [CrossRef]
- Zhan, B.B.; Liu, C.B.; Chen, H.P.; Shi, H.X.; Wang, L.H.; Chen, P.; Huang, W.; Dong, X.C. Free-standing electrochemical electrode-based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. Nanoscale 2014, 6, 7424–7429. [Google Scholar] [CrossRef]
- Amin, B.G.; Masud, J.; Nath, M. A non-enzymatic glucose sensor based on a CoNi2Se4/rGO nanocomposite with ultrahigh sensitivity at low working potential. J. Mater. Chem. B 2019, 7, 2338–2348. [Google Scholar] [CrossRef]
- Batool, R.; Akhtar, M.A.; Hayat, A.; Han, D.; Niu, L.; Ahmad, M.A.; Nawaz, M.H. A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose. Microchim. Acta 2019, 186, 267. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Adegoke, O.; Park, E.Y. High-performance biosensing systems based on various nanomaterials as signal transducers. Biotechnol. J. 2019, 14, 1800249. [Google Scholar] [CrossRef] [PubMed]
- Rahsepar, M.; Foroughi, F.; Kim, H. A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological pH value. Sens. Actuators B Chem. 2019, 282, 322–330. [Google Scholar] [CrossRef]
- Yang, S.; Li, G.; Wang, D.; Qiao, Z.; Qu, L. Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: A three-dimensional hybrid for nonenzymatic glucose sensor. Sens. Actuators B Chem. 2017, 238, 588–595. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Xia, J.; Zhang, F.; Wang, Z. MOF-Derived Porous Ni2P/Graphene Composites with Enhanced Electrochemical Properties for Sensitive Nonenzymatic Glucose Sensing. ACS Appl. Mater. Interfaces 2018, 10, 39151–39160. [Google Scholar] [CrossRef]
- Khosroshahia, Z.; Karimzadeh, F.; Kharazihaa, M.; Allafchianb, A. A non-enzymatic sensor based on three-dimensional graphene foam decorated with Cu-xCu2O nanoparticles for electrochemical detection of glucose and its application in human serum. Mater. Sci. Eng. C 2020, 108, 110216. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, W.; Wu, Q.; Xia, X.; Hao, Q. Amperometric nonenzymatic determination of glucose via a glassy carbon electrode modified with nickel hydroxide and N-doped reduced graphene oxide. Microchim. Acta 2017, 184, 3103–3111. [Google Scholar] [CrossRef]
- Geng, D.; Bo, X.; Guo, L. Ni-doped molybdenum disulfide nanoparticles anchored on reduced graphene oxide as novel electroactive material for a non-enzymatic glucose sensor. Sens. Actuators B Chem. 2017, 244, 131–141. [Google Scholar] [CrossRef]
- Yang, J.; Ye, H.; Zhang, Z.; Zhao, F.; Zeng, B. Metal–organic framework derived hollow polyhedron CuCo2O4 functionalized porous graphene for sensitive glucose sensing. Sens. Actuators B Chem. 2017, 242, 728–735. [Google Scholar] [CrossRef]
- Tehrani, F.; Bavarian, B. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Sci. Rep. 2016, 6, 27975. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Sunarso, J.; Zhu, Y.; Zhong, Y.; Miao, J.; Zhou, W.; Shao, Z. High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sens. Actuators B Chem. 2017, 244, 482–491. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Q.; Yin, W.; Jiang, T.; Zhao, D.; Jiang, L. A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites. Sens. Actuators B Chem. 2017, 253, 1087–1095. [Google Scholar] [CrossRef]
- Zang, G.; Hao, W.; Li, X.; Huang, S.; Gan, J.; Luo, Z.; Zhang, Y. Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium. Electrochim. Acta 2018, 277, 176–184. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, Q.; Qin, Z.; Liu, L.; Wu, Z.; Shen, B.; Hu, W. Self-Assembly of Graphene-Encapsulated Cu Composites for Nonenzymatic Glucose Sensing. ACS Omega 2018, 3, 3420–3428. [Google Scholar] [CrossRef] [PubMed]
