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Abstract: The present paper addresses the problem of the dynamic response of a vibrating equipment
for soil compaction. In essence, dynamic response vibrations are analysed by applying an inertial-type
perturbing force. This is generated by rotating an eccentric mass with variable angular velocity,
in order to reach the regime necessary to ensure the degree of compaction. The original character
of the research is that during the compaction process, the soil layers with certain compositions of
clay, sand, water and stabilizing substances change their rigidity and/or amortization. In this case,
two situations were analysed, both experimentally and with numerical modelling, with special
results and practical engineering conclusions, favourable to the evaluation of the interaction between
vibrator roller–compacted ground. We mention that the families of amplitude–pulse and transmitted
force–pulse response curves are presented, from which the dynamic effect in the compaction process
results after each passage on the same layer of soil, until the necessary compaction state is reached.

Keywords: technological vibration; dynamic compaction; Voigt–Kelvin modelling; post resonance
dynamic regime; elastic and viscous characteristics

1. Introduction

The rheological behaviour of natural soils mixed with additives (sand, natural aggregates, lime,
chemical stabilizers) for road structures, so called improved soils, has to be characterized according to
the working technology and the dynamic compaction regime of the vibratory roller.

For this, depending on the location of the construction site, in Romania since 1998 and until now,
the team of researchers and technicians set up for the compaction process’ optimisation has developed
specific technologies for 12 sites belonging to the Pan-European N-V and S-E road, between Oradea
and Constanţa. Thus, tests were performed on the construction sites of the Transylvania, Cluj-Oradea,
Lugoj-Timisoara, and Bucharest-Constanţa highways, in order to identify the physical-mechanical,
rheological and technological characteristics of the improved soil layers put into place. In this context,
it is mentioned that the great variety of improved soils showed different rheological behaviour from
one location to another, being identified composed of linear viscoelastic models, schematised as follows:
Voigt–Kelvin, Maxwell, Hooke–Voigt Kelvin, Newton–Voigt Kelvin and Zener [1–6].

In addition, there were several situations of weak nonlinearity or hysteretic viscoelastic behaviour
identified, with insignificant deviations from the dynamic response in the forced vibration regime of
the vibratory roller [7–9].

Based on the “in situ” experimental results and the numerical evaluations with the actual field data
and vibratory rollers (Bomag, Dynapac, Amman, Caterpilar, Hamm), it was found that the dynamic
response can be evaluated based on linear viscoelastic rheological models. In this case, the vibration
compaction process is conditioned by the added elements to the natural soil consisting in the content
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of clay, sand, mineral aggregates with chemical or ecological stabilizers with dosages specific to the
applied technology, that essentially modify the elasticity and viscosity of the road structures to be
realised [10–15].

In vibratory compaction, natural and filling soils can be characterized by Voigt–Kelvin linear
rheological models, depending on the dynamic response to compaction. The content of clay, sand,
mineral aggregates with chemical or environmentally friendly stabilizers modifies, essentially, both the
elasticity and the viscosity of the earth layers brought in on the site.

Following the many experiments made on at least 25 categories of land with chemical and/or
environmentally friendly stabilizers, the conclusion was that the dynamic response of the vibrating
compactor roller matches the Voigt–Kelvin linear viscoelastic model (90% of the cases) [11,12,16–18].

Of all the experiments in the mentioned share, after each passage of the vibrating compactor roll,
three cases where the elastic and viscosity coefficients, respective of the stiffness viscous damping c,
were identified and they can be classified into layers of soil as follows:

• soils with discrete variable stiffness after each passage of the vibrating roll and constant
damping [11,12,17,19].

• soils with discrete variable stiffness and damping after each passage (soils with more than 80%
mineral aggregates with a grain of more than 16 mm) [11,13,14,16,17,20].

In situ and laboratory experiments were conducted on natural soils with admixtures of lime,
cement, black pigment, natural or chemical liquid stabilizers were performed on two categories of
construction sites [14,15,20].

This article includes the synthesis of the parameter values of stiffness and damping for the three
distinct situations, which offer significant and representative dynamic responses of the vibrating
compactor roller.

