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Abstract: A structural beam which is subjected to shear forces acting perpendicularly to its longitudinal
axis will experience longitudinal and transverse shear stresses. In beams where failure in the transverse
direction is plausible, it is desirable to maintain a constant transverse shear stress over the beam
cross-section to avoid stress concentrations and to use the least amount of material. A numerical
approach to the inverse problem of solving for a beam cross-section with a constant transverse
shear stress distribution was investigated in this study using Microsoft Excel’s Solver and Matlab.
The efficiency and shape of the developed cross-section were dependent on the number of elements
used to discretize the cross-section. As the number of elements approached infinity, the shape of
the cross-section became infinitely thin at the top and infinitely wide at the neutral axis, while also
approaching an efficiency of 100%. It is therefore determined that this is an ill-posed inverse problem
and no such perfect cross-section exists.

Keywords: transverse shear stress; constant stress distribution; structural beam cross-section; inverse
problem; ill-posed problem; divergent solution

1. Introduction

In the design of a structural beam, there are several geometric and material parameters that must
be considered and optimized in order to yield the desired strength, lifespan, and reliability. For typical
Euler–Bernoulli beams, the bending stress is much greater than the transverse shear stress. However,
there are many cases where the beam is short enough, such that the transverse shear stress dominates.
In cases where there is a strong possibility for beam failure in the transverse direction, the shape of
a cross-section of a beam can be treated as a design variable. Uniaxial-reinforced composite beams,
anisotropic beams, wooden beams, tree branches, bones of young mammals, and railroad ties are
all prone to fracture due to their low transverse strength [1–3]. In general, the practical approach to
handling high transverse shear stresses is to use reinforcement stiffeners [4–6]. However, there are
limitations on the efficiency of these structures. For this methodology, the theoretical solution will be
investigated with a perfectly efficient cross-section as the goal.

A structural beam can be subjected to multiple shear forces acting perpendicularly to its longitudinal
axis, which could then be reduced to a resultant shear force V at any point along the length of the beam.
Longitudinal and transverse shear stresses are developed; the latter of which will be discussed and
optimized in this study. The longitudinal shear stress in a beam occurs along the longitudinal axis and
is visualized by a slip in the layers of the beam, as shown in Figure 1. The longitudinal shear strength
of the beam acts as the agent by which the slip between layers is prevented [7,8].
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Figure 1. Longitudinal shear stress in a beam. 

The transverse shear stress 𝜏 varies along the cross-section of a beam as shown in Figure 2, 
where 𝜏௠௔௫ is the maximum transverse shear stress and 𝑁𝐴 is the neutral axis, or the centroid of the 
cross-section [7]. For the rectangular cross-section shown in Figure 2, the solution is easily derived as 
a parabolic transverse shear stress distribution which has zero shear stress at the top, peaks at the 
neutral axis and returns to zero at the bottom [8]. 

 

Figure 2. Transverse shear stress distribution for a rectangular cross-section. 

The resultant shear force produces longitudinal and transverse shear stresses shown in Figure 
3. These stresses must be equal to each other to maintain the equilibrium of an infinitesimal stress 
element which is located at any theoretical point in the beam [7]. 

 
Figure 3. Infinitesimal shear stress element. 

It should be noted that 𝜏 is equal to zero at the top and bottom of the beam, shown in Figure 2. 
This is due to the fact that the top and bottom boundaries of the beam are exposed to air and therefore 
carry no longitudinal load [7]. It can also be observed in Figure 2 that the maximum transverse shear 
stress occurs at the neutral axis. Though this is not always the case, it can be derived that the 
maximum transverse shear stress will always occur at the neutral axis if the cross-section of the beam 
is thinnest at that point [7]. 

For the optimization of the overall lifespan of a beam which may be prone to transverse shear 
failure, it is desirable to maintain an even transverse shear stress distribution along the cross-section 
in order to avoid shear stress concentrations within the part. In general, a part is only as strong as its 
highest stress value. Any material that is not carrying a stress close to that of the maximum is wasted 
and is therefore unnecessary. Optimization is obtained by altering the geometry of the cross-section. 

The optimization of a beam for transverse shear stress efficiency can be solved as an inverse 
problem. The output (constant transverse shear stress along the cross-section) is known while the 

Figure 1. Longitudinal shear stress in a beam.

The transverse shear stress τ varies along the cross-section of a beam as shown in Figure 2,
where τmax is the maximum transverse shear stress and NA is the neutral axis, or the centroid of the
cross-section [7]. For the rectangular cross-section shown in Figure 2, the solution is easily derived
as a parabolic transverse shear stress distribution which has zero shear stress at the top, peaks at the
neutral axis and returns to zero at the bottom [8].
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Figure 2. Transverse shear stress distribution for a rectangular cross-section.