- Ayranci, R.; Demirkan, B.; Sen, B.; Şavk, A.; Ak, M.; Şen, F. Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection. Mater. Sci. Eng. C 2019, 99, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; He, Y.; Zheng, Z.; Shen, X.; Zhou, Y.; Wang, T.; Zhu, Z.; Wang, C. A Renewable Platform for High-Performance Glucose Sensor Based on Co(OH)2 Nanoparticles/Three-Dimensional Graphene Frameworks. J. Electrochem. Soc. 2019, 166, B42–B48. [Google Scholar] [CrossRef]
- Toi, P.T.; Trung, T.Q.; Dang, T.M.L.; Bae, C.W.; Lee, N.-E. Highly Electrocatalytic, Durable, and Stretchable Nanohybrid Fiber for On-Body Sweat Glucose Detection. ACS Appl. Mater. Interfaces 2019, 11, 10707–10717. [Google Scholar] [CrossRef]
- Kong, F.-Y.; Li, X.-R.; Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Graphene oxide–thionine–Au nanostructure composites: Preparation and applications in non-enzymatic glucose sensing. Electrochem. Commun. 2012, 14, 59–62. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Guo, C.X.; Cui, Z.; Zheng, L.; Li, C.M. Protein-Directed In Situ Synthesis of Gold Nanoparticles on Reduced Graphene Oxide Modified Electrode for Nonenzymatic Glucose Sensing. Electroanalysis 2012, 24, 2348–2353. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, X.; Chen, J.; Zheng, X.; Liu, C.; Xue, T.; Wang, H.; Jin, Z.; Qiao, L.; Zheng, W. Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor. RSC Adv. 2012, 2, 6245–6249. [Google Scholar] [CrossRef]
- Wu, J.-W.; Wang, C.-H.; Wang, Y.-C.; Changb, J.-K. Ionic-liquid-enhanced glucose sensing ability of non-enzymatic Au/graphene electrodes fabricated using supercritical CO2 fluid. Biosens. Bioelectron. 2013, 46, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-H.; Song, X.-H.; Wu, Y.; Chen, X.; Luo, F.; Chen, X. Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 2013, 105, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.S.; Le, Q.H.; Yoshikawa, H.; Saito, M.; Tamiya, E. Development of Non-enzymatic Electrochemical Glucose Sensor Based on Graphene Oxide Nanoribbon—Gold Nanoparticle Hybrid. Electrochim. Acta 2014, 146, 98–105. [Google Scholar] [CrossRef]
- Ruiyi, L.; Juanjuan, Z.; Zhouping, W.; Zaijun, L.; Junkang, L.; Zhiguo, G.; Wang, G.-L. Novel graphene-gold nanohybrid with excellent electrocatalytic performance for the electrochemical detection of glucose. Sens. Actuators B Chem. 2015, 208, 421–428. [Google Scholar] [CrossRef]
- Joshi, A.C.; Markad, G.B.; Haram, S.K. Rudimentary simple method for the decoration of graphene oxide with silver nanoparticles: Their application for the amperometric detection of glucose in the human blood samples. Electrochim. Acta 2015, 161, 108–114. [Google Scholar] [CrossRef]
- Hoa, L.T.; Sun, K.G.; Hur, S.H. Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel. Sens. Actuators B Chem. 2015, 210, 618–623. [Google Scholar] [CrossRef]
- Shu, H.; Chang, G.; Su, J.; Cao, L.; Huang, Q.; Zhang, Y.; Xia, T.; He, Y. Single-step electrochemical deposition of high performance Au-graphene nanocomposites for nonenzymatic glucose sensing. Sens. Actuators B Chem. 2015, 220, 331–339. [Google Scholar] [CrossRef]
- Luo, Y.; Kong, F.-Y.; Li, C.; Shi, J.; Lv, W.; Wang, W. One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sens. Actuators B Chem. 2016, 234, 625–632. [Google Scholar] [CrossRef]
