
Article

Mathematical Apparatus of Optimal
Decision-Making Based on Vector Optimization

Yury K. Mashunin

Far Eastern Federal University, 690068 Vladivostok, Russia; mashunin@mail.ru; Tel.: +79-143277508

Received: 17 April 2019; Accepted: 29 June 2019; Published: 11 October 2019
����������
�������

Abstract: We present a problem of “acceptance of an optimal solution” as a mathematical model
in the form of a vector problem of mathematical programming. For the solution of such a class of
problems, we show the theory of vector optimization as a mathematical apparatus of acceptance
of optimal solutions. Methods of solution of vector problems are directed to problem solving with
equivalent criteria and with the given priority of a criterion. Following our research, the analysis
and problem definition of decision making under the conditions of certainty and uncertainty are
presented. We show the transformation of a mathematical model under the conditions of uncertainty
into a model under the conditions of certainty. We present problems of acceptance of an optimal
solution under the conditions of uncertainty with data that are represented by up to four parameters,
and also show geometrical interpretation of results of the decision. Each numerical example includes
input data (requirement specification) for modeling, transformation of a mathematical model under
the conditions of uncertainty into a model under the conditions of certainty, making optimal decisions
with equivalent criteria (solving a numerical model), and, making an optimal decision with a given
priority criterion.

Keywords: modeling; vector optimization; methods of solution of vector problems; optimal
decision-making; numerical realization of decision-making

1. Introduction

The problem of making an optimal decision that meets the modern achievements of science
and technology is connected, firstly, with the release of high-quality products, and, secondly, with
the solution of problems of social and economic human development. The decision making can be
undertaken under the conditions of certainty (when the functional dependence of the purpose of the
parameters of the studied object and systems is known) [1–4], and under the conditions of uncertainty
(when there is not sufficient information on the functional dependence of the purpose of the parameters
of the studied object and systems) [5–8]. The conditions of uncertainty are characterized by the fact
that input data for decision-making, can be presented as random, fuzzy or incomplete data, [1,2,9,10].
Research on this problem of decision-making began with the work of Keeney and Raiffa [11]. Analyses
of modern decision-making approaches (i.e., “simple” methods) are submitted in [6,12]. One of the
areas of decision-making automation is associated with the creation of mathematical models and the
adoption of an optimal solution based on them [12–14]. Currently, the most common mathematical
apparatus for model-based decision making is vector optimization [6,12,14–19]. The purpose of this
work is to build a mathematical model for an object or system of decision making in the form of a
vector problem of mathematical programming. Vector optimization is considered as a mathematical
apparatus of a solution to the problem of acceptance of an optimal solution.

For the realization of the goal of this work, the study considered and solved the following problems.

Appl. Syst. Innov. 2019, 2, 32; doi:10.3390/asi2040032 www.mdpi.com/journal/asi

http://www.mdpi.com/journal/asi
http://www.mdpi.com
http://dx.doi.org/10.3390/asi2040032
http://www.mdpi.com/journal/asi
https://www.mdpi.com/2571-5577/2/4/32?type=check_update&version=2


Appl. Syst. Innov. 2019, 2, 32 2 of 52

The construction of a mathematical model of the problem of finding an optimal solution in the
form of a vector problem of mathematical programming has been shown previously [4,6,15,20]. In the
current paper, the theory and a mathematical apparatus of problem solving using vector optimization
are presented. The theory includes an axiomatic principle of optimality of the solution of vector
problems. The mathematical apparatus of the solution of vector problems is intended for the solution
of vector problems with equivalent criteria [6,13,21] and with the given priority of a criterion [15,20].
The research, analysis and problem definition of decision making under the conditions of certainty
and uncertainty are conducted. The realization of a mathematical apparatus of vector optimization is
presented for numerical problems of decision making with one, two, three and four parameters. The
solution of the problem of decision making includes creation of a numerical model of an object in the
form of a vector problem, the solution of a problem of decision making with equivalent criteria, and,
the solution of a vector problem of decision making with a criterion priority.

2. Statement of a Problem: Creation of the Mathematical Model “Acceptance of an Optimal
Solution”

As an “object for optimal decision-making,” we use a “technical system”. The problem of the choice
of optimum parameters of technical (engineering) systems according to functional characteristics arises
during the study, analysis, and design of technical systems, and is connected with quality production.

The problem includes the solution of the following tasks:

• Creation of a mathematical model, which defines the inter-relation of each functional characteristic
from parameters of the technical system, i.e., it is formed from the vector problem of
mathematical programming;

• Choice of methods of the decision: we suggest using the methods based on normalization of
criteria and the principle of the guaranteed result with equivalent criteria and with the set
criterion priority;

• Development of the software which realizes these methods;
• The statement of a problem is executed according to [4,6,20,22].

The technical system depends on N, a set of design data: X = {x1, x2, . . . , xN}, where N is the
number of parameters, each of which lies in the set limits:

xmin
j ≤ x j ≤ x, j = 1, N, or Xmin

≤ X ≤ Xmax

where xmin
j , xmax

j , ∀j ∈ N are the minimum and maximum limits of change of the vector of parameters
of the technical system.

The result of the functioning of the technical system is defined by a set К of technical characteristics
of fk(X), k = 1, K which functionally depend on design data X = {xj, j = 1, N}, in total these represent a
vector function: F(X) = (f 1(X) f 2(X) . . . fK (X))T.

The set of characteristics (criteria) is subdivided into two subsets K1 and K2: К = K1 ∪ K2.
K1 is a subset of technical characteristics, the numerical values of which are desired to be as high

as possible: fk(X)→max, k = 1, K1.
K2 is a subset of technical characteristics, the numerical values of which are desired to be as low

as possible: fk(X)→min, k = K1 + 1, K, K2 ≡ K1 + 1, K.
The mathematical model should consider, firstly, the purposes of the technical system which

are represented by the characteristics of F(X), and, secondly, the Xmin
≤ X ≤ Xmax restrictions. The

mathematical model of the technical system which solves in general a problem of the choice of the
optimum design decision (a choice of optimum parameters) is presented in the form of a vector problem
of mathematical programming.
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Opt F(X) = {max F1(X) = {max fk(X), k = 1, K1}, (1)

minF2(X) = {min fk(X), k = 1, K2}}, (2)

G(X) ≤ 0, (3)

xmin
j ≤ x j ≤ xmax

j , j = 1, N, (4)

where X is the vector of controlled variables (constructive parameters) in Equation (1), F(X) = {fk(X),
k = 1, K} represents the vector criterion for each component of the characteristics of the technical system
in Equation (2), which functionally depends on the vector of variables X, G(X) = (g1(X) g2(X) . . .
gM(X))T represents a vector of the restrictions imposed on the functioning of the technical system, and
M is a set of restrictions.

Restrictions are defined in terms of technological, physical or similar processes, and can be
presented by functional restrictions, for example, f min

k ≤ fk(X) ≤ f max
k , k = 1, K.

It is supposed that the fk(X), k = 1, K functions are differentiated and convex, gi(X), i = 1, M are
continuous, and Equations (3)–(4) represent a non-empty set of admissible points of S restrictions,
which can be represented as S = {X ∈ RN|G(X) ≤ 0, Xmin

≤ X ≤ Xmax} , ø.
Criteria and restrictions in Equations (1)–(4) form the mathematical model of a technical system. It

is required to find a vector of the X0
∈ S parameters at which every component of the vector-functions

F1(X) = {fk(X), k = 1, K1} accepts the greatest possible value, and vector-functions F2(X) = {fk(X), k = 1, K2}
are accepted by the minimum value.

For a substantial class of technical systems which can be represented by the vector problem of
Equations (1)–(4), it is possible to refer to their large number of applications in various fields, such as
electro-engineering [23], airspace [10,13], metallurgical (choice of optimal structure of material), and
chemical [24].

In this article, the technical system is considered to be static. However, technical systems can be
considered to be dynamic [23], using differential-difference methods of transformation, conducted for
a small discrete period ∆t ∈ T.

3. Theory. Axioms, the Principle of Optimality and Methods for Solving Vector Problems of
Mathematical Programming

The theory of vector optimization includes theoretical foundations (axioms) and methods of the
solution of vector problems with equivalent criteria and with the given criterion priority. The theory
is a basis of mathematical apparatus of modeling of an “object for optimal decision-making”, which
allows selection of any point from a set of points that is Pareto optimal, and shows why the selection
is optimal.

We have presented, first, axioms and methods of the solution of problems of vector optimization
with equivalent criteria (Section 3.1) and, second, the specified priority criteria (Section 3.2).

3.1. Vector Optimization with Equivalent Criteria

3.1.1. Axioms and the Principle of Optimality of Vector Optimization with Equivalent Criteria

Definition 1. (Definition of the relative assessment of criteria).

In the vector problem of Equations (1)–(4), definitions are as follows: λk(X) =
fk(X)− f o

k
f ∗k− f o

k
, ∀k ∈ K is the

relative estimate of a point X ∈ S kth criterion, fk(X) is the kth criterion at the point X ∈ S, f ∗k is the value
of the kth criterion at the point of optimum X∗k, obtained in the vector problem of Equations (1)–(4) of
the individual kth criterion, f 0

k is the worst value of the kth criterion (anti-optimum) at the point X0
k

(superscript 0) on the admissible set S in Equations (1)–(4), at the task at max (3), (5), (6), the value
of f 0

k is the lowest value of the kth criterion, f 0
k = min

X∈S
fk(X) ∀k ∈ K1 and the task min f 0

k is the greatest,
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f 0
k = max

X∈S
f k(X) ∀k ∈ K2. The relative estimate of λk(X), ∀k ∈ K is firstly measured in relative units and,

secondly, the relative assessment of λk(X) ∀k ∈ K on the admissible set is changed from zero at a point
of X0

k : ∀k ∈ K lim
X→Xo

k

λk(X) = 0, to the unit at the point of an optimum of X∗k:∀k ∈ K, lim
X→X∗k

λk(X) = 1, i.e.,:

∀k ∈ K, 0 ≤ λk(X) ≤ 1, X ∈ S. This allows the comparison of the criteria, measured in relative units, by
joint optimization.

Axiom 1. (About equality and equivalence of criteria at an admissible point of vector problems of
mathematical programming)

In vector problems of mathematical programming two criteria with the indexes k ∈ K, q ∈ K shall
be considered as equal at point X ∈ S if relative estimates of the kth and qth criterion are equal at this
point, i.e., λk(X) = λq(X), k, q ∈ K.

We will consider criteria equivalent in vector problems of mathematical programming at a point
X ∈ S if, when comparing the numerical size of relative estimates of λk(X), k = 1, K, for each criterion
of fk(X), k = 1, K, and, respectively, relative estimates of λk(X), conditions are not imposed about the
priorities of criteria.

Definition 2. (Definition of a minimum level among all relative estimates of criteria).
The relative level λ in a vector problem represents the lower assessment of a point of X ∈ S among

all relative estimates of λk(X), k = 1, K:

∀X ∈ S, λ ≤ λk(X), k = 1, K, (5)

The lower level for the performance of the condition of Equation (5) at an admissible point of X ∈ S is
defined as:

∀X ∈ S, λ = min
k∈K

λk(X). (6)

Equations (5) and (6) are interconnected. They serve as a transition from Equation (6) of the
definition of a minimum to the restrictions of Equation (5), and vice versa.

The level λ allows the union of all criteria in a vector problem with one numerical characteristic of
λ, made over certain operations, thereby carrying out these operations over all criteria measured in
relative units. The level λ functionally depends on the X ∈ S variable, by changing X, we can change
the lower level, λ. From here we will formulate the rules of searching for the optimum decision.

Definition 3. (The principle of optimality with equivalent criteria).
The vector problem of mathematical programming with equivalent criteria is solved if the point

of X0
∈ S and a maximum level of λ0 (the top index optimum) among all relative estimates is found

such that:
λ0 = max

X∈S
min
k∈K

λk(X). (7)

Using the interrelation of Equations (5) and (6), we will transform the maximine problem of
Equation (7) into an extreme problem:

λ0 = max
X∈S

λ, (8)

λ ≤ λk(X), k = 1, K. (9)

We can call the resulting problem of Equations (8) and (9) the λ-problem.
The λ-problem of Equations (8) and (9) has (N + 1) dimensions. As a consequence, the solution of

the λ-problem represents an optimum vector of X◦ ∈ RN+1, where (N + 1) is a component which has
the essence of the value of λ0, i.e., X0 = {xo

1, xo
2, ..., xo

N, xo
N+1}, thus xo

N+1 = λ0, and (N + 1) is a component
of a vector of X0 selected in view of its specificity.
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The obtained pair of {λ0, X0} = X0 characterizes the optimum solution of the λ-problem and
according to the vector problem of mathematical programming in Equations (1)–(4) with equivalent
criteria, can be solved on the basis of normalization of criteria and the principle of the guaranteed
result. In the optimum solution of X0 = {X0, λ0}, X0 is an optimal point and λ0 is a maximum level.

An important result of the algorithm for solving the vector problems of Equations (1)–(4) with
equivalent criteria is the following theorem.

Theorem 1. (The theorem of the two most contradictory criteria in the vector problem of mathematical
programming with equivalent criteria).

In convex vector problems of mathematical programming with equivalent criteria that are solved
on the basis of normalization of criteria and the principle of the guaranteed result, for an optimum
point of X0 = {λ0, X0}, two criteria are denoted by their indexes q ∈ K, p ∈ K (which in a sense are the
most contradictory of the criteria k = 1, K), for which an equality is carried out:

λ0 = λq(X0) = λp(X0), q, p ∈ K, X ∈ S, (10)

and other criteria are defined by inequalities:

λ0
≤ λk(X0) ∀k ∈ K, q , p , k. (11)

3.1.2. Mathematical Algorithm of the Solution of a Vector Problem with Equivalent Criteria

To solve the vector problems of mathematical programming of Equations (1)–(4), the methods
based on axioms of the normalization of criteria and the principle of the guaranteed result [12,21] are
offered. Methods follow from Axiom 1 and the principle of optimality (Definition 3). We will present
this as a number of steps as follows:

The method of the solution of the vector problem of Equations (1)–(4) with equivalent criteria is
presented in the form of the sequence of steps [25].

Step 1. The problem of Equations (1)–(4) is solved separately for each criterion, i.e., for ∀k ∈ K1 is
solved at the maximum, and for ∀k ∈ K2 is solved at a minimum. As a result of the decision, we obtain
X∗k, an optimum point by the corresponding criterion, k = 1, K; f ∗k = fk(X∗k), the kth criterion size at this

point, k = 1, K.
Step 2. We define the worst value of each criterion on S: f 0

k , k = 1, K. For the problem of Equations

(1)–(4) for each criterion of k = 1, K, a minimum is solved as: f 0
k = min fk(X), G(X) ≤ B, X ≥ 0, k = 1, K.

In addition, for Equations (1)–(4) for each criterion, a maximum is solved as: f 0
k = max fk(X), G(X)

≤ B, X ≥ 0, k = 1, K.
As a result of the decision, we obtain X0

k = {xj, j = 1, N}, an optimum point by the corresponding

criterion, k = 1, K; f 0
k = fk(X0

k), the kth criterion size at the point, X0
k , k = 1, K.

Step 3. For the system analysis of a set of Pareto optimal points, for this purpose optimum points
of X∗ = {X∗k, k = 1, K}, are defined as sizes of criterion functions of F(X*) and relative estimates λ(X∗),

λk(X) =
fk(X)− f o

k
f ∗k− f o

k
, ∀k ∈ K:

F(X∗) = { fq(X∗k), q = 1, K, k = 1, K} =

∣∣∣∣∣∣∣∣∣
f1(X∗1), . . . , fk(X∗1),

. . .
f1(X∗k), . . . , fk(X∗k)

∣∣∣∣∣∣∣∣∣,
λ(X∗) = {λq(X∗k), q = 1, K, k = 1, K} =

∣∣∣∣∣∣∣∣∣
λ1(X∗1), . . . , λk(X∗1),

. . .
λ1(X∗k), . . . , λk(X∗k)

∣∣∣∣∣∣∣∣∣.
(12)
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As a whole, for the problem ∀k ∈ К the relative assessment of λk(X), k = 1, K lies within 0 ≤ λk(X)
≤ 1, ∀k ∈ К.