The families of the response curves of the amplitude and generated force, in relation to the
continuous variation of the excitation frequency and the discrete variation of stiffness and damping,
after each passage over the same layer of soil, were plotted both by numerical simulation and
experimentally in situ [10–12,16,19].

The setup of the dynamic response functions that define the “picture” of the family of functional
curves, for a vibrating roller–soil (earth layer) dynamic system in stationary conditions, shows mainly
elastic, viscous or viscoelastic nature. Thus, by the determination of the in the field response
characteristic, determining can be appreciated, “in situ”, for the rheological nature of the soil improved
in the vibrating compaction process.

Currently, on the construction sites from Romania, practical procedures are established in order to
control the compaction process of the improved soils and asphalt mixtures. These include compaction
calibration tests on an experimental site, where the dynamic parameters of the vibratory roller are
harmonized with the soil characteristics so that the following parameters to be achieved: the designed
compaction degree, the dynamic elastic modulus and road layer stiffness after the last pass over the
same layer.

According to the shape and positioning of the family of curves cover, through an adequate real
time representation, it is possible to establish, “in situ”, the nature of the predominantly elastic- viscous
behaviour or viscoelastic of the terrain.

2. Dynamic Response of the Vibrating Compactor Roller

For the Voigt–Kelvin linear model, the equivalent stiffness k of the layer of soil at the
vibrating roller–soil contact, the equivalent viscous damping c and the harmonic disturbing force
F = F(t) = F0sinωt have been considered. The force amplitude is F0 = m0rω2, where m0r is the static
moment of the dynamic mass imbalance in the vibrating compactor roller. The mass of the compactor
roller in motion is m [2,3,5,14,15].
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The linear dynamic system (m,c,k) has a single degree of freedom and is driven by the harmonic
disturbing force F(t). For each discrete variable parameter k, c or (k,c), the excitation frequency (pulse) is
swept continuously by using the command and control system of the vibrator’s hydrostatic actuation.

Thus, the dynamic response curves can be plotted by numerical simulation with the parameters
(m, c, k) of the soil and (m0r, ω) of the vibrating roller, as well as the experimental response curves,
by measuring the amplitude of the vibrations A(ω, k), A(ω, c), A(ω, k, c) “in every detail” for each
significant value of ω [2,6,8,12,16,19].

The dynamic response functions parameterized by k, c and with the continuous variation of the
excitation frequency are for the amplitude A(ω, k, c) = A(ω) and for the maximum force transmitted to
the soil Q0(ω, k, c) = Q0(ω), signifying the efficiency of the dynamic compaction process. The calculation
relations for the response functions are in the form:

A(ω, k, c) =
m0rω2√

(k−mω2)2 + c2ω2
(1)

Q0(ω, k, c) = m0rω2

√
k2 + c2ω2

(k−mω2)2 + c2ω2
(2)

In compaction, the significant dynamic regimes are the following:

• The resonance regime for ω = ωn, where ωn =
√

k
m , meaning that the condition k = mω2 needs

to be fulfilled.
• The post-resonance regime for ω � ωn, or at the limit ω→∞ . Practically, ω = (3 . . . 6)ωn

is adopted.

Resonance regime. The parameters A(k, c, ωn) ≡ Arez and Q(k, c, ωn) ≡ AQrez for ω = ωn have
the following calculation relations:

(a) The amplitude of the vibration at resonance is expressed as

Arez =
m0r

c
ωn

where we take into account ωn =
√

k
m and ζ = c

2
√

km
, obtaining

Arez =
m0r

c

√
k
m

(3)

or
Arez =

m0r
m

1
2ζ

(4)

(b) The amplitude (maximum value) of the force transmitted to the soil at resonance may be
calculated as follows:

Qres
0 = m0rω2

√
k2 + c2ω2

c2ω2 (5)

where we introduce η = cωn
k the hysteretic damping and ω2

n = k
m , so that we obtain

Qres
0 = m0r

k
m

√
1 +

1
η2 (6)
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Considering that η = 2ζ, where ζ = c
ccr

is the fraction of the critical damping, for linear viscoelastic
systems, we have:

Qres
0 = m0r

k
m

√
1 +

1
4ζ2 Qres

0 = m0r
k
m

√
1 +

1
η2 (7)

Thus, Qres
0 can be calculated depending on the stiffness k and on the damping expressed by c,

η or ζ.
Post-resonance regime. For the limit condition ω→∞ , the relations for A(ω, k, c) and Q0(ω, k, c)

will be expressed as follows:
(a) Amplitude in post-resonance is given by the relation

Apostres = A∞ =
m0r
m

(8)

i.e., in post-resonance conditions, the vibration amplitude is constant, regardless of the variation of
stiffness or damping. For this reason, it is also called technological amplitude in the stable and even
compaction process.

(b) Maximum transmitted force Qpostres
0 = Q0,∞ is expressed as

Qpostres
0 = Q0,∞ =

m0r
m

cω (9)

or
Q0,∞ = A∞cω (10)

We find that the force transmitted in post-resonance increased proportionally to the monotone
increase in the excitation frequency ω as the technological parameter.

3. Dynamic Response to the Continuous Variation of the Excitation Frequency and Discrete
Variation of Stiffness

After each passage, stiffness k is modified, while the viscous damping c is kept constant. This is
specific to the soils with the following content: clay 50%, sand 10%, mineral aggregates 20%, water 20%,
and admixtures 10% [9,11–15].

For the soils in this category, elastic and damping parameters were established after each passage over
the same layer, in conditions of forced vibrations of a vibrating roller. Thus, for i = 1, 2, 3, 4, 5 successive
passes on the same layer, the following parameters were measured: k1 = 2× 107 N/m, k2 = 4× 107 N/m,
k3 = 6 × 107 N/m, k4 = 8 × 107 N/m, k5 = 10 × 107 N/m, m0r = 2.5 kgm, m = 5× 103 kg,
ω = 0 . . . 500 rad/s.

In these conditions, based on the relations (1) and (2), the response curves indicated in
Figures 1 and 2 were plotted.
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Figure 1. Variation of the vibration amplitude depending onω and k for c = 2× 105 Ns/m.
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Figure 2. Variation of the amplitude of the transmitted force depending onω and k for c = 2× 105 Ns/m.

If the viscosity coefficient c is constant, we find that, at resonance, the two parameters have different
laws of variation, as follows:

(a) For the amplitude of the resonance vibrations, the calculation relation is expressed as

AI
res =

m0r
c
ωn =

m0r
c

√
k
m

(11)

with the linear variation in relation to ωn = ω, as we can see in Figure 1. In this case, all the Arez

amplitude resonance points are on a straight line in the system of axes A−ω.
(b) For the amplitude of the force transmitted to the soil at the resonance Qres

0 , the calculation
relation in Formula (5) may be described as follows:

Qres
0,I =

m0r
c

√
k2ω2

n + c2ω4
n (12)

with the variation after a monotone ascending curve with the frequency ω = ωn. We can see that all
maxima of the force Qres

0 are on curves parameterized by k in the system of axes Qres
0 −ω, when the

viscosity coefficient c is constant (Figure 2).
At the frequency of 30 Hz, “in situ” tests of the amplitude A and the transmitted force Q

were performed for five categories of soil. Thus, the following experimental results were obtained,
according to the families of curves presented in Figures 1 and 2. These are: the amplitude A = 0.56,
0.68, 0.81, 0.92 mm and the transmitted force Q = 2.5, 3.5, 5.1, 7.2, 10.2 kN [14,15].

The experimental results were obtained on the Transylvania highway construction site, in Romania.

4. Dynamic Response to the Continuous Variation of the Excitation Frequency and Discrete
Variation of Stiffness and Damping Coefficient

The approached case corresponds to the situation in which, after each passage of the vibrating
roller over the same layer of soil, we can see the simultaneous change of both the stiffness ki, and the
damping ci = 2ζ

√
kim following the modification of the fraction of the critical damping ζi after each

passage i of the vibrating roller.
For the previous data and noting that at each passage i, the critical damping fraction is

modified, corresponding to the stiffness ki is as follows: ζ1 = 0.10, ζ2 = 0.15, ζ3 = 0.20, ζ4 = 0.25,
ζ5 = 0.30 [13,16,19].