- Thanh, T.D.; Balamurugan, J.; Hwang, J.Y.; Kim, N.H.; Lee, J.H. In situ synthesis of graphene-encapsulated gold nanoparticle hybrid electrodes for non-enzymatic glucose sensing. Carbon 2016, 98, 90–98. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, B.; Liu, X.; Li, Z.; Wang, H.; Yang, S.; Wang, J. A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim. Acta 2013, 109, 602–608. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.; Liu, J.; Yu, M. Preparation of nickel nanoparticle/graphene composites for non-enzymatic electrochemical glucose biosensor applications. Mater. Res. Bull. 2014, 49, 521–524. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Y.; Chen, Y.; Weng, B.; Li, C.M. Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose. Sens. Actuators B Chem. 2017, 238, 802–808. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Y.; Yang, W.; Zhou, M.; Hu, X. Facile One-Step Microwave-Assisted Route towards Ni Nanospheres/Reduced Graphene Oxide Hybrids for Non-Enzymatic Glucose Sensing. Sensors 2012, 12, 4860–4869. [Google Scholar] [CrossRef] [Green Version]
- Shackery, I.; Patil, U.; Pezeshki, A.; Shinde, N.M.; Kang, S.; Im, S.; Jun, S.C. Copper Hydroxide Nanorods Decorated Porous Graphene Foam Electrodes for Non-enzymatic Glucose Sensing. Electrochim. Acta 2016, 191, 954–961. [Google Scholar] [CrossRef]
- Liu, M.; Liu, R.; Chen, W. Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 2013, 45, 206–212. [Google Scholar] [CrossRef]
- Wang, X.; Liu, E.; Zhang, X. Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. Electrochim. Acta 2014, 130, 253–260. [Google Scholar] [CrossRef]
- Zhao, Y.; Bo, X.; Guo, L. Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose. Electrochim. Acta 2015, 176, 1272–1279. [Google Scholar] [CrossRef]
- Ye, D.; Liang, G.; Li, H.; Luo, J.; Zhang, S.; Chen, H.; Kong, J. A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 2013, 116, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.-P.; Song, P.; Feng, J.-J.; Shen, J.-H.; Wang, W.; Wang, A.-J.; Weng, X. Nonenzymatic amperometric sensing of glucose using a glassy carbon electrode modified with a nanocomposite consisting of reduced graphene oxide decorated with Cu2O nanoclusters. Microchim. Acta 2015, 182, 1701–1708. [Google Scholar] [CrossRef]
- Feng, X.; Guo, C.; Mao, L.; Ning, J.; Hu, Y. Facile Growth of Cu 2 O Nanowires on Reduced Graphene Sheets with High Nonenzymatic Electrocatalytic Activity Toward Glucose. J. Am. Ceram. Soc. 2013, 97, 811–815. [Google Scholar] [CrossRef]
- Alizadeh, T.; Mirzagholipur, S. A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles–graphene nanocomposite. Sens. Actuators B Chem. 2014, 198, 438–447. [Google Scholar] [CrossRef]
- Yazid, S.N.A.M.; Isa, I.M.; Hashim, N. Novel alkaline-reduced cuprous oxide/graphene nanocomposites for non-enzymatic amperometric glucose sensor application. Mater. Sci. Eng. C 2016, 68, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, H.; Jiang, S.; Jiang, J.; Liu, X. Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim. Acta 2012, 177, 485–490. [Google Scholar] [CrossRef]
- Luo, L.; Zhu, L.; Wang, Z. Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode. Bioelectrochemistry 2012, 88, 156–163. [Google Scholar] [CrossRef]
- Sun, C.-L.; Cheng, W.-L.; Hsu, T.-K.; Chang, C.-W.; Chang, J.-L.; Zen, J.-M. Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis. Electrochem. Commun. 2013, 30, 91–94. [Google Scholar] [CrossRef]
- Yan, X.; Yang, J.; Ma, L.; Tong, X.; Wang, Y.-Y.; Jin, G.; Guo, X.-Y. Size-controlled synthesis of Cu2O nanoparticles on reduced graphene oxide sheets and their application as non-enzymatic glucose sensor materials. J. Solid State Electrochem. 2015, 19, 3195–3199. [Google Scholar] [CrossRef]