Step 4. Creation of the λ-problem.
Creation of the λ-problem is carried out in two stages: initially build the maximine problem of

optimization with the normalized criteria, which at the second stage will be transformed into the
standard problem of mathematical programming called the λ-problem.

For the construction of the maximine problem of optimization we use Definition 2, relative level
∀X ∈ S, λ = min

k∈K
λk(X).

The bottom λ level is maximized on X ∈ S, as a result, we obtain a maximine problem of
optimization with the normalized criteria:

λ0 = max
x

min
k
λk(X), G(X) ≤ B, X ≥ 0. (13)

At the second stage we transform the problem of Equation (13) into a standard problem of
mathematical programming:

λ0 = max λ,→ λ0 = max λ, (14)

λ− λk(X) ≤ 0, k = 1, K,→ λ−
fk(X) − f 0

k

f ∗k − f 0
k

, k = 1, K, (15)

G(X) ≤ B, X ≥ 0,→ G(X) ≤ B, X ≥ 0, (16)

where the vector of unknowns of X has the dimension N + 1: X = {λ, x1, . . . , xN}.
Step 5. Solution of the λ-problem.
The λ-problem of Equations (14)–(16) is a standard problem of convex programming for which

decision standard methods are used.
As a result of the solution of the λ-problem, the following are obtained:

X0 = {λ0, X0}, an optimum point,

fk(X0), k = 1, K, values of the criteria at this point,

λk(X0) =
fk(Xo)− f o

k
f ∗k− f o

k
, k = 1, K, sizes of the relative estimates,

λ0, the maximum relative estimates which represent the maximum bottom level for all relative
estimates of λk(X0), or the guaranteed result in relative units. λ0 guarantees that all relative estimates
of λk(X◦) are equal λ0: λk(X0) ≥ λ0, k = 1, K or λ0

≤ λk(X0), k = 1, K, X0
∈ S, and according to Theorem

1 [12,21], the point of X0 = {λ0, x1, . . . , xN} is Pareto optimal.

3.1.3. Implementation of the Decision using the Example of a Vector Problem of Linear Programming
with Equivalent Criteria

The use of the vector problem of Equations (1)–(4) for decision making is carried out in four stages:
statement of the problem, construction of the mathematical model, software development for solving
the vector problem, and, solution of the vector problem.

These stages are carried out on the example of a model of an economic system presented by a
vector problem of linear programming with equivalent criteria.

Stage 1. Statement of the problem.
As an economic system, a model of the production schedule of an enterprise is considered.
It is given that the company, which produces heterogeneous products of four types, N = 4, uses

resources of three types, M = 3, in production: labor (various specialties), material (different types of
materials), power (equipment: welding, turning, etc.).

The technological matrix of production is presented in Table 1. It also indicates the potential of
the enterprise for each type of the resource bi, i = 1, 3, as well as income c1

j and profit c2
j from the sale of

a unit of each type of product.
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Table 1. The consumption of resources and operational performance.

Type
Resources

Costs of Resources of One Product Possibilities of Firm
on ResourcesType 1 Type 2 Type 3 Type 4

Labor (people/week) 1 1 1 1 15
Material (in kg) 7 5 3 2 120

Capacity (per hour) 3 5 10 15 100

Income from a unit of
production c1

j
4.0 5.0 9.0 11.0 maximize

Profit c2
j , j = 1,...,4 2 10 6 20 maximize

Output x1 x2 x3 x4 To define

It is required to make the production schedule of the enterprise, which includes indicators
according to the nomenclature (by types of products) and on a volume basis, i.e., how many products
of the corresponding type should be made by the enterprise so that income and profit can be realized
as shown above. Construction and solution of the mathematical model follow.

Stage 2. Construction of a mathematical model.
As variables, we take the volume of products that the company produces: X = {x1, . . . , xN},

N = 4. We express target orientation of the production schedule by means of a vector problem of linear
programming (VPLP) which will take the form:

opt F(X) = {max f 1(X) = (4.0x1 + 5.0x2 + 9.0x3 + 11.0x4),
max f 2(X) = (2x1 + 10x2 + 6x3 + 20x4)},
with restrictions x1 + x2 + x3 + x4 ≤ 15,
7x1 + 5x2 + 3x3 + 2x4 ≤ 120,
3x1 + 5x2 +10x3 +15x4 ≤ 100, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
In this VPLP the following is formulated: it is required to find the non-negative solution of x1, . . . ,

x4 in the system of inequalities at which the f 1(X) and f 2(X) functions obtain maximum values.
Stage 3. The software engineering of the solution of the VPLP.
The “Solution of a Vector Problem of Linear Programming” program is presented in the annex to

this section.
Stage 4. Solution of a vector problem of linear programming.
We show the solution of a problem of linear programming in the MATLAB system according to

an algorithm of the solution of the VPLP on the basis of normalization of criteria and the principle
of the guaranteed result. At first input data are prepared (the italicized font indicates the text of the
program in the MATLAB system). The vector target function in the form of a matrix is formed:

disp (‘Solution of a vector problem of the linear programming’)
cvec = [ −4.0 −5.0 −9.0 −11.0, % Sales volume
−2. −10. −6. −20.] % profit Volume
a = [1.0 1.0 1.0 1.0,
7.0 5.0 3.0 2.0,
3.0 5.0 10.0 15.0], % matrix of linear restrictions
b= [15. 120. 100] % the vector containing restrictions (bi)
Aeq = [], beq = [] % restriction like equality
X0 = [0. 0. 0. 0.], % a vector of variables
The algorithm of the solution of VPLP is represented as a sequence of steps.
Step 1. A decision on each criterion.
The decision on the first criterion of the VPLP: [x1,f1] = linprog(cvec(1,:),a,b,Aeq,beq,lb,ub)
Decision on the first criterion: X∗1 = x1 = {x1 = 7.14, x2 = x4 = 0, x3 = 7.85}, f ∗1 = f1 = −99.286.
Decision on the second criterion: X∗2 = {x1 = 0, x2 = 12.5, x3 = 0, x4 = 2.5}, f ∗2 = f 2 = 175.
Step 2. The worst point of an optimum is determined for each criterion (anti-optimum) by

multiplication of criterion by a minus unit. For the decisions on the first and second criterion:
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X0
1 = x1min = {x1 = 0, . . . , x4 = 0}, f 0

1 = f1min = 0.
X0

2 = x2min = {x1 = 0, . . . , x4 = 0}, f 0
2 = f2min = 0.

Step 3. The system analysis of the criteria in the VPLP is undertaken (i.e., the system of two criteria
at optimum points is analyzed). For this purpose, optimum points of X∗1, X∗2 are defined sizes of criterion

functions and relative estimates of: F(X*) = ‖ fq(X∗k)‖
q = 1,K

k = 1,K
, λ(X*) = ‖λq(X∗k)‖

q = 1,K

k = 1,K
, λ(X*) =

fk(X∗)− f o
k

f ∗k− f o
k

,

k = 1, K, F(X*) =

∣∣∣∣∣∣∣ f1
(
X∗1) f1

(
X∗1

)
f1
(
X∗2) f2

(
X∗2

) ∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ 99.29 61.43
90.0 175.0

∣∣∣∣∣∣, λ(X*) =

∣∣∣∣∣∣∣ λ1
(
X∗1) λ2

(
X∗1

)
λ1

(
X∗2) λ2

(
X∗2

) ∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1.0 0.351
0.907 1.0

∣∣∣∣∣∣.
Step 4. The λ-problem is constructed as: λ0 = max λ,
with restrictions λ − (f 1(X) − f 0

1 )/( f ∗1 − f 0
1 ) ≤ 0, λ − (f 2(X) − f 0

2 )/( f ∗2 − f 0
2 ) ≤ 0, G(X) ≤ B, X ≥ 0.

Substituting numerical data, we obtain:
λ0 = max λ,
with restrictions: λ − (4.0x1 + 5.0x2 + 9.0x3 + 11.0x4 − f 0

1 )/( f ∗1 − f 0
1 ) ≤ 0,

λ − (2x1 +10x2 + 6x3 + 20x4 − f 0
2 )/( f ∗2 − f 0

2 ) ≤ 0,
x1 + x2 + x3 + x4 ≤ 15,
7x1 + 5x2 + 3x3 + 2x4 ≤ 120,
3x1 + 5x2 + 10x3 + 15x4 ≤ 100,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
Step 5. Solution of the λ-problem.
Results of the solution of the λ-problem:
X0 = {x1 = 0.9217914, x2 = 0.0, x3 = 11.73964, x4 = 1.520722, x5 = 1.739639} - optimum values

of variables,
λ0 = 0.9218, the optimum value of the criterion function
We execute a check, at an optimum point of X0 we determine sizes of criterion functions of

F(X0) = {fk(X0), k = 1, K}, relative estimates of λ(X0) = {λk(X0), k = 1, K}.
As a result of the decision we obtain: fX0 = [f 1(X0) = 91.52, f 2(X0) = 161.3],
λ1(X0) = 0. 9218, λ2(X0) = 0.9218, i.e., λ0

≤ λk(X0), k = 1,2.
These results show that at point X0 both criteria in the relative units reached λ0 = 0.92 from the

optimum sizes. Any increase in one of the criteria of this level leads to a decrease in the other criterion,
i.e., the point X0 is Pareto optimal.

Here we present the text of the program in the MATLAB system.
The application.
%Vector linear programming problem, 2 criteria
% Author: Мaшунин Юрий Констaнтинович -Mashunin Yury. K.
%The program is designed for the training and research, for the commercial purposes

please contact:
% Mashunin@mail.ru
disp(Vector linear programming problem - 2 criteria’)
disp(‘ opt F(X) = {max f1(X) = (4.0x1 + 5.0x2 +9.0x3 + 11.0x4), ‘)
disp(‘ max f2(X) = (2x1 + 10x2 + 6x3 + 20x4),’)
disp(‘ x1 + x2 + x3 + x4 <= 15,’)
disp(‘7x1 +5x2 + 3x3 + 2x4 <= 120,’)
disp(‘3x1 +5x2 +10x3 +15x4 <= 100, x1 >= 0,..., x42 >= 0 ’)
cvec = [-4.0 -5.0 -9.0 -11.0.; -2. -10. -6. -20.];
disp(‘‘Step 0. Input data of the vector problem’)
cvec = [-4.0 -5.0 -9.0 -11.0; -2. -10. -6. -20.];
a = [1. 1. 1. 1.; 7. 5. 3. 2.; 3. 5. 10. 15.];
b = [15. 120. 100.]; Aeq = []; beq = []; x0 = [0. 0. 0. 0.];
disp(‘Step 1.The solution for each criterion is the best’)
[x1,f1] = linprog(cvec(1,:),a,b,Aeq,beq,x0)
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[x2,f2] = linprog(cvec(2,:),a,b,Aeq,beq,x0)
disp(‘Step 2. Solution by criterion-best-worst’)
[x1min,f1min] = linprog(-1*cvec(1,:),a,b,Aeq,beq,x0)
[x2min,f2min] = linprog(-1*cvec(2,:),a,b,Aeq,beq,x0)
disp(‘Step 3. System analysis of the results of the decision’)
d1 = -f1- f1min; d2 = -f2- f2min;
f = [cvec(1,:)*x1 cvec(2,:)*x1; cvec(1,:)*x2 cvec(2,:)*x2]
L = [(-f(1,1) - f1min)/d1 (-f(1,2) - f2min)/d2;
(-f(2,1) − f1min)/d1 (-f(2,2) - f2min)/d2]
disp(‘Step 4. Solution of L-problem’);
cvec0 = [-1. 0. 0. 0. 0.];
a0 = [1. -4.0/d1 -5.0/d1 -9.0/d1 -11.0/d1;
1. -2./d2 -10./d2 -6./d2 -20./d2;
0. 1. 1. 1. 1.;
0. 7. 5. 3. 2.;
0. 3. 5. 10. 15.];
b0 = [- f1min/d1 − f2min)/d2 15. 120. 100.]; x00 = [0. 0. 0. 0. 0.];
[X0,L0] = linprog(cvec0,a0,b0,Aeq,beq,x00)
fX0 = [cvec(1,:)*X0(2:5) cvec(2,:)*X0(2:5)]
LX0 = [(-fX0(1)- f1min)/ d1 (-fX0(2) - f2min)/d2]

3.2. Vector Optimization with a Criterion Priority

3.2.1. Axioms and the Principle of Optimality of Vector Optimization with a Criterion Priority

For development of methods of the solution of problems of vector optimization with a priority of
criterion we use definitions as follows:

• priority of one criterion of vector problems, with a criterion priority over other criteria,
• numerical expression of a priority,
• the set priority of a criterion,
• the lower (minimum) level from all criteria with a priority of one of them,
• a subset of points with priority by criterion (Axiom 2),
• the principle of optimality of the solution of problems of vector optimization with the set priority

of one of the criteria, and related theorems. For more details see [7,25].

Definition 4. (About the priority of one criterion over the other).
The criterion of q ∈ K in the vector problem of Equations (12) and (13) in a point of X ∈ S has

priority over other criteria of k = 1, K, and the relative estimate of λq(X) by this criterion is greater than
or equal to relative estimates of λk(X) of other criteria, i.e.:

λq(X) ≥ λk(X), k = 1, K,

and a strict priority for at least one criterion of t∈K,

λq(X) > λt(X), t , q, and for other criteria of λq(X) ≥ λk(X), k = 1, K, k , t , q.

Introduction of the definition of a priority of criterion in the vector problem of Equations (1)–(4)
executed the redefinition of the early concept of a priority. Earlier the intuitive concept of the importance
of this criterion was outlined, now this “importance” is defined as a mathematical concept: the higher
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the relative estimate of the qth criterion compared to others, the more it is important (i.e., more priority),
and the highest priority at a point of an optimum is X∗k, ∀q ∈ K.

From the definition of a priority of criterion of q ∈ K in the vector problem of Equations (1)–(4), it
follows that it is possible to reveal a set of points Sq ⊂ S that is characterized by λq(X) ≥ λk(X), ∀k , q, ∀X
∈ Sq. However, the answer to whether a criterion of q ∈ K at a point of the set Sq has more priority than
others remains open. For clarification of this question, we define a communication coefficient between
a couple of relative estimates of q and k that, in total, represent a vector: Pq(X) = {pq

k(X)|k = 1, K}, q ∈ K
∀X ∈ Sq.

Definition 5. (About numerical expression of a priority of one criterion over another).
In the vector problem of Equations (12) and (13), with priority of the qth criterion over other

criteria of k = 1, K, for ∀X ∈ Sq, and a vector of Pq(X) which shows how many times a relative estimate
of λq(X), q ∈ K, is more than other relative estimates of λk(X), k = 1, K, we define a numerical expression
of the priority of the qth criterion over other criteria of k = 1, K as:

Pq(X) = {pq
k(X) = λq(X)/λk(X), k = 1, K}, pq

k(X) ≥ 1,
∀X ∈ Sq ⊂ S, k = 1, K,∀q ∈ K.

(17)

Definition 6. (About the set numerical expression of a priority of one criterion over another).
In the vector problem of Equations (1)–(4) with a priority of criterion of q ∈ K for ∀X ∈ S, vector

Pq = {pq
k, k = 1, K} is considered to be set by the person making decisions (i.e., decision-maker) if

everyone is set a component of this vector. Set by the decision-maker, component pq
k, from the point of

view of the decision-maker, shows how many times a relative estimate of λk(X), k = 1, K is greater than
other relative estimates of λk(X), k = 1, K. The vector of pq

k, k = 1, K is the numerical expression of the

priority of the qth criterion over other criteria of k = 1, K:

Pq(X) = {pq
k, k = 1, K}, pq

k ≥ 1,∀X ∈ Sq ⊂ S, k = 1, K,∀q ∈ K. (18)

The vector problem of Equations (1)–(4), in which the priority of any criteria is set, is called a
vector problem with the set priority of criterion. The problem of a task of a vector of priorities arises
when it is necessary to determine the point X0

∈ S by the set vector of priorities. In the comparison of
relative estimates with a priority of criterion of q ∈ K, as well as in a task with equivalent criteria, we
define the additional numerical characteristic of λ which we call the level.