The graphical plotting of the amplitude curves depending on the variation of ω and of the pair of
parameters (k, ζ), after each passage i, with i = 1.5, is given in Figure 3.
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For the maximum transmitted force Q0 depending on the frequency ω and the pair of values (k, ζ),
for each passage i, with i = 1.5, the curves in Figure 4 were drawn.

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 10 

 

The graphical plotting of the amplitude curves depending on the variation of  and of the pair 
of parameters (k, ), after each passage i, with i = 1.5, is given in Figure 3. 

For the maximum transmitted force Q0 depending on the frequency  and the pair of values (k, 
), for each passage i, with i = 1.5, the curves in Figure 4 were drawn.  

 
Figure 3. Variation of vibration amplitude depending on ω and the pair of parameters k, ζ. 

 
Figure 4. Variation of the maximum force transmitted to the soil, depending on ω, and the pair of 
parameters k, ζ. 

Thus, for the discrete variation of the stiffness simultaneous with the viscous damping, in linear 
conditions, the following aspects can be mentioned:  

(a) The resonance amplitude descends in relation to the increase in   for each gradual 
increment of the stiffness k, respective of its specific frequency (pulse). Thus, for the discrete 
modification of the pairs of parameters ( , ), with i = 1.5, we have = 12  (13) 

We can see that amplitude maxima, at resonance, are distributed according to an envelope curve 
with descending values of the resonance amplitude, with discrete  values for i = 1.5, as indicated 
in Figure 3. 

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3
x 10-3

ω [rad/s]

A 
[m

]

 

 

k=20*106 N/m; ζ=0.10;
k=40*106 N/m; ζ=0.15;
k=60*106 N/m; ζ=0.20;
k=80*106 N/m; ζ=0.25;
k=100*106 N/m; ζ=0.30;

0 100 200 300 400 500
0

2

4

6

8

10

12

14
x 104

ω [rad/s]

Q
 [N

]

 

 

k=20*106 N/m; ζ=0.10;
k=40*106 N/m; ζ=0.15;
k=60*106 N/m; ζ=0.20;
k=80*106 N/m; ζ=0.25;
k=100*106 N/m; ζ=0.30;

-------k=20x106 N/m; ζ=0.10; 
-------k=40x106 N/m; ζ=0.15; 
-------k=60x106 N/m; ζ=0.20; 
-------k=80x106 N/m; ζ=0.25; 
-------k=100x106 N/m; ζ=0.30; 

-------k=20x106 N/m; ζ=0.10; 
-------k=40x106 N/m; ζ=0.15; 
-------k=60x106 N/m; ζ=0.20; 
-------k=80x106 N/m; ζ=0.25; 
-------k=100x106 N/m; ζ=0.30; 

Figure 4. Variation of the maximum force transmitted to the soil, depending on ω, and the pair of
parameters k, ζ.

Thus, for the discrete variation of the stiffness simultaneous with the viscous damping, in linear
conditions, the following aspects can be mentioned:

(a) The resonance amplitude descends in relation to the increase in ζ for each gradual increment
of the stiffness k, respective of its specific frequency (pulse). Thus, for the discrete modification of the
pairs of parameters (ki, ζi), with i = 1.5, we have

AII
res =

m0r
c

1
2ζ

(13)

We can see that amplitude maxima, at resonance, are distributed according to an envelope curve
with descending values of the resonance amplitude, with discrete Ares

i values for i = 1.5, as indicated in
Figure 3.
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(b) The force transmitted at resonance Qres
0 , as seen in Figure 4, can be assessed based on the relation

Qres
0,II =

m0rω2
n

2ζ

√
1 + 4ζ2 (14)

or in the form

Qres
0,II =

m0rω2
n

2

√
4 +

1
ζ2 (15)

which means that, at the increase in the values in the pair (ki, ζi) for i = 1.5, the force Qrez
0 evolves

according to a curve with the discrete values Qres
0i

, for i = 1.5.
On the “Autostrada Soarelui” Bucharest-Constant,a highway construction site, “in situ”

experimental tests were performed, regarding the viscous-elastic behaviour of the composite soil
used on this highway, corresponding to Figures 3 and 4. The following results were obtained for the
frequency of 30 Hz: the amplitude A = 0.5, 0.502, 0.505, 0.509, 0.51 mm and the transmitted force
Q = 18, 31, 52, 75, 10.2, 100 kN [2,5,14].