- Hoa, L.T.; Chung, J.S.; Hur, S.H. A highly sensitive enzyme-free glucose sensor based on Co 3 O 4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. Sens. Actuators B Chem. 2016, 223, 76–82. [Google Scholar] [CrossRef]
- Heidari, H.; Habibi, E. Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles. Microchim. Acta 2016, 183, 2259–2266. [Google Scholar] [CrossRef]
- Li, S.-J.; Du, J.-M.; Chen, J.; Mao, N.-N.; Zhang, M.-J.; Pang, H. Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: A two-dimensional hybrid for enzyme-free glucose sensing. J. Solid State Electrochem. 2013, 18, 1049–1056. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Huang, K.; Fan, Y.; Wu, Z.-W.; Li, D.-D. Glassy carbon electrode modified with a film composed of Ni(II), quercetin and graphene for enzyme-less sensing of glucose. Microchim. Acta 2011, 174, 289–294. [Google Scholar] [CrossRef]
- Belkhalfa, H.; Teodorescu, F.; Quéniat, G.; Coffinier, Y.; Dokhan, N.; Sam, S.; Abderrahmani, A.; Boukherroub, R.; Szunerits, S. Insulin impregnated reduced graphene oxide/Ni(OH)2 thin films for electrochemical insulin release and glucose sensing. Sens. Actuators B Chem. 2016, 237, 693–701. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S. Nanoparticles-assembled NiO nanosheets templated by graphene oxide film for highly sensitive non-enzymatic glucose sensing. Sens. Actuators B Chem. 2017, 238, 788–794. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Sun, Y.; Shi, Y.; Wen, Z.; Li, Z. Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: A two dimensional nanocomposite for enzyme-free glucose sensing. J. Mater. Chem. 2011, 21, 16949–16954. [Google Scholar] [CrossRef]
- Qiao, N.; Zheng, J. Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene. Microchim. Acta 2012, 177, 103–109. [Google Scholar] [CrossRef]
- Zhu, X.; Jiao, Q.; Zhang, C.; Zuo, X.; Xiao, X.; Liang, Y.; Nan, J. Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(II) oxides and graphene. Microchim. Acta 2013, 180, 477–483. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, P.; Dai, E.; Liu, J.; Tian, Z.; Liang, C.; Shao, G. A novel reduction approach to fabricate quantum-sized SnO2-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors. Phys. Chem. Chem. Phys. 2014, 16, 8801–8807. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Li, Y.-Q.; Gao, H.; Ge, S.; Duan, H. Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens. Bioelectron. 2013, 41, 417–423. [Google Scholar] [CrossRef]
- Wang, L.; Lu, X.; Ye, Y.; Sun, L.; Song, Y. Nickel-cobalt nanostructures coated reduced graphene oxide nanocomposite electrode for nonenzymatic glucose biosensing. Electrochim. Acta 2013, 114, 484–493. [Google Scholar] [CrossRef]
- Dhara, K.; Stanley, J.; Ramachandran, T.; Nair, B.G.; Tg, S.B. Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor. Sens. Actuators B Chem. 2014, 195, 197–205. [Google Scholar] [CrossRef]
- Li, M.; Bo, X.; Mu, Z.; Zhang, Y.; Guo, L. Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor. Sens. Actuators B Chem. 2014, 192, 261–268. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, A.; Zhao, M.; Dong, W.; Zhao, T.; Wang, J.; Tang, W. Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sens. Actuators B Chem. 2014, 190, 707–714. [Google Scholar] [CrossRef]