Definition 7. (About the lower level among all relative estimates with a criterion priority).
The λ level is the lowest among all relative estimates with a priority of criterion of q∈ such that:

λ ≤ pq
kλk(X), k = 1, K, q ∈ K,∀X ∈ Sq ⊂ S; (19)

The lower level for the performance of the condition in Equation (19) is defined as:

λ = min
k∈K

pq
kλk(X), q ∈ K,∀X ∈ Sq ⊂ S. (20)

Equations (19) and (20) are interconnected and serve as a further transition from the operation of
the definition of the minimum to restrictions, and vice versa. In Section 3.1, we gave the definition of
a Pareto optimal point X0

∈ S with equivalent criteria. Considering this definition as an initial one,
we will construct a number of the axioms dividing an admissible set of S into, first, a subset of Pareto
optimal points S0, and, secondly, a subset of points Sq ⊂ S, q ∈ K, with priority for the qth criterion.
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Axiom 2. (About a subset of points, priority by criterion).
In the vector problem of Equations (12)–(13), the subset of points Sq ⊂ S is called the area of

priority of criterion of q ∈ K over other criteria, if ∀X ∈ Sq ∀k∈K λq(X) ≥ λk(X), q , k.

This definition extends to a set of Pareto optimal points S0 that is given by the following definition.

Axiom 2a. (About a subset of points, priority by criterion, on Pareto’s great number in a vector
problem). In a vector problem of mathematical programming the subset of points So

q ⊂ S0
⊂ S is called

the area of a priority of criterion of q∈K over other criteria, if ∀X ∈ So
q ∀k ∈ K λq(X) ≥ λk(X), q , k.

In the following we provide explanations.
Axiom 2 and 2a allow the breaking of the vector problem in Equations (1)–(4) into an admissible

set of points S, including a subset of Pareto optimal points, S0
⊂ S, and subsets:

One subset of points S’ ∈ S where criteria are equivalent, and a subset of points of S’ crossed with
a subset of points S◦, allocated to a subset of Pareto optimal points at equivalent criteria S00 = S’ ∩ S0.
As will be shown further, this consists of one point of X0

∈ S, i.e., X0 = S00 = S’ ∩ S0, S’ ∈ S, S0
∈ S.

“K” subsets of points where each criterion of q = 1, K has a priority over other criteria of k = 1, K, q
, k, and thus breaks, first, sets of all admissible points S, into subsets Sq ⊂ S, q = 1, K and, second, a set
of Pareto optimal points, S0, into subsets So

q ⊂ S0
⊂ S, q = 1, K. This yields: S’U( U

q∈K
So

q) = S0, So
q ⊂S0

⊂ S,

q = 1, K.
We note that the subset of points So

q, on the one hand, is included in the area (a subset of points)
of priority of criterion of q∈K over other criteria: So

q⊂ Sq ⊂ S, and, on the other, in a subset of Pareto
optimal points: So

q ⊂ S0
⊂ S.

Axiom 2 and the numerical expression of priority of criterion (Definition 5) allow the identification
of each admissible point of X∈S (by means of vector Pq(X) = {pq

k(X) = λq(X)/λk(X), k = 1, K}), to form
and choose:

• a subset of points by priority criterion Sq, which is included in a set of points S, ∀q ∈ K X ∈ Sq ⊂ S,
(such a subset of points can be used in problems of clustering, but is beyond this article);

• a subset of points by priority criterion So
q, which is included in a set of Pareto optimal points S◦,

∀q∈K, X∈So
q ⊂ S0.

Thus, full identification of all points in the vector problem of Equations (12) and (13) is executed
in sequence as:

Set of admissible points
of X∈S→

Subset of points,
optimum across Pareto,

X∈S0
⊂S→

Subset of points,
optimum across Pareto

X∈So
q ⊂ S0

⊂ S→

Separate point of a ∀X∈S
X∈So

q ⊂ S0
⊂ S

This is the most important result which allows the output of the principle of optimality and to
construct methods of a choice of any point of Pareto’s great number.

Definition 8. (Principle of optimality 2. The solution of a vector problem with the set criterion priority).
The vector problem of Equations (12) and (13) with the set priority of the qth criterion of pq

k, k = 1, K
is considered solved if the point X0 and maximum level λ0 among all relative estimates is found such
that:

λ0 = max
X∈S

min
k∈K

pq
kλk(X), q ∈ K. (21)

Using the interrelation of Equations (19) and (20), we can transform the maximine problem of
Equation (33) into an extreme problem of the form:

λ0 = max
X∈S

λ, (22)

λ ≤ pq
kλk(X), k = 1, K. (23)
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We call Equations (22) and (23) the λ-problem with a priority of the qth criterion.
The solution of the λ-problem is the point X0 = {X0, λ0} This is also the result of the solution of

the vector problem of Equations (1)–(4) with the set priority of the criterion, solved on the basis of
normalization of criteria and the principle of the guaranteed result.

In the optimum solution X0 = {X0, λ0}, X0, an optimum point, and λ0, the maximum bottom level,
the point of X0 and the λ0 level correspond to restrictions of Equation (15), which can be written as: λ0

≤ pq
kλk(X0), k = 1, K.

These restrictions are the basis of an assessment of the correctness of the results of a decision in
practical vector problems of optimization.

From Definitions 1 and 2, “Principles of optimality”, follows the opportunity to formulate the
concept of the operation “opt”.

Definition 9. (Mathematical operation “opt”).
In the vector problem of Equations (1)–(4), in which “max” and “min” are part of the criteria, the

mathematical operation “opt” consists of the definition of a point X0 and the maximum λ0 bottom
level to which all criteria measured in relative units are lifted:

λ0
≤ λk

(
X0

)
=

fk(X) − f o
k

f ∗k − f o
k

, k = 1, K, (24)

i.e., all criteria of λk(X0), k = 1, K are equal to or greater than the maximum level of λ0 (therefore λ0 is
also called the guaranteed result).

Theorem 2. (The theorem of the most inconsistent criteria in a vector problem with the set priority).
If in the convex vector problem of mathematical programming of Equations (1)–(4) the priority

of the qth criterion of pq
k, k = 1, K, ∀q ∈ K over other criteria is set, at a point of an optimum X0

∈ S
obtained on the basis of normalization of criteria and the principle of guaranteed result, there will
always be two criteria with the indexes r ∈ K, t ∈ K, for which the following strict equality holds:

λ0 = pr
kλr

(
X0

)
= pt

kλt
(
X0

)
, r, t,∈ K, (25)

and other criteria are defined by inequalities:

λ0
≤ pq

k

(
X0

)
, k = 1, K,∀q ∈ K, q , r , t. (26)

Criteria with the indexes r∈K, t∈K for which the equality of Equation (38) holds are called the
most inconsistent.

Proof. Similar to Theorem 2 [25].
We note that in Equations (25) and (26), the indexes of criteria r, t ∈ K can coincide with the q ∈

K index.
Consequence of Theorem 1, about equality of an optimum level and relative estimates in a vector

problem with two criteria with a priority of one of them.
In a convex vector problem of mathematical programming with two equivalent criteria, solved on

the basis of normalization of criteria and the principle of the guaranteed result, at an optimum point
Xo equality is always carried out at a priority of the first criterion over the second:

λ0 = λ1
(
X0

)
= p1

2

(
X0

)
λ2

(
X0

)
, X0
∈ S, where p1

2

(
X0

)
= λ1

(
X0

)
/λ2

(
X0

)
, (27)

and at a priority of the second criterion over the first:
λ0 = p2

1(X0)λ1(X0) = λ2(X0), X0
∈ S, where p2

1(X0) = λ2(X0)/λ1(X0).
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3.2.2. Mathematical Method of the Solution of a Vector Problem with Criterion Priority

(Method of the decision in problems of vector optimization with a criterion priority) [25].
Step 1. We solve a vector problem with equivalent criteria. The algorithm of the decision is

presented in Section 3.1.2. As a result of the decision we obtain:

• optimum points by each criterion separately X∗k, k = 1, K and sizes of criterion functions in these

points of f ∗k = fk(X∗k), k = 1, K, which represent the boundary of a set of Pareto optimal points,

• anti-optimum points by each criterion of X0
k = {xj, j = 1, N} and the worst unchangeable part of

each criterion of f 0
k = fk(X0

k), k = 1, K,

• X0 = {λ0, X0}, an optimum point, as a result of the solution of VPMP at equivalent criteria, i.e., the
result of the solution of a maximine problem and the λ-problem constructed on its basis,

• λ0, the maximum relative assessment which is the maximum lower level for all relative estimates
of λk(X0), or the guaranteed result in relative units, λ0 guarantees that all relative estimates of
λk(X0) are equal to or greater than λ0:

λ0
≤ λk

(
X0

)
, k = 1, K, X0

∈ S. (28)

The person making the decision carries out the analysis of the results of the solution of the vector
problem with equivalent criteria. If the received results satisfy the decision maker, then the process
concludes, otherwise subsequent calculations are performed.

In addition, we calculate:

• in each point X∗k, k = 1, K we determine sizes of all criteria of q = 1, K: {fq(X∗k), q = 1, K}, k = 1, K,

and relative estimates λ(X∗) = {λq(X∗k), q = 1, K, k = 1, K}, λk(X) =
fk(X)− f o

k
f ∗k− f o

k
, ∀k ∈ K:

F(X∗) =

∣∣∣∣∣∣∣∣∣
f1(X∗1), . . . , fk(X∗1),

. . .
f1(X∗k), . . . , fk(X∗k)

∣∣∣∣∣∣∣∣∣,λ(X∗) =

∣∣∣∣∣∣∣∣∣
λ1(X∗1), . . . , λk(X∗1),

. . .
λ1(X∗k), . . . , λk(X∗k)

∣∣∣∣∣∣∣∣∣ (29)

Matrices of criteria of F(X*) and relative estimates of λ(X*) show the sizes of each criterion of
k = 1, K upon transition from one optimum point X∗k, k∈K to another X∗q, q∈K, i.e., on the border of a
great number of Pareto.

• at an optimum point at equivalent criteria X0 we calculate sizes of criteria and relative estimates:

fk
(
X0

)
, k = 1, K;λk

(
X0

)
, k = 1, K, (30)

which satisfy the inequality of Equation (28). In other points X∈S0, in relative units the criteria of
λ = min

k∈K
λk(X) are always less than λ0, given the λ-problem of Equations (22) and (23).

This information is also a basis for further study of the structure of a great number of Pareto.
Step 2. Choice of priority criterion of q ∈ K.
From theory (see Theorem 1) it is known that at an optimum point X0 there are always two

most inconsistent criteria, q ∈ K and v ∈ K, for which in relative units an exact equality holds:
λ0 = λq(X0) = λp(X0), q, v ∈ K, X ∈ S. Others are subject to inequalities: λ0

≤ λk(X0) ∀k ∈ K, q , v , k.
As a rule, the criterion which the decision-maker would like to improve is part of this couple, and

such a criterion is called a priority criterion, which we designate q ∈ K.
Step 3. Numerical limits of the change of the size of a priority of criterion q ∈ K are defined.
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For priority criterion q ∈ K from the matrix of Equation (29) we define the numerical limits of the
change of the size of criterion:

• in physical units of fq
(
X0

)
≤ fq(X) ≤ fq

(
X∗q ), k ∈ K, (31)

where fq(X∗q) derives from the matrix of Equation (29) F(X*), all criteria showing sizes measured in
physical units, fq(X0) from Equation (30), and,

• in relative units of λq
(
X0

)
≤ λq(X) ≤ λq

(
X∗q ), k ∈ K, (32)

where λq(X∗q) derives from the matrix λ(X*), all criteria showing sizes measured in relative units (we
note that λq(X∗q) = 1), λq(X0) from Equation (29).

As a rule, Equations (31) and (32) are given for the display of the analysis.
Step 4. Choice of the size of priority criterion (decision-making).
The person making the decision carries out the analysis of the results of calculations of Equation

(42) and from the inequality of Equation (31) chooses the numerical size fq of the criterion of q∈K:

fq
(
X0

)
≤ fq ≤ fq

(
X∗q ), q ∈ K. (33)

For the chosen size of the criterion of fq it is necessary to define a vector of unknown Xo. For this
purpose, we carry out the subsequent calculations.

Step 5. Calculation of a relative assessment.
For the chosen size of the priority criterion of fq the relative assessment is calculated as:

λq =
fq − f o

q

f ∗q − f o
q

, (34)

which upon transition from point X0 to X∗q, according to Equation (32), lies in the limits: λq(X0) ≤ λq ≤

λq(X∗q) = 1.
Step 6. Calculation of the coefficient of linear approximation.
Assuming a linear nature of the change of criterion of fq(X) in Equation (31) and according to the

relative assessment of λq(X) in Equation (32), using standard methods of linear approximation we
calculate the proportionality coefficient between λq(X◦), λq, which we call ρ:

ρ =
λq − λq(Xo)

λq(X∗q) − λq(Xo)
, q ∈ K (35)

Step 7. Calculation of coordinates of priority criterion with the size fq.
In accordance with Equation (33), the coordinates of the Xq priority criterion point lie within the

following limits: X0
≤ Xq

≤ X∗q, q ∈ K. Assuming a linear nature of change of the vector Xq = {xq
1, . . . , xq

N}
we determine coordinates of a point of priority criterion with the size fq with the relative assessment of
Equation (32):

Xq = {xq
1 = x0

1 + ρ(x∗q(1) − x0
1),

· · · ,
xq

N = x0
N + ρ(x∗q(N) − x0

N)}.
(36)

where X0 = {xo
1, . . . , xo

N}, X∗q = {x∗q(1), . . . , x∗q(N)}.
Step 8. Calculation of the main indicators of a point xq.
For the obtained point xq, we calculate:

• all criteria in physical units fk(xq) = {fk(xq), k = 1, K},

• all relative estimates of criteria λq = {λq
k, k = 1, K}, λk(xq) =

fk(xq)− f o
k

f ∗k− f o
k

, k = 1, K1,K,
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• the vector of priorities Pq = {pq
k =

λq(xq)

λk(xq)
, k = 1, K},

• the maximum relative assessment λoq = min (pq
kλk(xq), k = 1, K).

Any point from Pareto’s set Xo
t = {λo

t , Xo
t }∈So can be similarly calculated.

Analysis of results. The calculated size of criterion fq(Xo
t ), q∈K is usually not equal to the set fq.

The error of the choice of ∆fq = |fq(Xo
t ) − fq| is defined by the error of linear approximation.

4. Research, Analysis, and Formulation of the Problem of Decision-Making with Uncertain Data

4.1. Investigation of the Model of the “Object for Making an Optimal Decision” under Certainty and
Uncertainty

4.1.1. Characteristics of Certainty and Uncertainty

Building a mathematical model of an “object or system for making an optimal decision” (Equations
(1)–(4)) is possible, under conditions of certainty and uncertainty, which happen often. Conditions of
certainty are characterized by the fact that the functional dependence of each criterion fk, k = 1, K (1)
and the constraints G(3) on the system parameters xj, j = 1, N, is known [6,12,22].

To build a mathematical model of a system under certainty, studies of the physical processes
occurring in the system are conducted. At the creation of a mathematical model of such processes,
fundamental laws of physics are used, for example, models of magnetic and temperature profiles,
and laws of conservation of energy and movement. A complete list of all functional characteristics
of technical systems and parameters on which these characteristics depend is formed. Their verbal
description is given. The technical and information interrelationships of all components of a technical
system is established, i.e., the structure is under construction. At this stage, the problem of the choice
of the best structure of a technical system (a problem of structural optimization) is solved [4,23].

As a result of the conducted research, the functional interrelationship of a set of characteristics of
F1(X), F2(X) and restrictions of G(X) from parameters X has to be constructed.