The resultant shear force produces longitudinal and transverse shear stresses shown in Figure 3.
These stresses must be equal to each other to maintain the equilibrium of an infinitesimal stress element
which is located at any theoretical point in the beam [7].
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Figure 3. Infinitesimal shear stress element.

It should be noted that τ is equal to zero at the top and bottom of the beam, shown in Figure 2.
This is due to the fact that the top and bottom boundaries of the beam are exposed to air and therefore
carry no longitudinal load [7]. It can also be observed in Figure 2 that the maximum transverse shear
stress occurs at the neutral axis. Though this is not always the case, it can be derived that the maximum
transverse shear stress will always occur at the neutral axis if the cross-section of the beam is thinnest
at that point [7].

For the optimization of the overall lifespan of a beam which may be prone to transverse shear
failure, it is desirable to maintain an even transverse shear stress distribution along the cross-section in
order to avoid shear stress concentrations within the part. In general, a part is only as strong as its
highest stress value. Any material that is not carrying a stress close to that of the maximum is wasted
and is therefore unnecessary. Optimization is obtained by altering the geometry of the cross-section.

The optimization of a beam for transverse shear stress efficiency can be solved as an inverse
problem. The output (constant transverse shear stress along the cross-section) is known while the input
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(the geometry of the cross-section) is not. The determination of the shape of the cross-section of the
beam to achieve maximum overall transverse shear stress efficiency can be completed using general
analytical or numerical methods. Both methods are discussed, but only the solution using the latter
method is identified and utilized in this study. A numerical method was chosen because of its proven
effectiveness in a wide variety of problem-solving and parameter-optimization applications [9,10].
Numerical/iterative approaches, such as the use of Microsoft Excel 2013′s Solver and MATLAB 8.3,
have been used before to solve and verify solutions to similarly-posed problems, such as in the
optimization of cylindrical bar cross-sections [10], and open beam geometry [9]. Other approaches
using the boundary element method have shown how the transverse shear stress can vary within an
arbitrary cross-section [11].

2. Theory

2.1. Transverse Shear Stress Distribution Within a Cross-Section—Analytical Formulation

For a beam experiencing a resultant shear force V through external loads, a transverse shear stress
distribution exists within the cross-section having a height of h as shown in Figure 4. The cross-section
is defined as z (horizontal) as a function of y (vertical) in the first quadrant, with the shaped assumed
to be symmetric about both the y and z axes. For the cross-section, three geometric properties can be
calculated analytically [7]. The area A is calculated in Equation (1) by setting up a differential element
with a height of dy and width of 2z. The area of the differential element is dA = 2zdy.

A =

∫
Area

dA (1)
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By using the symmetry about the z axis, the limits of y are from 0 to h/2 and this value can be
doubled. The area will be constant for a given cross-section as shown in Equation (2).

A = 4
∫ h/2

0
z dy (2)

The parameter Q is the first moment of area. The formula is similar to Equation (1) but with the
addition of a y term within the integral. Q varies within the cross-section and is calculated from the
top down to the point where the stress is formulated for any positive y value as shown in Equation (3).

Q =

∫
Area

y dA (3)

If the cross-section can be expressed as a simple geometric shape, an alternate formula for Q is
used as shown in Equation (4). The portion of the cross-section is drawn from the top down to where
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Q is calculated, AQ is the area and y is the centroid. Furthermore, if the portion of the cross-section can
be drawn from a series of simple geometric shapes, Q can be expressed from the components of the
centroid. In this case, A j is the area of each component and y j is its corresponding centroid, where j is
an index used for the summation.

Q = yAQ =
∑

y jA j (4)

The last property of the cross-section is the second moment of area, or area moment of inertia I.
Similar to area, it can also be doubled for symmetry and will be constant for the cross-section as shown
in Equations (5) and (6).

I =
∫

Area
y2 dA (5)

I = 4
∫ h/2

0
y2z dy (6)

The transverse shear stress as a function of vertical position τ(y) is calculated for any point
along the cross-section using the thickness across where the stress is measured t = 2z as calculated in
Equation (7) [7].