5. Conclusions

The research conducted both by rheological modelling and by laboratory and in situ testing has
shown two categories of soils with markedly different compositions regarding vibration damping.

The obtained results are based on the studies and tests performed in Romania, on the road
structures for the “Transylvania”, Bras, ov-Cluj-Oradea highway and the “Autostrada Soarelui”
Bucharest-Constant,a highway, as well as on the research performed by the specialists: Mooney, M.A.,
Rinehard, R.V., Wersäll, C., Larsson, S., Vucetic, M., Yoo, T.S. and Selig, E.T. [6,13,21–25].

Thus, both for the soils categories used in Romania (the part presented in this paper), as well
as for the experiments performed in the listed (quoted) papers, the laboratory equipment and the
test methods were used specific to the geotechnical domain. For the “in situ” tests, test tracks were
performed, specially designed and equipped to ensure the experimental conditions regarding the soil
mixtures, the vibrating rollers, the instrumentation and the computer system for data acquisition,
logging and processing.

The characteristic element is the fact that they have the same static stiffness after each passage of
the vibrating compactor roller. The samples taken from the site were tested in the laboratory, in order
to identify the elastic module and the stiffness. After each compaction passage with the vibrating
roller, the stiffness k of the compacted layer and the damping expressed either by the viscous damping
coefficient c or by the damping ratio were measured.

The adopted dynamic model is the Voigt–Kelvin model for both categories of soils, noting that,
for the first category of compacted soil, the damping coefficient c stays constant during the whole
compaction for the given successive passages of the vibrating roller, its value being c = 2× 105 Ns/m,
while the stiffness is modified after each passage ki, i = 1.5.

For the second category of soil, the damping modifies after each passage, so the damping ratio ζ
has five values identified by experiment. In this case, for each passage, the layer of compacted soil will
have a pair of numerical values of the parameters (ki, ζi), where i = 1.5. Therefore, the Voigt–Kelvin
model will be characterized by discrete values ki, ζi for each passage over the same layer.

The response curves A−ω were plotted, i.e., the variation of the vibration amplitude for the same
layer of soil. After each passage of the vibrating compactor roller, distinct dynamic responses are seen,
depending on the nature of the soil, namely:

• For soils with constant damping expressed by the viscous damping coefficient c, we find that, after
each passage, the stiffness of the layer increases by discrete values, and the resonance vibration
amplitude increases linearly with the growth of the resonance pulse (frequency).

• For soils with increasing damping after each passage, expressed by the discrete increase in the
damping ratio at the same time with the discrete increase in the compacted layer stiffness, we find
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that resonance vibration amplitude decreases in relation to the internal frequency, with the points
of the resonance peaks arranged on a “characteristic” envelope curve.

• The dynamic force transmitted to the compact soil layer has resonance peak values for both
categories of soil, but with the arrangement of the points on different curves, depending on the
nature of the soil, i.e., they arrange on “envelope” curves specific to each individual soil.

• Based on the plotting of the response curves A−ω, in the case of dynamic compaction by vibrations
and following the settlement of the “envelope” deemed envelope curve of the resonance amplitude
peaks, we may assess the dissipative effect of the compacted soil, as well as its behaviour in the
conditions of the compaction vibrations. Following the response values in the family of curves,
we can determine the parameters of the Voigt–Kelvin model after each passage, namely ki and ci
or ki and ζi.