- Hu, Y.; He, F.; Ben, A.; Chen, C. Synthesis of hollow Pt–Ni–graphene nanostructures for nonenzymatic glucose detection. J. Electroanal. Chem. 2014, 726, 55–61. [Google Scholar] [CrossRef]
- Li, M.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. One-pot ionic liquid-assisted synthesis of highly dispersed PtPd nanoparticles/reduced graphene oxide composites for nonenzymatic glucose detection. Biosens. Bioelectron. 2014, 56, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tian, X.; Zhao, L.; Huang, Z.-Y.; Oyama, M. Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes. Microchim. Acta 2013, 181, 783–789. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Ahmadi, Z.; Jafari-Asl, M.; Rezaei, B. Graphene nanosheets functionalized with Nile blue as a stable support for the oxidation of glucose and reduction of oxygen based on redox replacement of Pd-nanoparticles via nickel oxide. Electrochim. Acta 2015, 173, 619–629. [Google Scholar] [CrossRef]
- Dhara, K.; Ramachandran, T.; Nair, B.G.; Babu, T.S. Single step synthesis of Au–CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. J. Electroanal. Chem. 2015, 743, 1–9. [Google Scholar] [CrossRef]
- Dhara, K.; Thiagarajan, R.; Nair, B.G.; Babu, T.S. Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Microchim. Acta 2015, 182, 2183–2192. [Google Scholar] [CrossRef]
- Lu, L.; Li, H.; Qu, F.; Zhang, X.; Shen, G.-L.; Yu, R.-Q. In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens. Bioelectron. 2011, 26, 3500–3504. [Google Scholar] [CrossRef]
- Yang, J.; Yu, J.-H.; Strickler, J.R.; Chang, W.-J.; Gunasekaran, S. Nickel nanoparticle–chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens. Bioelectron. 2013, 47, 530–538. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, Y.; Lu, X.; Li, Z.; Sun, L.; Song, Y. Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing. Sens. Actuators B Chem. 2014, 195, 1–7. [Google Scholar] [CrossRef]
- Hui, N.; Wang, S.; Xie, H.; Xu, S.; Niu, S.; Luo, X. Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sens. Actuators B Chem. 2015, 221, 606–613. [Google Scholar] [CrossRef]
- Farid, M.M.; Goudini, L.; Piri, F.; Zamani, A.; Saadati, F. Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem. 2016, 194, 61–67. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X.; Yang, Z.; Du, X.; Qiu, B. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens. Bioelectron. 2014, 54, 273–278. [Google Scholar] [CrossRef]
- Balamurugan, J.; Thanh, T.D.; Heo, S.-B.; Kim, N.H.; Lee, J.H. Novel route to synthesis of N-doped graphene/Cu–Ni oxide composite for high electrochemical performance. Carbon 2015, 94, 962–970. [Google Scholar] [CrossRef]
- Yang, S.; Li, G.; Wang, G.; Zhao, J.; Gao, X.; Qu, L. Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor. Sens. Actuators B Chem. 2015, 221, 172–178. [Google Scholar] [CrossRef]
- Yang, S.; Liu, L.; Wang, G.; Li, G.; Deng, D.; Qu, L. One-pot synthesis of Mn3O4 nanoparticles decorated with nitrogen-doped reduced graphene oxide for sensitive nonenzymatic glucose sensing. J. Electroanal. Chem. 2015, 755, 15–21. [Google Scholar] [CrossRef]
Properties | Graphene | GO | rGO |
---|---|---|---|
Electron mobility @ room temperature | ∼200,000–250,000 cm2 V−1 s−1 | 0.1–10 cm2 V−1 s−1 | 2–200 cm2 V−1 s−1 |
Surface area | 2630 m2 g−1 [38] | 736.6 m2 g−1 [52] | 466–758 m2 g−1 [53,54] |
Thermal conductivity | ∼5000 W m−1 K−1 [38,54] | 0.5–18 W m−1 K−1 [55,56] | 1390–2275 W m−1 K−1 [56,57,58] |
Carbon-carbon bond length | 0.142 nm [54,55,56,57,58,59] | N/A | N/A |
Specific capacitance (depends on cyclic voltammetry) | 550 F g−1 [60] | 215–255 F g−1 [61] | 210–425 F g−1 [60,62,63] |