Conditions of uncertainty are characterized by that there is no sufficient information on the
functional dependence of each characteristic and the restrictions on the parameters [8,9,12,20].

At the same time, there are two problems associated with decision making.
The first problem is characterized by the fact that only data for some of the indicators are known

(such a task is presented in the following section, see Equation (37)). The second problem is that data
on some set of parameters, as well as relevant data on some set of characteristics (criteria), of a problem
are known (38).

Both problems arise when carrying out pilot studies based on the principle of “ input-output”. On
the basis of the conducted pilot studies, there is a problem with the adoption of the acceptable decision.
We present the analysis of these problems and decision making on their basis in the following sections.

Thus, under conditions of certainty the function fk(X), k ∈ K is known, for the infinite set of
parameters there is a corresponding infinite set of estimates of the function (criterion). Conversely,
under conditions of uncertainty, only a finite set of parameters and the corresponding set of function
(criterion) estimates are known, the smaller the set of parameters, the higher the uncertainty.

4.1.2. Investigation of Condition of Uncertainty

Conditions of uncertainty are considered in two aspects. The first relates to a lack of sufficient
information. This is the uncertainty associated with the variety of characteristics (criteria) of the object
under study.

This aspect is defined by the fact that there is not sufficient information on the functional
dependence of the characteristic f and restrictions g from parameters X of the studied object. In this
case, input data characterizing the object are presented as:

(a) random data,
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(b) fuzzy data, or
(c) incomplete data, which are usually obtained from experimental data.

For options (a) and (b), input data have to be transformed into option (c), and are presented
in table form: 1 column—parameter size, 2 columns—characteristic size. The methodology of the
transformation of random and fuzzy data into tabular form is presented in the magazine “Fuzzy
Decision Making and Soft Computing Applications”. Tabular (experimental) data, using regression
analysis, will be transformed into the f (X) function, i.e., in terms of certainty.

In the future, only variant c) is considered in this work, and its transformations by regression
methods into certainty conditions, i.e., into the function f (X).

The second aspect of decision-making uncertainty is related to the fact that an object is characterized
by many characteristics: f 1(X), . . . , fK(X). The set of characteristics K is divided into two subsets K1

and K2. The subset of characteristics K1 in a numerical value is desired to be as high as possible
(maximum), and the subset of characteristics K2 is desired to be as low as possible (minimum). Below
it will be shown that the decision-making problem with a set of characteristics is reduced to a vector
problem of mathematical programming, the solution of which is presented in Section 3.

4.2. Conceptual Problem Definition of Decision Making under the Conditions of Uncertainty

Initially, from a general view the conceptual problem definition of decision making was presented
in work of R. L. Keeney and H. Raiffa [11], according to which we denote ai, i = 1, M, for the admissible
decision-making alternatives, and A = (a1 a2 . . . aM) for the vector of the set of admissible alternatives.

We match each alternative a ∈ A to K numerical indices (criteria) f 1(a), . . . , fK(a) that characterize
the system. We can assume that this set of indices maps each alternative onto the point of the
K-dimensional space of outcomes (consequences) of decisions made, F(a) = (f 1(a) f 2(a) . . . fK(a))T. We
use the same symbol fk(a) both for the criterion and for the function that performs the estimation with
respect to this criterion. Note that we cannot directly compare the variables fv(a) and fk(a), v , k at
any point F(a) of the K-dimensional space of consequences since it would most likely have no sense
because these criteria are generally measured in different units. Using these data, we can state the
decision-making problem.

The decision maker is to choose an alternative a ∈ A to obtain the most suitable result, i.e., F(a)
→min.

This definition means that the required estimating function should reduce the vector F(a) to a
scalar preference or “value” criterion. In other words, it is equivalent to setting a scalar function V
given the space of consequences and possessing the following property:

V(F(a)) ≥ V(F(a′)) ⇔ F(a) � F(a′),

where the symbol � means “no less preferable than” [24]. We call the function V(F(a)) the value
function. The name of this function in other publications may vary from an order value function to a
preference function to a value function. Thus, the decision maker is to choose a ∈ A such that V(F(a)) is
maximized. The value function allows an indirect comparison of the importance of certain values of
various criteria of the system. Thus, the matrix F(a) of admissible outcomes of alternatives takes the
form:

F =


a1 f 1

1 . . . f K
1

. . .
aM f 1

M . . . f K
M

. (37)

where fi j = fi (ai) and all alternatives in it are represented by the vector of indices F(a). For the sake of
definiteness and without loss of generality, we assume that the first criterion (any criterion can be the
first) is arranged in increasing (decreasing) order, with the alternatives re-numbered i = 1, M.

Problem 1 (Equation (37)) implies that the decision maker is to choose the alternative a0
∈ A such

that it will yield the “most suitable (optimal) result” [24].
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For an engineering system, we can represent each alternative ai by the N-dimensional vector
Xi = {xij, j = 1, N}, i = 1, M} of its parameters, and its outcomes by the K-dimensional vector criterion
{f 1(Xi), . . . , fK(Xi), i = 1, M}. Taking this into account, the matrix of outcomes (Equation (37)) takes the
form:

I =


X1 f1(X1) ... fK(X1)

. . .
XM f1(XM) . . . fK(XM)

, (38)

Problem 2 (Equation (38)) for decision makers consists of the choice of the set of design data
X0 = {xij, j = 1, N}, i = 1, M} that would allow the optimal result [24].

4.3. The Analysis of Modern Methods of Decision Making to the Experimental Data

At present, the problems of Equations (37) and (38) are solved by a number of “simple” methods
based on special criteria, such as Wald, Savage, Hurwitz, and Bayes–Laplace criteria, which provide
the basis for decision making.

The Wald criterion of maximizing the minimal component helps make the optimal decision that
ensures the maximal gain among minimal ones, max

k = 1,K
min

i = 1,M
f k
i .

The Savage minimal risk criterion chooses the optimal strategy so that the value of the risk rk
i is

minimal among maximal values of risks over the columns, min
i = 1,M

max
k = 1,K

rk
i . The value of the risk rk

i is

chosen from the minimal difference between the decision that yields maximal profit max
i = 1,M

f k
i , k = 1, K,

and the current value f k
i , rk

i = ( max
i = 1,M

f k
i ) − f k

i , with their set being the matrix of risks R = ‖rk
i ‖

k = 1,K
i = 1,M

.

The Hurwitz criterion helps choose the strategy that lies somewhere between absolutely pessimistic
and optimistic (i.e., the most considerable risk):

max
k = 1,K

α min
i = 1,M

f k
i + (1− α) max

i = 1,M
f k
i

,

where α is the pessimistic coefficient chosen in the interval 0 ≤ α ≤ 1.
The Bayes–Laplace criterion takes into account each possible consequence of all decision options,

given their probabilities max
i = 1,M

K∑
k = 1

f k
i pi .

All these and other methods are widely described in publications on decision making [11]. All
have certain drawbacks. For instance, if we analyze the Wald maximin criterion, we can see that by the
problem’s hypothesis all criteria are in different units. Hence, the first step, which is to choose the
minimal component f min

k = min
i = 1,M

f k
i , is quite reasonable. However, all f min

k , k = 1, K, are measured in

different units, therefore the second step, which is to maximize the minimal component max
k = 1,K

f min
k , is

pointless. Although it brings us slightly closer to a solution, the criteria measurement scale fails to
solve the problem since the chosen criteria scales are judgmental.

We believe that to solve the problem of Equations (37) and (38), we need to form a measure that
would allow the evaluation of any decision to be made, including the optimal one. In other words, we
need to construct an axiom that shows, based on the set of K criteria, what makes one alternative better
than the other. In turn, the axiom can help derive a principle that determines whether the chosen
alternative is optimal. The optimality principle should become the basis for the constructive methods of
choosing optimal decisions. We propose such an approach for the vector mathematical programming
problem that is essentially close to the decision-making problem of Equations (37) and (38).
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4.4. Transforming the Decision-Making Problem into Vector Problem

We compare the decision-making problem (DMP) of Equations (37) and (38) with the vector
problem mathematical programming (VPMP). Table 2 shows the comparison.

Table 2. Comparing vector problem mathematical programming (VPMP) to decision-making problems
(DMP).

VPMP—Equations (1)–(4) DMP_1—Equation (37) DMP_2—Equation (38)

2. Common Objective: Making the best decision

3. Find the vector X from the
admissible set, where the vector

criterion F(X) is optimal

Objective: Find the alternative ai,
i = 1, M, such that the set of criteria

f k
i , k = 1, K is optimal

Objective: Find the vector
alternative Xi, i = 1, M, such that
the set of criteria F(X), is optimal

4. The vector of parameters X and
the dependence of criteria F(X) on
it are given completely, the set of
admissible points is finite: G(X)≤

0, Xmin
≤ X ≤ Xmax.

Parameters are not given, the
criteria are represented as the
finite set of values, the set of

admissible alternatives is finite

Parameters are given, the criteria
are represented as separate values
so that the functional dependence
between them is not given, the set

of admissible points is finite

Opt F(X) = {max F1(X) =

{max fk(X), k = 1, K1},
min F2(X) = {min fk(X), k = 1, K2}},

G(X) ≤ 0,
xmin

j ≤ xj ≤ xmax
j , j = 1, N

5. Transforming the Decision Making Problem into VMPP

Using regression analysis, we
transform each k-th k = 1, K set of
values of criteria, f k

i , i = 1, M into
the criterion function fk(x)

Using multiple regression, we
transform each k-th k = 1, K set of
values of criteria fk(Xi), i = 1, M
into the criterion function fk(X)

6.
↑ Problems are
Equivalent→

Opt F(x) = (f 1(x) . . . fK(x))T.
f min
k ≤ fk(x) ≤ f max

k , k = 1, K,
xmin

≤ x ≤ xmax.

Opt F(X) = (f 1(X) . . . fK(X))T.
f min
k ≤ fk(X) ≤ f max

k , k = 1, K,
Xmin

≤ X ≤ Xmax.

The first, second and third rows of Table 2 show that all three problems have the common objective
of “making the best (optimal) decision”. Both types of decision-making problems (row 4) have some
uncertainty, functional dependences of criteria and restrictions on the problem’s parameters are not
known. At present, many mathematical methods of regression analysis are implemented in software
(such as MATLAB) that allow using some set of initial data (as in Equations (37) and (38)) to construct
the functional dependences fk(X), k = 1, K. For this reason, we use regression methods, including
multiple regression, to construct criteria and restrictions in decision-making problems of both types
(row 5) [26]. Combining criteria and restrictions, we represent decision-making problems of both types
as a vector mathematical programming problem (row 6).

We perform these transformations. We use methods of regression analysis for the problem of
Equation (37) and multiple regression for the problem of Equation (38) to transform each kth column
of the matrix Ψ into the criterion function fk(X). We combine them in the vector function F(X): max
F1(X) = {fk(X), k = 1, K} in Equation (1), and, min F2(X) = {fk(X), k = 1, K} in Equation (2). The
inequalities:

f min
k ≤ fk(X) ≤ f max

k , k = 1, K

where f min
k = min

i = 1,M
fk(Xi), f max

k = max
i = 1,M

fk(Xi), are the minimal and maximal values of each function,

and the parameters bounded by minimal and maximal values of each of them serve as functional
restrictions (Equation (3)). The result is a VPMP (Equations (1)–(4)) and uses the same methods based
on normalizing criteria and maximin principles as for the ES model under complete certainty to solve
it for tantamount criteria.
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5. Statement and Optimal Decision Making with Experimental Data in Problems with One
Parameter

We use a particular example to illustrate the decision-making problem of the first type (Equation
(37)) and the choice of the optimal decision. We also show the proposed method is independent of the
form of the sought extremum of partial criteria.

5.1. Problem Definition of Decision Making of the First Type

The problem definition is carried out by the designer of the system on experimental data.
It is given that the system is defined by one parameter X = {x}, a vector of (operated) variables.

The experimental data for the task of decision making are provided in Table 3.

Table 3. Experimental data (matrix I).

x f 1 f 2 f 3 f 4

630 4200 1950 1628 245
1580 6000 2100 1577 230
2662 8850 2090 1377 210
3704 11,000 2050 1200 200
4800 12,900 1950 1100 190
5929 14,730 1750 977 170
7284 16,310 1560 1050 151
9353 19,000 1350 1100 150

14,505 23,250 540 1457 100
18,810 29,970 400 2088 55

The system comprises one parameter {x} and four characteristics (criteria):

f1(x)→ max, f2(x)→ max, f3(x)→ min, f4(x)→ max,

used to make a choice. Taken together, they constitute a decision-making problem of the first type.
The requirement is to make the best (optimal) decision given the experimental data available.

5.2. The Solution of the Problem

We find the optimal solution in two stages.
Stage 1. We transform the decision-making problem into a VPMP.
Step 1. We prepare the initial data in Table 2 in the form of the matrix I (Equation (38)). These

watch points are shown in Figure 1, using MATLAB operators:
xlabel(′X′); ylabel(′Y′); hold on; plot(I(:,1),I(:,2)/10,′k.′);
plot(I(:,1)I(:,3),′go′); plot(I(:,1),I(:,4),′bp′); plot(I(:,1)I(:,5)*10,′r*′).
For the sake of visualization, the order of the first criterion is decreased by one while the order of

the fourth criterion is increased by one.
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Step 2. Using a method of the smallest square deviations [12], we calculate the coefficients of the
approximating polynomial of the second degree:

min
A

f (A, X) ≡
M∑

i = 1

(y j − (a0 + a1x1i + a2x2
1i))

2
. (39)

An approximation is carried out in the MATLAB system using the polyfit function (X, Y, N) where X is
a vector of tabular values (nodes), and Y represents preset values of assessment.

Limits of the change of parameter x of the lower and top scale in Figure 1 are set. In the MATLAB
system, this is presented as x = −600.:100.:19000.

We calculate the first criterion by means of the function: c1=polyfit(I(:,1),I(:,2)/10,2). The result
is c1(1) = –3.1937 × 10−6, c1(2) = 0.1947, c1(3) = 365.1, which corresponds to the polynomial of the
second degree:

f 1(x) = -3.1937 × 10−6 x2 + 0.1947x + 365.1. (40)

We calculate the values of the polynomial y5 = polyval(c1,x) and show it on a graph using
plot(x,y5,′k-′), hold on.

Similarly, the rest of the criteria are:

f 2(x) = 9.467 × 10−10 x3
− 2.7968 × 10−5 x2 + 0.1090 x + 1949.2, (41)

f 3(x) = 1.0174 × 10−5 x2
− 0.1707x + 1737.4, (42)

f 4(x) = 1.6458 × 10−7 x2
− 0.01309x + 247.83. (43)

All the resulting points and functions are also shown in Figure 1.
Step 3. We form and solve the VPMP. Using the results of the previous stage, we represent the

decision making problem as the VPMP of Equations (1)–(4) with the vector criterion F(x) = (−f 1(x) −
f 2(x) f 3(x) − f 4(x))T and restrictions 630 ≤ x ≤ 18,810:

Opt F(X) = {max F1(X) = {max f 1(X), max f 2(X), max f 4(X)}, (44)

min F2(X) = {min f 3X)}, (45)

at restrictions xmin
j ≤ x j ≤ xmax

j , j = 1, N. (46)

Stage 2. We solve the VPMP of Equations (44)–(46) similarly to that shown in Section 2.
Step 1. We solve the problem of Equations (44)–(46) for each criterion separately. Since each is a

unimodal function, we use the function [x,f] = fminbnd(c,a,b) to find its minimum or maximum on
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the segment (Equation (46)). Here, c, a, b are the input parameters, c is the given function, a and b
are the beginning and the end of the interval, respectively, and x and f are the output parameters (the
optimum point and the value of the objective function at the optimum, respectively). It takes the form:

[x1max,f1max]=fminbnd(′−(3.1937 × 10−5
×xˆ2+1.9467×x+3651.1)′,I(1,1),I(10,1))

for the first criterion. We thus derive the optimum point with respect to the first criterion xmax
1 = 18,810

and the value of the criterion at this point f ∗1 = f 1(xmax
1 ) = −28,969. Similarly, we have xmax

2 = 2192.8,
f ∗2 = f 2(xmax

2 ) = −2063.7, xmax
4 = 630.0, f ∗4 = f 4(xmax

4 ) = −239.65, xmin
3 = 8389.0, f ∗3 = f 3(xmin

3 ) = 1021.4 for
other criteria.