τ(y) =
VQ(y)
It(y)

(7)

The maximum transverse shear stress can occur at any point along the cross-section. If the thinnest
part of the material is at y = 0, τmax will definitely occur there since Q is at a maximum and t is at a
minimum. Otherwise, the derivative of τ(y) is set equal to zero to find the points where local maxima
occur as shown in Equation (8) [12]. Since there could be several local maxima for complex shapes,
several points may have to be compared to find the global maximum.

dτ
dy

= 0 (8)

The average transverse shear stress τavg is calculated in Equation (9) [12].

τavg =
2
h

∫ h/2

0
τ dy (9)

The efficiency of the cross-section τe f f is defined in Equation (10). It is expressed as a percentage,
with 100% denoting a constant transverse shear stress distribution.

τe f f =
τavg

τmax
(100%) (10)

2.2. Transverse Shear Stress Distribution Within a Cross-Section—Numerical Formulation

The cross-section from Figure 4 can be discretized into a series of rectangular elements each with
a height H as shown in Figure 5. As with the analytical formulation, the shape of the part is assumed
to be symmetric about both the y and z axes. The width of an individual element is 2z j where j ranges
from 1 to n total elements in the top half. The thickness t j is defined in Equation (11).

t j = 2z j (11)

The numerical solution will approach the analytical solution as the number of iterations increases.
If the total number of elements and height of the cross-section are known, the height of each element is
calculated in Equation (12).

H =
h

2n
(12)
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The area A is calculated in Equation (13) by applying Equation (2) to a series of elements, each with
an area A j.

A = 2
n∑

j=1

A j = 4H
n∑

j=1

z j (13)
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To calculate the area moment of inertia for each element I j, the parallel axis theorem for a given
rectangle with width t j, height H, area A j and distance from the z axis to centroid axis d j as shown in
Figure 5, will be applied for each discretized element [7]. The area moment of inertia for each element
is I j and the summation for the cross-section is I as shown in Equations (14)–(16).

I j =
t jH3

12
+ A jd2

j (14)

I j =
z jH3

6
+ 2z jHd2

j (15)

I = 4H3
n∑

j=1

z j

(
j2 − j +

1
3

)
(16)

The area A in Equation (13) and inertia I in Equation (16) are constants for the cross-section.
The resultant shear force V will also be constant as mentioned previously.

For the numerical method, the index a denotes the vertical position where the stress is calculated.
The first moment of area Qa will also depend on where the stress is being calculated as shown in Figure 6.
Using Equation (4) for all the elements from the top down to element a yields Qa in Equation (17):

Qa = H2
n∑

j=a

z j(2 j− 1) (17)

Applying Equation (7) for the numerical method yields the stress τa at element a as shown in
Equation (18).

τa =
V

∑n
j=a z j(2 j− 1)

8Hza
∑n

j=1 z j
(
j2 − j + 1

3

) (18)

Once all the transverse shear stress values are calculated for the elements, the maximum value is
identified. The average stress τavg shown in Equation (19) is the numerical application of Equation (9).

τavg =

∑n
a=1 τa

n
(19)
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Similar to the analytical method, Equation (10) is applied to the maximum transverse shear stress
value that is identified and the average transverse shear stress values from Equation (19) in order to
calculate the efficiency of the cross-section.Appl. Syst. Innov. 2019, 2, x FOR PEER REVIEW 6 of 12 
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2.3. Constant Transverse Shear Stress Distribution

Using the numerical method presented in Section 2.2, a cross-section is designed in order to
produce a constant transverse shear stress distribution. Setting τ in Equation (7) equal to a constant
and recognizing that only two parameters are variable means that Q is proportional to t through a
constant C as shown in Equation (20).

Q = Ct (20)

Applying Equations (11) and (17) yields an expression for C as shown in Equation (21)

C =
H2 ∑n

j=a z j
(
j− 1

2

)
za

(21)

To determine the constant C for the entire cross-section, a = n is applied to Equation (21), yielding
Equation (22).

C = H2
(
n−

1
2

)
(22)

Combining Equations (21) and (22) yields Equation (23).

za =

∑n
j=a z j

(
j− 1

2

)
n− 1

2

(23)

To determine the width of the elements, a = n − 1 is applied to Equation (23) as shown in
Equation (24).

zn−1 = zn

(
n−

1
2

)
(24)

This means that if the width of the top element zn is predetermined, the next element down
zn−1 is calculated from it. Furthermore, if this method is repeated, the following pattern emerges in
Equations (25)–(27).

zn−2 =
zn

(
n− 1

2

)2

2
(25)

zn−3 =
zn

(
n− 1

2

)3

6
(26)
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zn−4 =
zn

(
n− 1

2

)4

24
(27)

This yields a general solution for any element size z j in relation to the top element size zn as
shown in Equation (28).