Electrical conductivity (depends on reduction technique) | ~6 × 108 S m−1 [53,64] | 5.7 × 10−6 S m−1 [62] | 102–105 S m−1 [65,66,67] |
Sheet resistance | 200 Ω sq−1 [68] | ~1010–1012 Ω sq−1 [51] | ~102–106 Ω s−1 [51,67] |
Equation | Definition |
---|---|
Current = the change rate of the negative charge (electron) per time unit in the CV cell | |
Current density = the current flow through the unit area | |
E = Cell potential, E* = Standard cell potential, Qr = Reaction Quotient = oxidized species/reduced species, n = number of electrons | The Nerst and Butler equation = gives information about the applied potential that controls the concentration of the oxidation and reduction species at the electrode surface and the rate of reaction |
A = Electronic area, K = Heterogeneous Rate Constant, and | Butler-Volmer equation = gives a good relation between the current, potential, and concentration |
Do = Diffusion Coefficient of the reactance, x = the distance from the electrode | Fick’s law = describes the diffusion of the reactance and product with respect to the distance from the electrode |
Electrode Modification | Linear Range | LOD | Sensitivity | Principle | Sample | Ref |
---|---|---|---|---|---|---|
GCE/NiCo2 O4/N-rGO/IL | 0.001–4.555 mM @ +0.5 V potential | 0.18 μM | 3.76 mA mM−1 cm−2 | CV | Real human blood serum | [81] |
GCE/(Ni(OH)2/N-rGO | 0. 5–0.0115 mM @ +0.45 V potential | 0.12 μM | 3.214 mA mM−1 cm−2 | CV and amperometry | Real human blood serum | [153] |
GCE/Ni-MoS2/rGO | 0.005–8.2 mM @ +0.575 V 0.55 potential | 2.7 μM | 0.2566 mA mM−1 cm−2 | CV and amperometry | Purchased glucose | [154] |
CuCo2O4/Porous GO | 0.5–3.354 mM @ 0.55 V | 0.15 μM | 2426 μM mM−1 cm−2 | Amperometry CV | Human serum | [155] |
Disposable CuNCs-DLEG | 25–4.5 mM @ 0.55 | 0.25 μM | 4532.2 μM mM−1 cm−2 | Amperometry/CV | N/A | [156] |
LSC/rGO/GCE | 2–3350 μM @ 0.6 | 0,063 μM | 330 μM mM−1 cm−2 | Amperometry | N/A | [157] |
PDDA-graphene/CuO | 0.4–4 mM @ 0.58 | 0.20 μM | 4982.2 μM mM−1 cm−2 | Amperometry CV | Human blood serum | [158] |
Nafion/CuNWs-MOFs-GO/GE | 20–26.6 mM @ 0.3 V | 7 μM | 7.72 μM mM−1 cm−2 | Amperometry CV | Human serum, beverages | [159] |
Cu NPs@rGO | 1–2 mM | 0.34 μM | 150 μM mM−1 cm−2 | DPV/CV | Human blood serum | [160] |
Ni2P/G/GCE | 5–1.4 mM @ 0.6 V | 0.44 μM | 7234 μM mM−1 cm−2 | Amperometry CV | Human serum | [151] |
CoNi2Se4-rGO@Ni foam | 1–4 mM @ 0.35 | 0.65 μM | 18,890 μM mM−1 cm−2 | Amperometry CV | Human blood | [146] |
Pt/Ni@ rGO | 0.02–5 mM @ 0.5 V | 6.3 μM | 171.92 μM mM−1 cm−2 | Amperometry CV | Commercial beverages | [161] |
Co(OH)2NPs/3DGF/GCE | 2–1.4 mM @ 0.45 V | 0.67 μM | 2410 μM mM−1 cm−2 | Amperometry | Human urine, human blood serum, fetal calf serum | [162] |
Au-rGO/PU WSNF | 1–1 mM | 500 nM | 140 μM mM−1 cm−2 | CV Amperometry | Human sweat | [163] |
Au/Thi/GO/GCE | 0.0002–0.002, 0.002–0.022 mM | 0.05 μM | N/A | CV and amperometry | N/A | [164] |
Au/BSA/rGO/GCE | 0.02–1.6, 1.6–16.6 mM @ 0 V | 5 μM | 11.5 μA mM−1 cm−2, 3.8 μA mM−1 cm−2 | CV and amperometry | Human serum | [165] |
Pd/GO/GCE | 0.2–1.6 mM @ 0.4 V | N/A | N/A | CV and amperometry | Purchased glucose | [166] |
IL/SCCO2/Au/graphene/GC | N/A @ 0.3 V | 0.062 μM | 97.8 μA mM−1 cm−2 | CV and amperometry | Human serum | [167] |
Pt/GO/GCE | 0.002–10.3, 10.3–20.3 mM @ 0.47 V | 2 μM | 1.26 μA mM−1 cm−2, 0.64 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [168] |