Step 2. We find the worst part for each criterion. We end up with the optimum point xmin
1 = 630

with respect to the first criterion and the value of the criterion at the optimum f o
1 = f 1(xo

1) = 4864.9 (the
worst constant part with respect to the first criterion). We use the operator plot(x1min, f1min/10,′k×′)
to represent this and other points in Figure 2. Similarly, we have for other criteria xmin

2 = 17,502,
f o
2 = f 2(xmin

2 ) = 365.22, xmin
4 = 18,810, f o

4 = f 4(xmin
4 ) = 59.838, xmax

3 =18,810, f o
3 = f 3(xmax

3 ) = −2126.3.
Step 3. We analyze the set of Pareto optimal points. In points at an optimum X * = {X1*, X2*, X3*,

X4*, X5*}, sizes of criterion functions of F(X*) = ‖ fq(X∗k)‖
k = 1,K
q = 1,K

are determined. We calculate a vector

D = (d1 d2 d3 d4 d5)T of deviations by each criterion on an admissible set S: dk = fk* − fk0, k = 1, 5, and a

matrix of relative estimates λ(X*) = ‖λq(X∗k)‖
k = 1,K
q = 1,K

, where λk(X) = (fk* − fk0)/dk.
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In the problem of Equations (44)–(46), criteria in the normalized form λk(Xo), k = 1, K can be
represented as shown in Table 4. We calculate the coefficients of the approximating polynomial for the
normalized criteria to obtain:

λ1(x) = −1.325 × 10−9 x2 + 8.0762 × 10−5 x × 0.0504,
λ2(x) = 5.5735 × 10−13 x3

− 1.6467 × 10−8 x2 + 6.4179 × 10−5 x + 0.9325,
λ3(x) = −9.2080 × 10−9 x2 + 1.5451 × 10−4 x + 0.3519,
λ4 (x) = 9.1530 × 10−10 x2

− 7.2811 × 10−5 x + 1.0455.
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Table 4. Normalized criteria.

x λ1−max λ2−max λ3−min λ4−max

630 -0.0276 0.933 0.451 1.0298
1580 0.0471 1.0214 0.4971 0.9463
2662 0.1653 1.0155 0.6781 0.8351
3704 0.2545 0.9919 0.8383 0.7795
4800 0.3334 0.933 0.9289 0.7239
5929 0.4093 0.8153 1.0402 0.6127
7284 0.4748 0.7034 0.9741 0.507
9353 0.5864 0.5798 0.9289 0.5014

14,505 0.7627 0.1029 0.6057 0.2234
18,810 1.0415 0.0205 0.0346 −0.0269

Figure 2 shows the optimum points X0 and normalized criteria.
The optimal point X0 in Figure 2 can be chosen manually.
We solve the λ-problem to find the exact value of X0.
Step 4. We construct the λ-problem. Using the obtained function and relative evaluations λ1(x),

λ2(x), λ3(x), λ4(x), we construct the λ-problem:

λ0 = max λ, (47)

λ− (−3.1937 × 10−5x2 + 1.9467x + 3651.1 − f o
1 )/d1 ≤ 0,

λ− (9.467 × 10−10x3
− 2.7968× 10−5x2 + 0.1090x + 1949.2 − f o

2 )/d2 ≤ 0,
λ− (1.0174 × 10−5x2

− 0.1707x + 1737.4 + f o
3 )/d3 ≤ 0,

λ− (1.6458 × 10−7x2
− 0.01309x + 247.83 − f o

4 )/d4 ≤ 0,

(48)

630 ≤ x ≤ 18810 (49)

Step 5. We solve the λ-problem of Equations (47)–(49). We use standard methods, in particular the
MATLAB function fmincon ( . . . ). From the solution we obtain:

• the optimum point X0 = {λ0 = 0.5163, x0 = 8090} (labeled by an asterisk in Figure 2),

• the values of the criteria at this point of fk(X0), k = 1, K: f 1(X0) = 17,310, f 2(X0) = 1501.8,
f 3(X0) = 1022.3, f 4(X0) = 152.7,

• the values of the relative estimates λk(X0), k = 1, K: λ1(X0) = 0.5163, λ2(X0) = 0.6692, λ3(X0) = 0.9992,
λ4(X0) = 0.5165 (Figure 2).

It follows from this result that the first and fourth criteria are equal: λ1(X0) = λ4(X0) = λ0 = 0.5163.
According to Theorem 1, the first and fourth criteria are most contradictory. Other criteria are

greater than or equal to the maximum relative assessment of λo which is the guaranteed result in
relative units.

6. Statement and Optimal Decision Making with Experimental Data in Problems with Two
Parameters

We use a particular example to illustrate the decision-making problem of the second type (Equation
(38)) and the choice of the optimal decision. The solution to the problem of making decisions of
the second type and the choice of the optimal solution will be shown on a concrete example. The
decision-making problem of the second type with two parameters is solved in three stages: problem
statement—the formation of the initial data, transformation of experimental data into the vector
problem of mathematical programming (VPMP), and, the VPMP decision—making the best decision.

6.1. Problem Definition of Decision Making of the Second Type with Two Parameters

The problem setting is performed by the system designer based on experimental data.
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It is given that we have an engineering system functioning according to a vector of controlled
variables X = (x1, x2) with two parameters that take values: x1, x2 ∈{0 2.5 5. 7.5 10}.

Decision-making criteria are represented by five functions f 1(X), . . . , f 5(X). For the first two, it is
desirable to obtain values as high as possible (maximum) while for the other three it is desirable to
obtain values as small as possible (minimum). Experimental data are given in Table 5.

Table 5. Experimental data (matrix I).

x1 x2 f 1 f 2 f 3 f 4 f 5

0 0 −80 −150 232 278.4 500
0 2.5 −102.5 −121.875 215.125 222.15 556.25
0 5 −130 −97.5 204.5 173.4 625
0 7.5 −162.5 −76.875 200.125 132.15 706.25
0 10 −200 −60 202 98.4 800

2.5 0 −102.5 −166.875 185.125 258.15 406.25
2.5 2.5 −125 −138.75 168.25 201.9 462.5
2.5 5 −152.5 −114.375 157.625 153.15 531.25
2.5 7.5 −185 −93.75 153.25 111.9 612.5
2.5 10 −222.5 −76.875 155.125 78.15 706.25
5 0 −130 −187.5 144.5 245.4 325
5 2.5 −152.5 −159.375 127.625 189.15 381.25
5 5 −180 −135 117 140.4 450
5 7.5 −212.5 −114.375 112.625 99.15 531.25
5 10 −250 −97.5 114.5 65.4 625

7.5 0 −162.5 −211.875 110.125 240.15 256.25
7.5 2.5 −185 −183.75 93.25 183.9 312
7.5 5 −212.5 −159.375 82.625 135.15 381.25
7.5 7.5 −245 −138.75 78.25 93.9 462.5
7.5 10 −282.5 −121.875 80.125 60.15 556.25
10 0 −200 −240 82 242.4 200
10 2.5 −222.5 −211.875 65.125 186.15 256.25
10 5 −250 −187.5 54.5 137.4 325
10 7.5 −282.5 −166.875 50.125 96.15 406.25
10 10 −320 −150 52 62.4 500

The requirement is to make the best (optimal) decision given the experimental data available.

6.2. Transformation of Experimental Data into a Vector Problem of Mathematical Programming

We construct a regression model and the regression problem based on it—the decision-making
model of Equation (38)—and solve it. This is done in two stages, each of which consists of a number
of steps.

Stage 1. We represent the decision-making problem as a VPMP.
Step 0. We prepare the initial data in MATLAB, forming the matrix I (Table 5).
Step 1. We approximate the function initial data (the third column) by cubic splines using:

zz=interp2(X,Y,Z,xx,yy,zz,′linear′).
We use the function surf(xx,yy,zz), hold on to represent the piecewise polynomial function f 1(X)

in Figure 3. Similarly, we perform the same approximation of the four other functions that we also
represent (in natural units) in Figure 3 together with their minimal and maximal values. Although it
appears to be difficult to choose the optimal solution visually using Figure 3, it is easier than using the
initial data of the matrix I to do so.
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Step 2. Using a method of the smallest square deviations [12], we calculate the coefficients of the
approximating polynomial of the second degree:

min
A

f (A, X) ≡
M∑

i = 1

(y j − (a0 + a1x1i + a2x2
1i + a3x2i + a4x2

2i + a5x1i ∗ x2i))
2
. (50)

Based on data from columns 3–7 of the matrix I, we calculate the coefficients of the best
approximating polynomial in the sense of minimum quadratic deviation at the nodes. This yields the
polynomials of the second degree with two variables (four factors):

f 1(x) = −0.4x1
2
− 8x1−0.4x2

2
− 8x2 − 80,

f 2(x) = −0.3x1
2
− 6x1 − 0.3x2

2 + 12x2 − 150,
f 3(x) = 0.5x1

2
− 20x1+0.5x2

2
− 8x2 + 232,

f 4(x) = 0.6x1
2
− 9.6 x1 + 0.6x2

2
− 24x2 + 278.4,

f 5(x) = x1
2
− 40x1 + x2

2 +20x2 + 500,

(51)

the restrictions 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10. (52)

Stage 2. We form and solve the VPMP.
Step 0. Using the results of the previous stage, we represent the decision-making problem as the

VPMP of Equations (1)–(4) with the vector criterion F(X) = (−f 1(X) −f 2(X) f 3(X) f 4(X) f 5(X))T for the
stated restrictions:

Opt F(X) = {max F1(X) = {max f 1(X), max f 2(X), (53)

min F2(X) = {min f3X), min f 4(X)}, min f 5(X)}}, (54)

at restrictions 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10. (55)
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6.3. The Solution of a Vector Problem of Mathematical Programming–Decision-Making

For the solution of a vector problem of mathematical programming using the algorithm based on
normalization of criteria, the above is used.

Step 1. We solve the problem of Equations (53)–(55) with respect to each criterion separately using
the function fmincon( . . . ), resulting in the optimum points:

X ∗1 = {x1 = 0, x2 = 0}, X∗2 = {x1 = 0, x2 = 10}, X∗3 = {x1 = 10, x2 = 8},
X∗4 = {x1 = 8, x2 = 10}, X ∗5 = {x1 = 10, x2 = 0}.

(56)

and values of the criteria at these points:

(1) f ∗1 = −80, (2) f ∗2 = −60, (3) f ∗3 = 50, (4) f ∗4 = 60, (5) f ∗5 = 200. (57)

Step 2. We find the worst constant part by solving the problem of Equations (53)–(55) with respect
to each criterion separately, i.e., we minimize the first two criteria and maximize the other criteria. The
result is: (1) Xo

1 = (10, 10), f o
1 = −320, (2), Xo

2 = (10, 0), f o
2 = −240, (3) Xo

3 = (0, 0), f o
3 = 232, (4) Xo

4 = (0, 0),
f o

4 = 278.4, (5) Xo
5 = (0, 10), f o

5 = 800.
We represent the domain of admissible points S given by the restrictions of Equation (55) and the

optimum points X∗1, . . . , X∗5 in Figure 4.
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Step 3. We analyze the set of Pareto optimal points using the matrix of the values of all objective
functions, the column of deviations, and the matrix of the relative estimates at the optimal points:

F(X∗) =


320.0 150.0 52 62.4 500
200.0 240.0 82 242.4 200
289.6 163.2 50 88.8 424
289.6 127.2 74 60.0 544
200.0 240.0 82 242.4 200


, D =


240
180
−182
−218.4
−600


,

Λ(X∗) =


1.0000 0.5000 0.9890 0.9890 0.5000
0.5000 1.0000 0.8242 0.1648 1.0000
0.8733 0.5733 1.0000 0.8681 0.6267
0.8733 0.3733 0.8681 1.0000 0.4267
0.5000 1.0000 0.8242 0.1648 1.0000


.

We also show the relative estimates in Figure 4.
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Step 4. We construct the λ-problem for the VPMP of Equations (53)–(55)

λ0 = max λ, (58)

λ– (−0.4x1
2
− 8x1 − 0.4x2

2
− 8x2 − 80 − f o

1 )/d1 ≤ 0,
λ– (−0.3x2

1 − 6x1 − 0.3x2
2 + 12x2 − 150− f o

2 )/d2 ≤ 0,
λ– (0.5x2

1 − 20x1 + 0.5x2
2 − 8x2 + 232− f o

3 )/d3 ≤ 0,
λ– (0.6x2

1 − 9.6x1 + 0.6x2
2 − 2x2 + 278.4− f o

4 )/d4 ≤ 0,
λ– (x2

1 − 40x1 + x2
2 + 20x2 + 500 − f o

5 )/d5 ≤ 0,

(59)

0 ≤ λ ≤ 1, 0 ≤ x1 ≤ 10, 0≤ x2 ≤ 10. (60)

Step 5. We solve the λ-problem of Equations (58)–(60) using the same MATLAB function fmincon(
. . . ). This results in:

• the optimum point X0 = {x1 = 5.0, x2 = 5.0, λ0 = 0.5833},
• the values of criteria: f 1(X0) = −180, f 2(X0) = −135, f 3(X0) = 117, f 4(X0) = 140.4, f 4(X0) = 450,

• the values of the relative estimates λk(X0), k = 1, K: λ1(X0) = 0.5833, λ2(X0) = 0.5833, λ3(X0) = 0.6319,
λ4(X0) = 0.6319, λ5(X0) = 0.5833),

• the maximal relative estimate λ0 = 0.5833 that is the maximal lower level for all relative estimates
λ0 = min{λ1(X0), λ2(X0), λ3(X0), λ4(X0), λ5(X0)} = 0.5833.

Figure 5 shows all found points and relative estimates.
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From the result of the solution of the λ-problem of Equations (58)–(60), the optimal point X0 and
the maximum relative assessment λ0 represent the results of the decision with equivalent criteria. For
the solution of the VPMP with a priority of criterion coordinate X00 = {x1, x2}, in Figure 4 the area
where the corresponding assessment is higher than other relative estimates is chosen.

For example, if the second criterion has priority, then point X00 = {x1, x2} is chosen where λ2 ≥

λ1, λ3, λ4, λ5. More difficult technology illustrating the choice of a priority of criterion is presented in
problems of decision-making with three and four criteria in the following sections.
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7. Statement and Optimal Decision Making with Experimental Data in Problems with Three
Parameters

The conditional object, namely, the technical system for which data on some set of the functional
characteristics (certainty conditions), the discrete values of characteristics (certainty conditions), and
the restrictions imposed on the functioning of the system [10] are known is considered. The numerical
problem of model operation of the system is considered with equivalent criteria and with the given
priority of criterion and proceeds as:

Statement of the problem of decision making in a system with three parameters,
Construction of a numerical model of a system with three parameters in the form of a

vector problem,
The solution of the vector problem and decision making with equivalent criteria,
Decision making in a system with three parameters with a criterion priority,
Analysis of the results of the final decision.