• The parameters k, c and Qres
0,I for the first category of soils with constant damping, based on the

response curves plotted experimentally in situ (Figure 1) in the compaction with a vibrating roller,
can be calculated as follows: kI

i = mω2
n,i; i = 1.5 for each value of i = 1.5; c = m0rωn,i

AI
rez,i

for each value

of i = 1.5;
(
Qrez

0,I

)
i
=

m0rωn,i
c

√
k2

i + c2ω2
n,i for each value of i = 1.5.

• The parameters k, ζ and Qres
0,II for the second category of soils with different damping from one

passage to the next one, based on the experimentally plotted response curves (Figure 3), can be
calculated as follows: kII

i = mω2
n,i; i = 1.5 for each value of i = 1.5; ζi =

m0r
m

1
2AII

rez,i
for each value of

i = 1.5;
(
Qres

0,II

)
i
= 1

2 m0rω2
n,i

√
4 + 1

ζ2
i

for each value of i = 1.5.

Given the abovementioned aspects, we can draw the conclusion that, depending on the family
of response curves, the envelope curve can be shown as the geometric place of the amplitude peaks
at resonance. Therefore, according to the nature of the soil, we can distinguish between two cases in
which the envelope of the resonance points is the straight line indicating the ascending direction of
the amplitude with its own frequency, and, on the other hand, the envelope, in the form of a curve,
indicating the descending direction of the amplitude with its own frequency. Hence, the earth (soil) to
be compacted can be classified as a defined rheological system and it can be “calibrated” based on the
plotting of the envelope curves in the system A −ω with the parameters k, c or ζ, according to one
of the two described situations. In this context, the conceptual basis for two categories of technical
specifications is constituted, approved by the Romanian Ministry of Regional Developments and Public
Administration regarding the assessment of the capability level of dynamic compaction equipment for
road construction works. On the other hand, the Research Institute for Construction Equipment and
Technology—ICECON, from Bucharest, Romania, developed, in 2019, operational procedures for the
optimization of the compaction process with vibratory rollers depending on the soil category on which
the road structures are realised.

In essence, it is emphasized that the presented results are capitalized for engineering
practical purposes.

A research program is currently being carried out with the aim of creating an intelligent system
for the detecting, logging and processing of technological vibration signals, in real time, so that the
response curves can be plotted using a specialized software. They have to ensure the compaction
degree, the dynamic rigidity and the dynamic modulus of the compacted soil in correlation with the
laboratory tests, so that the quality of the compaction process is able to be verified in real time.
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12. Dobrescu, C.F.; Brăguţă, E. Optimization of Vibro-Compaction Technological Process Considering Rheological
Properties. In Proceedings of the 14th AVMS Conference, Timisoara, Romania, 25–26 May 2017. [CrossRef]

13. Mooney, M.A.; Rinehart, R.V. Field Monitoring of Roller Vibration During Compaction of Subgrade Soil.
J. Geotech. Geo Environ. Eng. ASCE 2007, 133, 257–265. [CrossRef]

14. Bratu, P.; Stuparu, A.; Popa, S.; Iacob, N.; Voicu, O.; Iacob, N.; Spanu, G. The dynamic isolation performances
analysis of the vibrating equipment with elastic links to a fixed base. Acta Teh. Napoc. Ser. Appl. Math. Eng.
2018, 61, 23–28.

15. Dobrescu, C.F. Highlighting the Change of the Dynamic Response to Discrete Variation of Soil Stiffness in the
Process of Dynamic Compaction with Roller Compactors Based on Linear Rheological Modeling. In Applied
Mechanics and Materials; Herisanu, N., Marinca, V., Eds.; Volume 801: Acoustics & Vibration of Mechanical
Structures II; Scientific Net: Zurich, Switzerland, 2015; pp. 242–248, ISBN 978-3-03835-628-8. [CrossRef]

16. Test Report for Laboratory and “In Situ” Tests for the Lugoj-Deva Highway; ICECON: Bucharest, Romania, 2015.
17. Bratu, P. Hysteretic Loops in Correlation with the Maximum Dissipated Energy, for Linear Dynamic Systems.

Symmetry 2019, 11, 315. [CrossRef]
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