Au/GONR/CS | 0.005–4.92, 4.92–10 mM @ 0.2 V | 5 μM | 59.1, 31.4 μA mM−1 cm−2 | amperometry and linear sweep voltammetry | Purchased glucose | [169] |
Au/GA/GCE | 0.01–16 mM | 4 μM | N/A | CV | Purchased glucose | [170] |
Ag/GO/GCE | 1–14 mM @ 0.6 V | 4 μM | 11 μA mM−1 μg−1 cm−2 | CV and amperometry | Human blood | [171] |
Pt/GOH | 5–20 mM @ 0.1 V | N/A | 137.4 μA mM−1 cm−2 | CV and amperometry | Real blood | [172] |
Au/graphene/GCE | 0.1–2.0, 2.0–16 mM @ 0 V | 25 μM | 5.20 μA mM−1 cm−2, 4.56 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [173] |
Au/SWCNT/rGO/GCE | 0.0001–0.030, 0.030–0.6 mM | 0.002 μM | N/A | CV and amperometry | Purchased glucose | [174] |
Au/FLG/ITO | 0.006–28.5 mM @ 1.0 V | 1 μM | 0.195 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [175] |
Cu/GTE | 0.005–6.0 mM @ 0.55 V | 1.6 μM | 1100 μA mM−1 cm−2 | CV | Human serum | [176] |
Ni/GNs/GCE | 0.005–0.55 mM @ 0.5 V | 1.85 μM | 865 μA mM−1 cm−2 | CV and amperometry | N/A | [177] |
Cu/rGO/Au platform | 0.01–1.2 mM @ 0.55 V | 3.4 μM | 447.65 μA mM−1 cm−2 | CV and amperometry | Human serum | [178] |
Ni/rGO/GCE | 0.001–0.110, 0.001–0.01 mM @ 0.5 V | N/A | 813 μA mM−1 cm−2, 937 μA mM−1 cm−2 | CV | N/A | [179] |
Cu(OH)2/PGF | 0.0012–6 mM @ 0.6 V | 1.2 μM | 3.36 mA mM−1 cm−2 | CV and amperometry | Purchased glucose | [180] |
Cu2O/graphene/GCE | 0.3–3.3 mM @ 0.6 V | 3.3 μM | 0.285 mA mM−1 cm−2 | CV and amperometry | Purchased glucose | [181] |
CuO/rGO/GCE | 0.0004–12 mM @ 0.4 V | 0.1 μM | 2221 μA mM−1 cm−2 | EIS and CV | Purchased glucose | [182] |
CuO/rGO/GCE | 0.001–6 mM @ 0.55 V | 0.50 μM | 207.3 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [183] |
CuO/rGO/CNF/GCE | 0.001–5.3 mM @ 0.6 V | 0.1 μM | 912.7 μA mM−1 cm−2 | CV and amperometry | N/A | [184] |
Cu2O/rGO/GCE | 0.005–2.095, 2.595–9.595 mM @ 0.6 V | 1 μM | 37.55 μA mM−1, 23.06 μA mM−1 | linear sweep voltammetry and amperometry | Purchased glucose | [185] |
Cu2O/rGO/GCE | 0.01–0.1 mM @ 0.55 V | N/A | 69.5 μA mM−1 | CV and amperometry | Purchased glucose | [186] |
CuO/graphene/GCE | 0.0005–2 mM @ 0.4 V | 0.09 μM | 2939.24 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [187] |
Cu2O/graphene/GCE | 0.01–3.0 mM @ 0.5 V | 0.36 μM | 1330.05 μA mM−1 cm−2 | CV | Purchased glucose | [188] |
CuO/graphene/GCE | 0.005–1.4 mM @ 0.5 V | 0.2 μM | 607 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [189] |
CuO/graphene/GCE | 0.002–4 mM @ 0.55 V | 0.7 μM | 1360 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [190] |
CuO/graphene/SPE | 0.001–0.5 mM @ 0.6 V | 0.034 μM | 2367 μA mM−1 cm−2 | dynamic amperometric | Purchased glucose | [191] |
Cu2O/graphene/GCE | N/A | 0.1 μM | N/A | CV and amperometry | N/A | [192] |
Co3O4/GOHi/GCE | 0.25–10 mM @ 0.62 V | N/A μM | 492.8 μA mM−1 cm−2 | CV and amperometry | real blood | [193] |
CO3O4/rGOP | 0.04–4 mM @ 0.45 V | 1.4 μM | 1.21 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [194] |
CO3O4/ErGO/GCE | 0.01–0.55 mM @ 0.6 V | 2 μM | 79.3 μA mM−1 cm−2 | CV and EIS | Purchased glucose | [195] |
Ni(ii)/Qu/graphene/GCE | 0.003–0.9 mM | 0.5 μM | 187 nA mM−1 | CV and amperometry | Purchased glucose | [196] |
Ni(OH)2/insulin/rGO/Au platform | 0.005–10 mM @ 0.6 V | 5 μM | 18.9 ± 1.5 mA mM−1 cm−2 | CV and amperometry | Purchased glucose | [197] |
NiO/rGO/GCE | 0.002–0.60 mM @ 0.6 V | 0.77 μM | 1100 μA mM−1 cm−2 | CV and amperometry | N/A | [198] |
NiO/rGO/GCE | 0.001–0.4 mM @ 0.6 V | 0.18 μM | 1138 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [199] |
Ni(OH)2/rGO/GCE | 0.002–3.1 mM @ 0.54 V | 0.6 μM | 11.43 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [200] |