7.1. Statement of the Problem of Decision Making in a System with Three Parameters

It is given that the technical system is defined by three parameters. (Practical problems of
the simulation of technical systems using this algorithm can be solved with the dimensionality of
parameters X greater than two, N > 2. The structure of the software becomes complicated and geometric
interpretation of N = 3,4 . . . is not possible.) X = {x1, x2, x3} represents a vector of operating variables.
The basic data for the solution of the problem are the characteristics (criterion) of F(X) = {f 1(X),
f 2(X), f 3(X), f 4(X)}, whose size of assessment depends on the vector X. For characteristics f 3(X), f 4(X),
functional dependence on parameters X (a definiteness condition) is known:

f 3(X) = 55.7188 − 0.1187 × x1 + 0.1844 × x2 − 0.0438 × x3 − 0.0002 × x1 × x2 −

0.0023 × x1 × x3 − 0.0011 × x2 × x3 + 0.0032 × x1
2 + 0.0634 × x − 0 × x3

2 (61)

f 4(X) = 25.6484 − 0.2967 × x1 − 0.3384 × x2 + 0.1433 × x3 − 0.0048 × x1 × x2 +

0.0169 × x1 ×x3 + 0.0009 × x2 × x3 + 0.012 × x1
2 + 0.0014 × x2

2
− 0.0018 × x3

2 (62)

Parametrical restrictions: 25 ≤ x1 ≤ 100, 25 ≤ x2 ≤ 100, 25 ≤ x3 ≤ 100. (63)

For the first and second characteristic results of experimental data, sizes of parameters and
corresponding characteristics are known (uncertainty condition).

The numerical values of parameters X and characteristics of y1(X), y2(X) are presented in Table 6.

Table 6. Numerical values of parameters and characteristics of the system.

x1 x2 x3 y1(X)→max y2(X)→min

25 25 25 412.5 1197.2
25 25 50 437.5 1232.8
25 25 75 462.5 1393.3
25 25 100 87.5 1303.8
25 50 25 312.5 2232.3
25 50 50 37.5 2267.7
25 50 75 62.5 2303.2
25 50 100 87.5 2338.8
25 75 25 212.5 3077.2
25 75 50 237.5 2862.8
25 75 75 262.5 3148.3
25 75 100 287.5 3183.7
25 100 25 12.5 3732.3
25 100 50 37.5 3767.7
25 100 75 62.5 3803.2
25 100 100 87.5 3838.8
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Table 6. Cont.

x1 x2 x3 y1(X)→max y2(X)→min

50 25 25 512.5 1245.3
50 25 50 537.5 1303.8
50 25 75 562.5 1374.7
50 25 100 587.5 1445.8
50 50 25 512.5 2267.7
50 50 50 537.5 2338.8
50 50 75 562.5 2409.7
50 50 100 587.5 2480.8
50 75 25 412.5 3112.8
50 75 50 437.5 3183.7
50 75 75 462.5 3379.8
50 75 100 487.5 3325.8
50 100 25 212.5 3767.7
50 100 50 237.5 3838.8
50 100 75 262.5 3909.7
50 100 100 287.5 3980.8
75 25 25 612.5 1268.3
75 25 50 637.5 1374.7
75 25 75 662.5 1481.3
75 25 100 687.5 1587.8
75 50 25 612.5 2303.2
75 50 50 637.5 2409.7
75 50 75 662.5 2516.2
75 50 100 687.5 2622.7
75 75 25 512.5 3148.3
75 75 50 537.5 3254.8
75 75 75 562.5 3361.3
75 75 100 587.5 3467.8
75 100 25 312.5 3803.2
75 100 50 337.5 3909.7
75 100 75 362.5 4016.3
75 100 100 387.5 4122.7

100 25 25 612.5 1303.8
100 25 50 637.5 1445.8
100 25 75 662.5 1587.8
100 25 100 687.5 1729.7
100 50 25 612.5 2338.8
100 50 50 637.5 2480.8
100 50 75 662.5 2622.7
100 50 100 687.5 2764.7
100 75 25 512.5 3183.7
100 75 50 537.5 3325.8
100 75 75 562.5 3467.8
100 75 100 587.5 3609.8
100 100 25 312.5 3838.8
100 100 50 337.5 3980.8
100 100 75 362.5 4122.7
100 100 100 387.5 4264.8

In the decision, in the assessment size of the first and the third characteristic (criterion), it is
possible to obtain: f 1(X)→max y3(X)→max, for the second and fourth characteristic: y2(X)→min
y4(X)→min. Parameters X = {x1, x2, x3} change according to the following limits: x1, x2, x3 ∈ (25. 50.
75. 100.).
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The following is required: to construct a model of the technical system in the form of a vector
problem, to solve the vector problem with equivalent criteria, to choose a priority criterion, to establish
a numerical value of the priority criterion, to make the best decision (optimum).

7.2. Construction of a Numerical Model of a System with Three Parameters in the Form of a Vector Problem

The construction of a numerical model of the system in the form of a vector problem includes
three stages:

• Building a model under the conditions of certainty;
• Building a model under the conditions of uncertainty;
• Construction of a mathematical model of a technical system (i.e., the general part for the conditions

of certainty and uncertainty).

7.2.1. Building a Model under the Conditions of Certainty

Construction under the conditions of definiteness is defined by functional dependence of each
characteristic and restrictions on the parameters of the technical system. In our example, two
characteristics (Equations (61) and (62)) and the restrictions of Equation (63) are known. Uniting these,
we obtain a vector task with two criteria:

opt F(X) = {max F1(X)} = {max f 3(X)} = 55.7188 − 0.1187 × x1 + 0.1844 × x2 − 0.0438 × x3 −

0.0002 × x1 × x2 − 0.0023 × x1 × x3 − 0.0011 × x2 × x3 + 0.0032 × x1
2 + 0.0634 × x − 0 × x3

2 (64)

min F2(X) = {min f 4(X)} = 25.6484 − 0.2967 × x1 − 0.3384 × x2 + 0.1433 × x3 − 0.0048 ×
x1 × x2 + 0.0169 × x1 ×x3 + 0.0009 × x2 × x3 + 0.012 × x1

2 + 0.0014 × x2
2
− 0.0018 × x3

2 (65)

Parametrical restrictions: 25 ≤ x1 ≤ 100, 25 ≤ x2 ≤ 100, 25 ≤ x3 ≤ 100. (66)

These data are used further to create a mathematical model of the technical system.

7.2.2. Building a Model under the Conditions of Uncertainty

Construction under the conditions of uncertainty entails the use of the qualitative and quantitative
descriptions of the technical system obtained by the “input-output” principle in Table 5. Transformation
of information (basic data y3(X), y4(X)) into functional types f 3(X), f 4(X) is carried out by the use of
mathematical methods (i.e., regression analysis).

The basic data of Table 1 are created in the MATLAB system in the form of a matrix:

I = |X, Y| = {yi1 yi2, i = 1, M}. (67)

For each experimental set function yk, k = 1, 2, regression using the method of least squares
min

∑M
i = 1 (yi − yi)

2 in MATLAB is performed. Ak, a polynomial defining the interrelationship of
factors Xi = {y1i, y2i} (67) and functions yki = f(Xi,Ak), k = 1, 2 is constructed. As a result, we obtain a
system of coefficients Ak = {A0k, A1k, . . . , A9k} which define the coefficients of a polynomial (function):

fk(X, A) = A0k + A1kx1 + A2kx2
1 + A3kx2 + A4kx2

2 + A5kx3 + A6kx2
3 + A7kx1 ∗ x2 + A8kx1 ∗ x3+

A9kx2 ∗ x3, k = 1, 2.
(68)

As a result of the calculation of the coefficients Ak, k = 1, we obtain the f 1(X) function:

f1(X) = 50.0 + 11.55 × x1 + 3.55 × x2 + 1.0 × x3

+ 0.0144 × x1 × x2 − 0 × x1 × x3 + 0 × x2 × x3 − 0.07 × x2
1

− 0.07 × x2
2 − 0 × x2

3.
(69)
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As a result of the calculations of the coefficients Ak, k =2, we obtain the f 2(X) function:

f2(X) = −53.875 + 0.7359 × x1 + 51.3703 × x2

+ 0.3516 × x3 + 0.0072 × x1 × x2 + 0.0519 × x1 × x3

+ 0.0005 × x2 × x3 − 0.0066× x2
1 − 0.1454 × x2

2 + 0.0003 × x2
3

(70)

Parametric restrictions are similar to those of Equation (8).

7.2.3. Creation of a Mathematical Model of a Technical System under the Conditions of Definiteness
and Uncertainty

For the creation of a mathematical model of the technical system we used: the functions obtained
from conditions of definiteness (Equations (64) and (65)) and uncertainty (Equations (69) and (70)), and
parametric restrictions (Equation (66)).

Block 4. We consider the functions of Equations (64), (65), (69) and (70) as the criteria defining
the functioning of the technical system. A set of criteria K = 4 includes three criteria of f 1(X), f 3(X)→
max and two of f 2(X), f 4(X)→min. As a result, the model of the functioning of the technical system is
presented as a vector problem of mathematical programming:

opt F(X) = {max F1(X) = {max f1(X) ≡ 50.0 + 11.55 × x1

+ 3.55 × x2 + 1.0 × x3 + 0.0144 × x1 × x2 − 0.0 × x1 × x3

+ 0.0 × x2 × x3 − 0.07× x2
1 − 0.07 × x2

2 − 0.0 × x2
3,

max f3(X) = 55.7188 − 0.1187 × x1 + 0.1844 × x2−

0.0438 × x3 − 0.0002 × x1 × x2 − 0.0023 × x1 × x3−

0.0011 × x2 × x3 + 0.0032× x2
1 + 0.0634 × x− 0 × x2

3},

(71)

min F2(X) = {min f2(X) ≡ −53.875 + 0.7359 × x1

+ 51.3703 × x2 + 0.3516 × x3 + 0.0072 × x1 × x2

+ 0.0519 × x1 × x3 + 0.0005 × x2 × x3 − 0.0066 × x2
1

− 0.1454 × x2
2 + 0.0003 × x2

3,
min f4(X) = 25.6484 − 0.2967 × x1 − 0.3384 × x2

+ 0.1433 × x3 − 0.0048 × x1 × x2 + 0.0169 × x1 × x3

+ 0.0009 × x2 × x3 + 0.012 × x2
1 + 0.0014 × x2

2 − 0.0018 × x2
3}}

(72)

restrictions: 25 ≤ x1 ≤ 100, 25 ≤ x2 ≤ 100, 25 ≤ x3 ≤ 100. (73)

The vector problem of mathematical programming in Equations (71)–(73) represents the model of
optimal decision making under conditions of certainty and uncertainty in the aggregate.

7.3. The Solution of the Vector Problem and Decision Making with Equivalent Criteria

(Algorithm1 of decision making in problems of vector optimization with equivalent criteria).
The solution of the vector problem of Equations (71)–(73) is undertaken as a sequence of steps.
Step 1. Equations (71)–(73) are solved for each criterion separately, using the function fmincon ( . . .

) of the MATLAB system, the use of the function fmincon ( . . . ) is considered in [12].
As a result, we obtain optimum points: X∗k and f ∗k = fk(X∗k), k = 1, K, the sizes of the criteria at this

point, i.e., the best decision for each criterion:
X∗1 = {x1 = 86.02, x2 = 34.2, x3 = 100}, f ∗1 = f 1(X∗1) = −707.47, X∗2 = {x1 = 25, x2 = 25, x3 = 25},

f ∗2 = f 2(X∗2) = 1200.0,
X∗3 = {x1 = 100, x2 = 100, x3 = 25}, f ∗3 = f 3(X∗3) = −724.69, X∗4 = {x1 = 25, x2 = 100, x3 = 25},

f ∗4 = f 4(X∗4) = 9.16.
The restrictions in Equation (73) and points of an optimum of coordinates {x1, x2} are presented in

Figure 6.
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Step 2. We define the worst unchangeable part of each criterion (anti-optimum):
X0

1 = {x1 = 25, x2 = 100, x3 = 25}, f 0
1 = f 1(X0

1) = 11.0, X0
2 = {x1 = 100, x2 = 100, x3 = 100},

f 0
2 = f 2(X0

2) = −4270.9,
X0

3 = {x1 = 43.5, x2 = 20, x3 = 80}, f 0
3 = f 3(X0

3) = 85.0, X0
4 = {x1 = 100, x2 = 25,

x3 = 100},f 0
4 = f 2(X0

4) = −263.97.
(Top index zero).
Step 3. The system analysis of a set of Pareto optimal points is conducted, (i.e., analysis by each

criterion). At the optimal points X * = {X1*, X2*, X3*, X4*}, the sizes of the criterion functions of

F(X*) = ‖ fq(X∗k)‖
k = 1,K
q = 1,K

are determined. We calculated a vector of D = (d1 d2 d3 d4)T, deviations of each

criterion on an admissible set S: dk = fk* − fk0, k = 1, 4, and a matrix of relative estimates of

λ(X*) = ‖λq(X∗k)‖
k = 1,K
q = 1,K

, where λk(X) = (fk* − fk0)/dk:

F(X∗) =

∣∣∣∣∣∣∣∣∣∣∣
707.5 2055.1 127.1 209.6
374.0 1200.0 96.1 28.7
329.0 3848.7 724.7 95.1

11.0 3704.1 701.9 9.2

∣∣∣∣∣∣∣∣∣∣∣, D =

∣∣∣∣∣∣∣∣∣∣∣
696.5

−3070.9
639.7
−254.8

∣∣∣∣∣∣∣∣∣∣∣,

λ(X∗) =

∣∣∣∣∣∣∣∣∣∣∣
1.0000 0.7216 0.0658 0.2132
0.5212 1.0000 0.0174 0.9232
0.4566 0.1375 1.0000 0.6628

0 0.1846 0.9644 1.0000

∣∣∣∣∣∣∣∣∣∣∣
Discussion. The analysis of sizes of criteria in relative estimates shows that at optimal points

X* = {X1*, X2*, X3*, X4*} the relative assessment is equal to unity. Other criteria there are much less
than unity. It is required to find such points (parameters) at which relative estimates are closest to
unity. The following steps 4 and 5 are directed to the solution of this problem.

Step 4. Creation of the λ-problem is carried out in two stages: first, the maximum problem of
optimization with normalized criteria is constructed:

λ0 = max
x

min
k
λk(X), G(X) ≤ 0, X ≥ 0,
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Second, this is transformed into a standard problem of mathematical programming (the λ-problem):

λ0 = max λ, (74)

restrictions : λ−
50.0+11.55∗x1 ...+0.014∗x1∗x2 ... −0.07∗x2

1 ... − f o
1

f ∗1− f o
1

≤ 0

λ−
55.71 − 0.118 ∗x1 ... − 0.002 ∗x1∗x2 ...−0.0032 ∗x2

1 ...− f o
3

f ∗3− f o
3

≤ 0

λ−
53.87+0.7359∗x1+ ....−0.0519∗x1∗x2 ...+0.0066∗x2

1 ... − f o
2

f ∗2− f o
2

≤ 0

λ−
25.6484−0.2967×x1 ... −0.0048×x1×x2...+ 0.012×x2

1... − f o
4

f ∗4− f o
4

≤ 0

(75)

25 ≤ x1 ≤ 100, 25 ≤ x2 ≤ 100, 25 ≤ x3 ≤ 100. (76)

where the vector of unknowns has the dimension N + 1: X = {x1, . . . , xN, λ}.
Step 5. The λ-problem solution.
Using the function fmincon( . . . ), [12,15]:
[Xo,Lo] = fmincon(‘Z_TehnSist_4Krit_L’,X0,Ao,bo,Aeq,beq,lbo,ubo,’Z_TehnSist_LConst’,options).
As a result, the solutions of the vector problem of mathematical programming of Equations

(71)–(73) with equivalent criteria and the λ-problem corresponding to Equations (74)–(75) are obtained:
X0 = {X0, λ0} = {X0 = {x1 = 33.027, x2 = 69.54, x3 = 25.0, λ0 = 0.4459}} is an optimum point of the

design data of the technical system. Point X0 is presented in Figure 6. fk(X0), k = 1, K represents sizes
of criteria (characteristics of technical system):

{f 1(X0) = 321.5, f 2(X0) = 2901.7, f 3(X0) = 370.2, f 4(X0) = 19.1}, (77)

and λk(X0), k = 1, K represents sizes of relative estimates:

{λ1(X0) = 0.4459, λ2(X0) = 0.4459, λ3(X0) = 0.4459, λ4(X0) = 0.9609}, (78)

λ0 = 0.4459 is the maximum lower level among all relative estimates measured in relative units:
λ0 = min (λ1(X0), λ2(X0), λ3(X0), λ4(X0)) = 0.4459. A relative assessment, λ0, is called the guaranteed
result in relative units, i.e., λk(X0). According to the characteristics of the technical system fk(X0), it is
impossible to improve, without worsening other characteristics.