z j =
zn

(
n− 1

2

)(n− j)

(n− j)!
(28)

From Equation (28) a relationship is developed between the first element z1, which is at the neutral
axis, and the last element zn as shown in Equation (29).

z1 =
zn

(
n− 1

2

)(n−1)

(n− 1)!
(29)

The ratio zR is calculated by dividing the widest element by the narrowest element as shown in
Equation (30). For the optimized design, the part will be widest at the neutral axis and thinnest at the
top, so it follows from Equation (29) that:

zR =
z1

zn
=

(
n− 1

2

)(n−1)

(n− 1)!
(30)

If the width of the neutral axis is held as a constant value, the first element z1 is known. Subsequent
elements can be derived by combining Equations (28) and (29). Therefore, any element z j can be
calculated by the previous element as shown in Equation (31).

z j =
z j−1(n− j + 1)

n− 1
2

(31)

The efficiency of the constant transverse shear stress numerical methodology τe f f is determined
from the fact that the top transverse shear stress element τn will always have a value of zero as
described previously. However, all remaining transverse shear stress elements τa will have the exact
same value. Equation (10) is then modified to calculate the efficiency of the cross-section as shown in
Equation (32). From Equation (32), as n approaches infinity, τe f f approaches 100%.

τe f f =
(n− 1

n

)
(100%) (32)

3. Results

Microsoft Excel and Matlab were both used extensively in this study to model and solve for a
beam cross-section which will exhibit a nearly constant transverse shear stress distribution when
subjected to a resultant shear force acting perpendicularly to its longitudinal axis. A Matlab script
that implemented the equations in Section 2 was developed in order to formulate the above-described
cross-section, and Excel’s Solver was used to further optimize certain parameters. The methodology
derived here is novel and defines the shape of a cross-section in order to obtain a constant transverse
shear stress distribution. It will now be investigated if the shape converges to an exact solution as the
number of elements n increases.

The constant transverse shear stress solution using the numerical method is compared to the
transverse shear stress of a rectangular cross-section in Figure 7. The rectangular cross-section
transverse shear stress distribution is a parabola that is derived from Equation (7) and has an efficiency
of 66.7% using Equation (10) [8]. The reason that the rectangular cross-section is not efficient is that the
maximum transverse shear stress is well above the average transverse shear stress. The “perfect shape”
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derived here has an efficiency that approaches 100% as the number of elements approaches infinity
from Equation (32).
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The shapes of the cross-sections were dependent on the number of elements chosen. A general
observation is that the cross-section is very narrow at the top and extremely wide at the neutral axis.
The flare-out point fy is defined as the vertical position on the plot of the cross-section where the
shape rapidly becomes much wider. This was defined to be the first y value where the thickness z was
calculated to be greater than 0.2% of z1 while moving from the top down.

The produced Matlab script required some user-determined values including n and z1. From these
values, zn, zR, and τe f f were then calculated using Equations (30)–(32). The overall width and height
were chosen to have a value of one in order to generate a clear-cut plot showing the effect that the
chosen n value had on the shape of the cross-section. Starting from 25, n was increased by ascending
increments to 700 using Matlab, after which the program failed for z1 = 0.5. Excel was used to calculate
the shape up to the flare-out point for 4,000,000 elements but could not handle the extremely small
values closer to the top of the cross-section. A representation of the cross-sections calculated is shown
in Figure 8. As the number of elements increased, the cross-section did not converge on a particular
shape. Through extrapolation, the cross-section for an infinite number of elements is infinitely thin at
the top, and has a flare-out point approaching fy = 0.

To bypass the programming constraints, z1 was increased to 10305 (the upper bound for integers in
Matlab) and n was increased until the program failed, which was at 1400 elements. For this number of
elements, the value of zn was approximately 10−305 (the lower bound for integers in Matlab.) The log of
the zR ratio obtained from each trial was taken to yield a nearly-linear relationship with n, as shown in
Figure 9. These values were then optimized using Excel’s Solver paired with the least squares method
to generate an equation and a linear trend line with R2 = 1.0000. The values of fy and τe f f were also
recorded for each value of n. The data obtained from Matlab and Excel is shown in Table 1.