Ni(OH)2/graphene/GCE | 0.001–0.01, 0.01–0.1 mM @ 0.45 V | 0.6 μM | 494, 328 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [201] |
SnO2/rGO/GCE | 0.05–0.5 mM @ 0.8 V | 13..35 μM | 1.93 A M−1 cm−2 | CV and amperometry | N/A | [202] |
Pt–Au/MnO2/GP | 0.1–30.0 mM @ 0.0 V | 20 μM | 58.54 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [203] |
Ni–Co/rGO/GCE | 0.01–2.65 mM @ 0.5 V | 3.79 μM | 1773.61 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [204] |
Pt–CuO/rGO/SPE | 0.005–12 mM @ 0.35 V | 0.01 μM | 3577 μA mM−1 cm−2 | LSV and amperometry | Purchased glucose | [205] |
NiO/Pt/ErGO/GCE | 0.05–5.66 mM @ 0.6 V | 0.2 μM | 668.2 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [206] |
Pd–Cu/GRH | 1–18 mM @–0.4 V | 20 μM | 48 μA mg−1 cm−2 | CV and amperometry | Purchased glucose | [207] |
Pt–Ni/graphene/GCE | 0.5–20 mM @–0.35 V | 2 μM | 30.3 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [208] |
Pt–Pd/IL/rGO/GCE | 0.1–22 mM @ 0.0 V | 2 μM | 1.47 μA mM−1 cm−2 | CV and amperometry | Purchased glucose | [209] |
Pt–Pd/graphene/GCE | 0.5–24.5 mM @ 0.2 V | N/A | 1.4 μA M−1 cm−2 | CV and amperometry | Purchased glucose | [210] |
Pd/NiO/NB/rGO/CPE | 0.02–20 mM @–0.04 V | 2.2 μM | N/A | CV and amperometry | Purchased glucose | [211] |
Au–CuO/rGO/SPE | 0.001–12 mM @ 0.6 V | 0.1 μM | 2356 μA mM−1 cm−2 | LSV and amperometry | Purchased glucose | [212] |
Pd–CuO/rGO/SPE | 0.006–22 mM @ 0.6 V | 0.03 μM | 3355 μA mM−1 cm−2 | LSV and amperometry | Purchased glucose | [213] |
Pd/Nafion/Graphene/GCE | 0.01–5 mM @ 0.4 V | 1 μM | N/A | CV and amperometry | Purchased glucose | [214] |
Ni/CS/rGO/SPE | 0.2–9 mM @ 0.6 V | 4.1 μM | 318.4 μA mM−1 cm−2 | CV, chronoamperometry, and EIS | Purchased glucose | [215] |
Cu–Co/CS/rGO/GCE | 0.015–6.95 mM @ 0.45 V | 10 μM | 1921 μA mM−1 cm−2 | CV, chronoamperometry, and amperometry | N/A | [216] |
Ni/PEDOT/rGO/GCE | 0.001–5.1 mM @ 0.5 V | 0.8 μM | 36.15 μA mM−1 cm−2 | EIS, CV, and amperometry | Purchased glucose | [217] |
CuO/MnO2/GO/PVA | 0.5–4.4 mM @ 0.4 V | 53 μM | N/A | CV | Purchased glucose | [218] |
Cu/NG/GCE | 0.004–4.5 mM @ 0.5 V | 1.3 μM | 48.13 μA mM−1 | CV and amperometry | Purchased glucose | [219] |
Cu–NiO/NG/ITO | 0.0002–0.3 mM @ 0.7 V | 0.05 μM | 7.49 μA mM−1 cm−2 | CV, amperometry, and EIS | Purchased glucose | [220] |
Mn3O4/NG/CPE | 0.0025–0.5295 mM @ 0.9 V | 1.0 μM | 0.1011 μA μM−1 | CV, amperometry, and EIS | Purchased glucose | [221] |
Mn3O4/N-rGO/GCE | 0.001–0.3295 mM @ 0.7 V | 0.5 μM | 0.026 μA μM−1 | CV, amperometry, and EIS | N/A | [222] |
CuO/SG | 0.1–10.5 mM @ 0.5 V | 0.08 μM | 1298.6 μA mM−1 | CV, amperometry, and EIS | Purchased glucose | [95] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy Taha, M.H.; Ashraf, H.; Caesarendra, W. A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. Appl. Syst. Innov. 2020, 3, 32. https://doi.org/10.3390/asi3030032
Fahmy Taha MH, Ashraf H, Caesarendra W. A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. Applied System Innovation. 2020; 3(3):32. https://doi.org/10.3390/asi3030032
Chicago/Turabian StyleFahmy Taha, Mohamed Husien, Hager Ashraf, and Wahyu Caesarendra. 2020. "A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes" Applied System Innovation 3, no. 3: 32. https://doi.org/10.3390/asi3030032
APA StyleFahmy Taha, M. H., Ashraf, H., & Caesarendra, W. (2020). A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. Applied System Innovation, 3(3), 32. https://doi.org/10.3390/asi3030032