Discussion. We note that according to Theorem 1, at point X0 criteria 1, 2, 3 are contradictory.
This contradiction is defined by the equality of λ1(X0) = λ2(X0) = λ3(X0) = λ0 = 0.4459, and for other
criteria an inequality of {λ4(X0) = 0.9609} > λ0.

Thus, Theorem 1 forms a basis for the determination of correctness of the solution of a vector
problem. In a vector problem of mathematical programming, as a rule, for two criteria the equality
holds: λ0 = λq(X0) = λp(X0), q, p ∈ K, X ∈ S, (in our example, three criteria), and for other criteria is
defined as an inequality: λ0

≤ λk(X0) “k ∈ K, q , p , k.
In an admissible set of points S formed by the restrictions of Equation (76), the optimum points

X1*, X2*, X3*, X4* are united in a contour and presented as a set of Pareto optimal points, S0
⊂ S. For

specification of the border of a great number of Pareto additional points are calculated: Xo
12, Xo

13, Xo
42,

Xo
34 which lie between the corresponding criteria. For definition of a point Xo

12, the vector problem was
solved with two criteria of Equations (71), (72): λ1X, λ2X, (Equation (76)).

Results of the decision are:
Xo

12 = {80.78 25.0 55.89}, λ0(Xo
12) = 0.9264, F12 = {656.2 1426.0 101.7 142.7},

L12 = {0.9264 0.9264 0.0261 0.4761}.
Other points Xo

13, Xo
42, Xo

43 were similarly defined:
Xo

13 = {93.29 87.49 100.0}, λo(Xo
13) = 0. 7173, F13 = {510.6 3924.4 543.8 206.2},

L13 = (0.7173 0.1128 0.7173 0.2267},
Xo

42 = {25.0 29.92 25.0}, λ0(Xo
42) = 0. 9301, F42 = {374.3 1414.5 114.0 27.0},
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L42 = {0.5217 0.9301 0.0454 0.9301},
Xo

43 = {25.0 100.0 56.02}, λ0(Xo
43) = 0. 8366, F43 = {42.0 3757.6 695.4 25.0},

L43 = {0.0445 0.1672 0.9541 0.9541},
Points: Xo

12, Xo
13, Xo

42, Xo
43 are presented in Figure 6. Coordinates of these points and the

characteristics of the technical system in relative units of λ1(X), λ2(X), λ3(X), λ4(X), λ5(X) are shown in
Figure 7 in three-dimensional measured space {x1, x2, λ}, where the third axis λ is a relative assessment.

The solution of the λ-problem of Equations (74)–(76) is the optimal point Xo and the maximum
relative assessment of λ0 represents the result of the decision with equivalent criteria.
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7.4. Decision Making in a System with Three Parameters with a Criterion Priority

(Method of decision making in problems of vector optimization with a criterion priority)
Step1. We solve a vector problem with equivalent criteria. The numerical results of the solution of

the vector problem are given above. Pareto’s great number So
⊂ S lies between optimum points:

S0 = {X∗1X0
3X∗3X0

43 X∗4X0
42X∗2X0

12X∗1}.

We carry out the analysis of the great number of Pareto S0
⊂ S. For this purpose, we will connect

auxiliary points: Xo
12, Xo

13, Xo
43, Xo

42, with a point Xo which conditionally represents the center of a
great number of Pareto. As a result, we obtain four subsets of points X ∈ So

q ⊂ S0
⊂ S, q = 1, 4. The

subset of So
1⊂ S0

⊂ S is characterized by the fact that in the relative assessment, λ1 ≥ λ2, λ3, λ45, i.e., in
the field of S the first criterion has priority over the others. This applies similarly for the So

2, So
3, So

4,
subsets of points where the second, third or fourth criterion has a priority over the others, respectively.
We designate the set of Pareto optimal points S0 = So

1 ∪ So
2 ∪ So

3 ∪ So
4. Coordinates of all obtained

points and relative estimates are presented in two-dimensional space in Figure 6. These coordinates
are shown in three-dimensional space {x1, x2, λ} from a point X∗4 in Figure 7, where the third axis λ is a
relative assessment. Restrictions of the set of Pareto optimal points in Figure 7 is lowered to −0.5 (so
that restrictions are visible). This information is also a basis for further research on the structure of a
great number of Pareto. The person making decisions, as a rule, is the designer of the technical system.
If results of the solution of the vector problem with equivalent criteria do not satisfy the person making
the decision, then the choice of the optimal solution is taken from any subset of points So

1, So
2, So

3, So
4.

Step 2. Choice of priority criterion of q∈K. From theory (see Theorem 2) it is known that at an
optimum point X0 there are always two most inconsistent criteria, q ∈ K and v ∈ K, for which in relative
units an equality holds: λ0 = λq(X0) = λp(X0), q, v ∈ K, X ∈ S. Others are subject to inequalities: λ0

≤

λk(X0) “k ∈ K, q , v , k.
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In the model of the technical system of Equations (71)–(73) and the corresponding λ-problem of
Equations (74)–(76), such criteria are the first, second and third:

λ0 = λ1(X0) = λ2(X0) = λ3(X0) = 0.4459. (79)

These are shown in Figure 8.
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Figure 8. The solution of the λ-problem (1, 2, 3 criterion) in a three-dimensional system of coordinates
of x1, x2 and λ.

As a rule, the criterion which the decision-maker would like to improve is chosen from a couple
of contradictory criteria. Such a criterion is called the “priority criterion”, which we designate q = 2 ∈
K. This criterion is investigated in interaction with the first criterion of k = 1 ∈ K.

On the display the message is given:
q = input (‘Enter priority criterion (number) of q = ‘), Have entered: q = 2.
Step 3. Numerical limits of the change of the size of a priority of criterion of q = 2∈K are defined.
For priority criterion q = 2, the numerical limits in physical units upon transition from an optimal

point X0 to the point X∗q obtained in the first step are defined. Information about the criteria for q = 2 is
given on the screen:

fq
(
X0

)
= 2901.68 ≤ fq(X) ≤ 1200.0 = fq(X∗q), q ∈ K. (80)

In relative units the criterion of q = 2 changes according to the following limits:
λq(X0) = 0.4459 ≤ λq(X) ≤ 1= λq(X∗q), q = 2∈K.
These data are analyzed.
Step 4. Choice of the size of priority criterion q∈K (decision making). The message is displayed:

“Enter the size of priority criterion fq =“, we enter, for example, fq = 1500.
Step 5. Calculation of relative assessment.
For the chosen size of priority criterion fq = 1600 the relative assessment is calculated:

λq =
fq − f o

q

f ∗q − f o
q

=
1600− 4279.9

1200.0− 4279.9
= 0.8697, (81)

which upon transition from point X0 to X∗q according to Equation (78) lies in the limits:

0.4459 = λ2
(
X0

)
≤ λ2 = 0.8697 ≤ λ2(X∗2) = 1, q ∈ K.
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Step 6. Calculation of the coefficient of linear approximation.
Assuming a linear nature of the change of the criterion fq(X) in Equation (80) and according

to a relative assessment of λq(X), using standard methods of linear approximation we calculate the
proportionality coefficient between λq(X0), λq, which we call ρ:

ρ =
λq − λq(Xo)

λq(X∗q) − λq(Xo)
=

0.8697− 0.4459
1− 0.4459

= 0.7649, q = 2. (82)

Step 7. Calculation of coordinates of the priority criterion with the size fq.
Assuming a linear nature of the change of a vector Xq = {x1 x2}, q = 2 we determine coordinates of

a point of priority criterion with the size fq =1600 with a relative assessment (Equation (81)):
Xq = {x1 = X0(1) + ρ(X∗q(1) − X0(1)) x2 =X0 (2) + ρ(X∗q(2) − X0(2))},
where X0 = {x1 = 33.02, x2 = 69.54}, X∗2 = {x1 = 25, x2 = 25}.
As a result of these calculations we obtain the point coordinates:

Xq = {x1 = 26.88, x2 = 69.54}. (83)

Step 8. Calculation of the main indicators of a point of Xq.
For the obtained Xq point, we calculate:

• all criteria in physical units fk(Xq) = {fk(Xq), k = 1, K}: f (Xq) = {f 1(Xq) = 386.5, f 2(Xq) = 1651.5,
f 3(Xq) = 137.9, f 4(Xq) = 26.1},

• all relative estimates of criteria λq = {λq
k, k = 1, K}, λk(Xq) =

fk(Xq)− f o
k

f ∗k− f o
k

, k = 1, K1,K:

λk(xq) = {λ1(xq) = 0.5392, λ2(xq) = 0.8530, λ3(xq) = 0.0827, λ4(xq) = 0.9334},

• vector of priorities Pq = {pq
k =

λq(Xq)

λk(Xq)
, k = 1, K}: Pq = [p2

1 = 1.5820, p2
2 = 1.0, p2

3 = 10.3123, p2
4 = 0.9139],

• the minimum relative assessment: min LXq = min (LXq): min LXq = min (λk(Xq)) = 0.0827,
• the relative assessment taking into account a criterion priority: λ00 = min (p2

1λ1(Xq) = 0.7564,
p2

2λ2(Xq) = 0.7564, p2
3λ3(Xq) = 0.7564, p2

4λ4(Xq)) = 0.7564.

Any point from Pareto’s set Xo
t = {λo

t , Xo
t }∈So can be similarly calculated.

7.5. Analysis of the Results of the Final Decision

The calculated size of criterion fq(Xo
t ), q∈K is usually not equal to the set fq. The error of the choice

of ∆fq = |fq(Xo
t ) − fq| = |1651.5 − 1600| = 51.5 is defined by an error of linear approximation, ∆fq% = 3.2%.

In the course of modeling, parametrical restrictions of Equation (73) can be changed, i.e., some set
of optimum decisions is obtained. We can choose a final version, which in our example includes this
set of optimum decisions:

• parameters of the technical system X0 = {x1 = 33.03, x2 = 69.54, x3 = 25.0},
• the parameters of the technical system at a given priority criterion q = 2: Xq = {x1 = 26.88, x2 = 35.47,

x3 = 25.0}.

We represent these parameters in two-dimensional (x1, x2) and three-dimensional (x1, x2and λ)
coordinate systems in Figures 6–8, and also in physical units for each function f 1(X), . . . , f 4(X) in
Figures 9–12, respectively.

The first characteristic f 1(X) in physical units is shown in Figure 9.
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Collectively, for the submitted version, at the point X0 there exist characteristics of f 1(X0), f 2(X0),
f 3(X0), f 4(X0), relative estimates of λ1(X0), λ2(X0), λ3(X0), λ4(X0), and maximum λo relative level λ0

≤

λk(X0) “k ∈ K such that there is an optimal solution with equivalent criteria (characteristics), and the
procedure for obtaining acceptance of the optimal solution with equivalent criteria (characteristics).

At point Xq there exist: characteristics of f 1(Xq), f 2(Xq), f 3(Xq), f 4(Xq), relative estimates of λ1(Xq),
λ2(Xq), λ3(Xq), λ4(Xq), maximum λ0 relative level λ0

≤ λk(Xq) “k∈K such that there is an optimal solution
at the set priority of the second criterion (characteristic) in relation to other criteria. The procedure of
obtaining a point Xq is the adoption of the optimal solution at the set priority of the second criterion.

Based on the theory of vector optimization, methods of solution of vector problems with equivalent
criteria and a given priority of criterion allow the choice of any point from the set of Pareto optimal
points and demonstration of the optimality of this point.

Conclusions. The problem of adoption of the optimum decision in a difficult technical system
based on some set of functional characteristics is one of the most important problems of system analysis
and design.

8. The Methodology of Making Optimal Decisions with the Functional and Experimental Data
(For Example, a Problem with Four Parameters)

In the studied object, a system is known. Data on the functional characteristics, discrete values of
separate characteristics, and data on restrictions that are imposed on the functioning of a system. The
process of model operation of such a system is presented in the methodology form: “The methodology
of making the optimal decision based on the functional and experimental data”.

The methodology includes a number of stages.
• Formation of the requirement specification (source data) for numerical modeling and choice of

optimum parameters of a system. The initial data is determined by the designer who operates
the system.

• Creation of a mathematical and numerical model of the system under the conditions of definiteness
and indeterminacy.

• The solution of the vector problem of mathematical programming (VPMP), i.e., a model of the
system with equivalent criteria.

• Geometric interpretation of the results of the decision in a three-dimensional coordinate system in
relative units.

• The solution of a vector problem of mathematical programming, i.e., a model of the system at the
given priority of the criterion.

• Geometric interpretation of the results of the decision in a three-dimensional coordinate system in
physical units.
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8.1. Formation of Technical Specifications (Source Data) for the Numerical Simulation of the System

We will consider a problem “Numerical modeling of the system” in which data on some
set of functional characteristics (definiteness conditions), discrete values of characteristics (an
uncertainty condition) and the restrictions imposed on the functioning of the technical system
are known [6–10,13,15,20,22].

It is given that the system function is defined by four parameters X = {x1, x2, x3, x4}, a vector of
(operated) variables. Basic data for the solution of the problem are the four characteristics (criterion) of:

F(X) = {f 1(X), f 2(X), f 3(X), f 4(X)}, whose size of assessment depends on a vector of X.
The definiteness condition. For the first and third characteristics of f 1(X) and f 3(X) functional

dependence on parameters X is known (indexing of formulas within the individual section (methods)):

f1(X) ≡ 269.867 − 1.8746× x1 − 1.7469× x2 + 0.8939× x3

+1.0937× x4 + 0.0484× x1 × x2 − 0.0052× x1 × x3−

0.0141× x1 × x4 + 0.0037× x2 × x3 − 0.0052× x2 × x4−

0.0002 × x3 × x4 + 0.0119× x2
1 + 0.0035 × x2

2 − 0.002× x2
3

− 0.0042× x2
4,

(84)

f4(X) = 19.253 − 0.0081 × x1 − 0.7005 × x2 − 0.3605 × x3

+ 0.9769 × x4 + 0.0126 × x1 × x2 + 0.0644 × x1 × x3 − 0× x1 × x4

+ 0.0396 × x2 × x3 + 0.0002 × x2 × x4 + 0.0004 × x3 × x4−

0.0016 × x2
1 + 0.0027 × x2

2 + 0.0045 × x2
3 − 0.0235 × x2

4,

(85)

restrictions: 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8 (86)

The uncertainty condition. For the second and fourth characteristic results of the experimental data,
the sizes of parameters and corresponding characteristics are known. Numerical values of parameters
X and characteristics of y2(X) and y4(X) are presented in Table 7.