The linear trend line on the semi-log plot shown in Figure 9 is extrapolated to predict the ratio
of the widest to thinnest parts of the cross-section for higher numbers of total elements. It is shown
in Table 2 that zR quickly becomes large. With only n = 25, the ratio is one billion with other larger
named numbers shown.
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Table 1. Data obtained using Matlab and Excel.

n log(zR) (Calculated in Matlab) log(zR) (Predicted with Solver Formula) Flare-Out (fy) τeff

100 41.81 43.21 0.1717 99.00%
200 85.09 86.43 0.1206 99.50%
300 128.43 129.64 0.0987 99.67%
400 171.80 172.85 0.0865 99.75%
500 215.18 216.07 0.0772 99.80%
600 258.57 259.28 0.0710 99.83%
700 301.97 302.49 0.0658 99.86%
800 345.37 345.71 0.0613 99.88%
900 388.77 388.92 0.0578 99.89%
1000 432.18 432.13 0.0551 99.90%
1100 475.59 475.35 0.0523 99.91%
1200 519.00 518.56 0.0505 99.92%
1300 562.41 561.77 0.0485 99.92%
1400 605.82 604.99 0.0465 99.93%
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Table 2. Extrapolated data.

n log(n) zR log(zR) Ratio Name τeff

7 0.84 1.0 1 Ten 85.51706%
9 0.96 100 2 Hundred 89.13779%

12 1.06 1000 3 Thousand 91.31023%
18 1.27 1.0 × 106 6 Million 94.56880%
25 1.40 1.0 × 109 9 Billion 96.05011%
32 1.51 1.0 × 1012 12 Trillion 96.89651%
235 2.37 1.0 × 10100 100 Googol 99.57403%
702 2.85 1.0 × 10303 303 Centillion 99.85754%

1400 3.15 1.0 × 10606 606 99.92857%
2319 3.37 1.0 × 101000 1000 99.95687%

2,314,103 6.36 1.0 × 101,000,000 1.0 × 106 99.99995%
2.31 × 109 9.36 1.0× 101,000,000,000 1.0× 109 99.99999%

4. Conclusions

The methodology developed here utilized a numerical solution to solve the inverse problem of
determining a structural beam cross-section with a constant transverse shear stress when subjected to
a resultant shear force. The cross-section is extremely thin at the top and extremely wide at the neutral
axis and does not converge to a specific shape. As the number of elements approaches infinity, the ratio
of the widest to the thinnest element will also approach infinity and the point of flare-out approaches
the neutral axis. It is therefore determined that this inverse problem is ill-posed.

The cross-section proved to be impractical for use in an engineering application. Due to the divergent
nature of the numerical solution, these results cannot be verified through physical experimentation. For
future work, this solution can be refined and applied to a more practical beam shape where there are
certain constraints in place such as a minimum and maximum thickness to the cross-section. Such a
solution would sacrifice efficiency for practicality

Author Contributions: Conceptualization, E.T.B.III; methodology, E.T.B.III and R.R.M.; software, E.T.B.III and
R.R.M.; validation, E.T.B.III and R.R.M.; formal analysis, E.T.B.III and R.R.M.; investigation, E.T.B.III and R.R.M.;
resources, E.T.B.III and R.R.M.; data curation, E.T.B.III and R.R.M.; writing—original draft preparation, E.T.B.III and
R.R.M.; writing—review and editing, E.T.B.III and R.R.M.; visualization, E.T.B.III and R.R.M.; supervision, E.T.B.III;
project administration, E.T.B.III. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Mike Batyko, Corey Smithmyer, and Theologos Tsalis for
their contributions to this research.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A Area
A j Area of Discrete Element
AQ Area Used to Calculate Q
a Numerical Index Where Stress Is Calculated
C Constant Relating Q and t
d j Centroid of Discrete Element
fy Flare-out Point
H Height of Discrete Element
h Cross-section Height
I Area Moment of Inertia
I j Area Moment of Inertia of Discrete Element
j Element Index
NA Neutral Axis of Cross-section
n Total Number of Discrete Elements for Top Half of Cross-section
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Q First Moment of Area
Qa First Moment of Area Where Transverse Shear Stress is Calculated
t Sectional Width of Cross-section Where Transverse Shear Stress is Calculated
t j Thickness of Discrete Element
V Shear Force Carried by the Section, Found from the Shear Force Diagram
y Vertical Component of Cross-section
y Centroid of Area Used to Calculate Q
y j Centroid of Component Area Used to Calculate Q
z Horizontal Component of Cross-section
za Half Width of Discrete Element Where Transverse Shear Stress is Calculated
z j Half Width of Discrete Element
zn Half Width of Top Discrete Element
zR Ratio of Widest to Thinnest Discrete Element
τ Transverse Shear Stress
τavg Average Transverse Shear Stress
τa Transverse Shear Stress at Discrete Element a
τe f f Efficiency of Cross-section
τmax Maximum Transverse Shear Stress
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