Table 7. Numerical values of parameters and characteristics of the system.

x1 x2 x3 x4 y2(X)→min y3(X)→max

22 0 2.2 2.2 1053.8 47.7
22 0 2.2 5.5 1067 47.3
22 0 2.2 8.8 1078 47.2
22 0 5.5 2.2 1111 50.7
22 0 5.5 5.5 1155 46.8
22 0 5.5 8.8 1152.8 46.3
22 0 8.8 2.2 1151.7 44.2
22 0 8.8 5.5 1148.4 43
22 0 8.8 8.8 1147.3 42.5
22 33 2.2 2.2 1964.6 58.3
22 33 2.2 5.5 1974.5 57.5
22 33 2.2 8.8 1983.3 57.1
22 33 5.5 2.2 1995.4 56.5
22 33 5.5 5.5 2003.1 55.1
22 33 5.5 8.8 2015.2 54.9
22 33 8.8 2.2 2027.3 54.8
22 33 8.8 5.5 2046 52.8
22 33 8.8 8.8 2058.1 53
22 66 2.2 2.2 2708.2 75.9
22 66 2.2 5.5 2585 71.5
22 66 2.2 8.8 2541 68.2
22 66 5.5 2.2 2519 66.4
22 66 5.5 5.5 2596 68.2
22 66 5.5 8.8 2662 70.4
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Table 7. Cont.

x1 x2 x3 x4 y2(X)→min y3(X)→max

22 66 8.8 2.2 2770.9 72.4
22 66 8.8 5.5 2783 71.5
22 66 8.8 8.8 2801.7 70.6
55 0 2.2 2.2 3284.6 100.5
55 0 2.2 5.5 3301.1 100.1
55 0 2.2 8.8 3307.7 99
55 0 5.5 2.2 3315.4 98.8
55 0 5.5 5.5 3320.9 97.9
55 0 5.5 8.8 3334.1 97.6
55 0 8.8 2.2 3347.3 97
55 0 8.8 5.5 3366 95.7
55 0 8.8 8.8 3378.1 95.3
55 33 2.2 2.2 1095.6 54.6
55 33 2.2 5.5 1111 50.6
55 33 2.2 8.8 1133 48.4
55 33 5.5 2.2 1147.3 47.7
55 33 5.5 5.5 1166 46.2
55 33 5.5 8.8 1188 45.1
55 33 8.8 2.2 1208.9 44.2
55 33 8.8 5.5 1232 42.2
55 33 8.8 8.8 1272.7 40.7
55 66 2.2 2.2 1995.4 61.8
55 66 2.2 5.5 2013 60.5
55 66 2.2 8.8 2035 59.4
55 66 5.5 2.2 2058.1 58.3
55 66 5.5 5.5 2095.5 57.2
55 66 5.5 8.8 2103.2 56.1
55 66 8.8 2.2 2120.8 54.8
55 66 8.8 5.5 2145 47.3
55 66 8.8 8.8 2183.5 51.3
88 0 2.2 2.2 2739 79.4
88 0 2.2 5.5 2761 78.1
88 0 2.2 8.8 2783 77
88 0 5.5 2.2 2801.7 75.9
88 0 5.5 5.5 2849 76.1
88 0 5.5 8.8 2893 76.6
88 0 8.8 2.2 2974.4 76.8
88 0 8.8 5.5 2959 715
88 0 8.8 8.8 2927.1 682
88 33 2.2 2.2 3315.4 1041
88 33 2.2 5.5 3336.3 1023
88 33 2.2 8.8 3355 1012
88 33 5.5 2.2 3378.1 1005
88 33 5.5 5.5 3399 990
88 33 5.5 8.8 3421 979
88 33 8.8 2.2 3440.8 970
88 33 8.8 5.5 3366 957
88 33 8.8 8.8 3503.5 935
88 66 2.2 2.2 1116.5 583
88 66 2.2 5.5 1144 561
88 66 2.2 8.8 1166 550
88 66 5.5 2.2 1208.9 530
88 66 5.5 5.5 1232 506
88 66 5.5 8.8 1276 484
88 66 8.8 2.2 1303.5 477
88 66 8.8 5.5 1342 440
88 66 8.8 8.8 1397 425
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In the decision, from the assessment size of the first and third characteristic (criterion), it is
possible to obtain: f 1(X)→max f 3(X)→max, and for the second and fourth characteristic: y2(X)→min
y4(X)→min. Parameters X = {x1, x2, x3, x4} change according to the following limits:

x1 ∈ [22. 55. 88.], x2 ∈ [0. 33. 66.], x3 ∈ [2.2 5.5 8.8], x4 ∈ [2.2 5.5 8.8].

The requirements are as follows: to construct a model of the system in the form of a vector
problem, to solve a vector problem with equivalent criteria, to choose a priority criterion, to establish
the numerical value of the priority criterion, and to make the best decision (optimum) with a specified
priority criterion.

Note that using the MATLAB system, the author developed the software for the decision
making of a vector problem of mathematical programming. The vector problem includes four
variables (parameters of the technical system): X = {x1, x2, x3, x4} and four criteria (characteristics)
of F(X) = {f 1(X), f 2(X), f 3(X), f 4(X)}. However, for each new set of data (new system) the program
is configured individually. In the software criteria F(X) = {f 1(X), f 2(X), . . . f 6(X)} with uncertainty
conditions (provided as a part of y2(X), y4(X) in Table 6) can vary between zero (i.e., all criteria are
constructed under the conditions of determinacy) and six (i.e., all criteria are constructed under the
conditions of uncertainty).

8.2. Creation of a Mathematical and Numerical Model of the System under the Conditions of Definiteness and
Indeterminacy

Creating a numerical model of the system includes the following sections:

• Choosing a mathematical model of the system,
• Building a model under certainty conditions,
• Construction under the conditions of uncertainty,
• Construction of a numerical model of the system under certainty and uncertainty.

8.2.1. Mathematical Model of the System

We will present the model of the system under the conditions of definiteness and uncertainty in
total:

Opt F(X) = {maxF1(X) = {max fk(X), k = 1, Kde f
1 }, (87)

maxI1(X) ≡ {max{ fk(Xi, i = 1, M)}
T

, k = 1, Kunc
1 }, (88)

minF2(X) = {min fk(X), k = 1, Kde f
2 }, (89)

minI2(X)o{min{ fk(Xi, i = 1, M)}
T

, k = 1, Kunc
2 }}, (90)

at restrictions f min
k ≤ fk(X) ≤ f max

k , k = 1, K, xmin
j ≤ x j ≤ xmax

j , j = 1, N (91)

where X = {xj, j = 1,N1, N} is a vector of operated variable (design data), F(X) = {F1(X) F2(X) I1(X), I2(X)}
represents the vector criterion of Equations (87)–(91) in which each component represents a vector of
criteria (characteristics) of the system that functionally depend on the discrete values of a vector of

variables X, F1(X) = {fk(X), k = 1, Kde f
1 }, F2(X) = {fk(X), k = 1, Kde f

2 } is a set of the max and min functions,

respectively, I1(X) = {{fk(Xi, i = 1, M)}T, k = 1, Kunc
1 }, I2(X) = {{fk(Xi, i = 1, M)}T, k = 1, Kunc

2 } is a set of

matrices of max and min, respectively, Kde f
1 , Kde f

2 (definiteness), Kunc
1 , Kunc

2 (uncertainty) are the sets of
criteria of max and min created under the conditions of definiteness and uncertainty. In Equation (91),
f min

k ≤ fk(X) ≤ f max
k , k = 1, K is a vector function of the restrictions imposed on the functioning of the

technical system, and xmin
j ≤ xj ≤ xmax

j , j = 1, N represent the parametrical restrictions.
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It is assumed that the functions fk(X), k = 1, K are differentiable and convex, gi(X), i = 1, M are
continuous, and the set of admissible points S given by constraints of Equation (5) is non−empty and
is a compact: S = {X∈RN|G(X) ≤ 0, Xmin

≤ X ≤ Xmax} , ø.

8.2.2. Building a Model under the Conditions of Certainty

Construction under the conditions of definiteness is defined by the functional dependence of each
characteristic and the restrictions on the parameters of the technical system. In our example, three
characteristic (92) and (93) and restrictions (94) are known:

f1(X) ≡ 269.867− 1.8746× x1 − 1.7469× x2 + 0.8939× x3+

1.0937× x4 + 0.0484× x1 × x2 − 0.0052× x1 × x3 − 0.0141× x1 × x4

+0.0037× x2 × x3 − 0.0052× x2 × x4 − 0.0002× x3 × x4 + 0.0119× x2
1

+0.0035× x2
2 − 0.002× x2

3 − 0.0042× x2
4,

(92)

f4(X) = 19.253− 0.0081× x1 − 0.7005× x2 − 0.3605× x3+

0.9769× x4 + 0.0126× x1 × x2 + 0.0644× x1 × x3

−0× x1 × x4 + 0.0396× x2 × x3 + 0.0002× x2 × x4+

0.0004× x3 × x4 − 0.0016× x2
1 + 0.0027× x2

2 + 0.0045× x2
3

−0.0235× x2
4,

(93)

restrictions: 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8 (94)

These data are further used in the creation of the mathematical model of the technical system.

8.2.3. Construction under the Conditions of Uncertainty

Construction under the conditions of uncertainty involves the use of the qualitative and quantitative
descriptions of the technical system obtained by the “input−output” principle shown in Table 6.
Transformation of information (basic data of y2(X), y3(X)) to a functional type of f 2(X), f 3(X) is carried
out by the use of mathematical methods (i.e., regression analysis).

The basic data of Table 1 are created in the MATLAB system in the form of a matrix:

I = |X, Y| = {xi1xi2yi3yi4, i = 1, M}. (95)

For each experimental set function yk, k = 2, 3 regression was performed using the method of
least squares min

∑M
i = 1 (yi − yi)

2 in MATLAB. Ak, a polynomial defining the interrelationship of the
parameters Xi = {x1i, x2i, x3i, x4i} and functions yki = f(Xi,Ak), k = 2, 3, is formed for this purpose.

As a result of the calculations, we obtain the system of coefficients Ak = {A0k, A1k, . . . , A14k} which
define the coefficients of the quadratic polynomial (function):

fk(X, A) = A0k + A1kx1 + A2kx2 + A3kx3 + A4kx4 + A5kx1 ∗ x2 + A6kx1 ∗ x3 + A7kx1 ∗ x4 + A8kx2 ∗ x3

+A9kx2 ∗ x4 + A10kx3 ∗ x4 + A11kx2
1 + A12kx2

2 + A13kx2
3 + A14kx2

4, k = 2, 3.
(96)

As a result of the calculations of the coefficients Ak, k = 2, we obtain the f 2(X) function:

f2(X) = 875.3 + 23.893× x1 − 30.866× x2 − 25.858× x3 − 45× x4

−0.6984× x1 × x2 + 0.4276× x1 × x3 + 0.6793× x1 × x4

−0.1167× x2 × x3 + 0.2969× x2 × x4 − 0.0093× x3 × x4

+0.0362× x2
1 + 0.0331× x2

2 + 2.9158× x2
3 + 2.4052× x2

4

(97)
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As a result of the calculations of coefficients Ak, k =3, we obtain the f 3(X) function:

f3(X) = 43.734 + 0.6598× x1 + 0.4493× x2 − 0.3094× x3−

1.8334× x4 − 0.01× x1 × x2 − 0.0062× x1 × x3 + 0.0146× x1 × x4

−0.013× x2 × x3 + 0.0121× x2 × x4 − 0.0004× x3 × x4 − 0.0003× x2
1

−0.0002× x2
2 + 00.0254× x2

3 + 0.0939× x2
4

. (98)

restrictions 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8 (99)

The minimum and maximum values of experimental data y1(X), y2(X), y4(X) are presented in
the lower part of Table 1. The minimum and maximum values of the functions f 1(X), f 2(X), f 4(X)
slightly differ from experimental data. For comparison, the settlement of these f 4(X) functions at the
specified points of X presented in the right part of the eighth column of Table 7 are given. The index of
correlation and coefficients of determination are presented in the lower lines of Table 7.

Results of the regression analysis of Equations (97)–(99) are further used in the creation of the
mathematical model of the technical system.

8.2.4. Construction of a Numerical Model of the System under Certainty and Uncertainty

For the creation of a numerical model of the system, we use the functions obtained under
conditions of definiteness (Equations (92) and (93)) and uncertainty (Equations (97) and (98)), and
parametric restrictions (Equations (94) and (99)).

We consider the functions of Equations (92), (93), (97) and (98) as the criteria defining the
functioning of the system. A set of criteria K = 4 includes two criteria f 1(X), f 3(X)→ max and two
f 2(X), f 4(X)→ min. As a result, the model of the functioning of the system is presented as a vector
problem of mathematical programming:

opt F(X) = {max F1(X) = {max f1(X) ≡ 269.867− 1.8746× x1

−1.7469× x2 + 0.8939× x3 + 1.0937× x4 + 0.0484× x1 × x2−

0.0052× x1 × x3 − 0.0141× x1 × x4 + 0.0037× x2 × x3 − 0.0052× x2 × x4

− 0.0002× x3 × x4 + 0.0119× x2
1 + 0.0035× x2

2 − 0.002× x2
3 − 0.0042× x2

4,

(100)

max f3(X) ≡ 43.734 + 0.659× x1 + 0.4493× x2 − 0.3094× x3

−1.8334× x4 − 0.01× x1 × x2 − 0.0062× x1 × x3 + 0.0146× x1 × x4

−0.013× x2 × x3 + 0.0121× x2 × x4 − 0.0004× x3 × x4 − 0.0003× x2
1

−0.0002× x2
2 + 0.0254× x2

3 + 0.0939× x2
4

(101)

min F2(X) = {min f2(X) ≡ 875.3 + 23.893× x1 − 30.866× x2−

25.858× x3 − 45× x4 − 0.6984× x1 × x2 + 0.4276× x1 × x3+

0.6793× x1 × x4 − 0.1167× x2 × x3 + 0.2969× x2 × x4−

0.0093× x3 × x4 + 0.0362× x2
1 + 0.0331× x2

2 + 2.9158× x2
3 + 2.4052× x2

4.

(102)

min f4(X) ≡ 19.25− 0.008× x1 − 0.7005× x2 − 0.3605× x3+

0.977× x4 + 0.0126× x1 × x2 + 0.0644× x1 × x3 − 0× x1 × x4+

0.0396× x2 × x3 + 0.0002× x2 × x4 + 0.0004× x3 × x4 − 0.0016× x2
1

+0.0027× x2
2 + 0.0045× x2

3 − 0.0235× x2
4}},

(103)

restrictions: 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8 (104)

The vector problem of mathematical programming of Equations (100)–(104) represents the model
of decision making under certainty and uncertainty in the aggregate.
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8.3. The Solution of the Vector Problem of Mathematical Programming (VPMP)—Model of the System with
Equivalent Criteria

To solve the vector problem of mathematical programming of Equations (14)–(18), methods based
on the axioms of the normalization of criteria and the principle of guaranteed results are presented,
which follow from Axiom 1 and the principle of optimality 1.

The solution of the vector problem of Equations (14)–(18) follows a sequence of steps.
Step 1. Equations (100)–(104) are solved for each criterion separately, using the function fmincon (

. . . ) of the MATLAB system, the use of the function fmincon ( . . . ) is considered in [7–10,20,22].
As a result of the calculation for each criterion we obtain optimum points: X∗k and f ∗k = fk(X∗k),

k = 1, K, the sizes of criteria at this point, i.e., the best decision for each criterion:

X∗1 = {x1 = 88.0, x2 = 66.0, x3=8.8, x4 = 2.2}, f ∗1 = f 1(X∗1) = −535.06,

X∗2 = {x1 = 22.0, x2 = 0.0, x3=2.83, x4 = 6.25}, f ∗2 = f 2(X∗2) = 1301.2,
X∗3 = {x1 = 88.0, x2 = 0.0, x3=2.2, x4 = 8.8}, f ∗3 = f 3(X∗3) = −100.15,

X∗4 = {x1=22.0, x2 = 62.17, x3 = 2.2, x4 = 2.2}, f ∗4 = f 4(X∗4) = 12.247.

The restrictions of Equation (104) and the points of an optimum X∗1, X∗2, X∗3, X∗4 in coordinates {x1,
x2} are presented in Figure 13.
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Step 2. We define the worst unchangeable part of each criterion (anti-optimum):

X0
1 = {x1 = 22.0, x2 = 66.0, x3 = 2.2, x4 = 2.2}, f 0

1 = f1(X0
2) = 243.25,

X0
2 = {x1 = 88.0, x2 = 0.0, x3 = 8.8, x4 = 8.8}, f 0

2 = f2(X0
2) = −3903.1,

X0
3 = {x1 = 22.0, x2 = 0.0, x3 = 8.8, x4 = 8.07}, f 0

3 = f3(X0
3) = 50.03,

X0
4 = {x1 = 88.0, x2 = 66.0, x3 = 8.8, x4 = 8.8}, f 0

4 = f2(X0
4) = −121.83.

Step 3. We analyze the set of Pareto optimal points. At optimal points X * = {X1*, X2*, X3*, X4*},

the sizes of the criterion functions of F(X*) = ‖ fq(X∗k)‖
k = 1,K
q = 1,K

are determined. We calculate a vector
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D = (d1 d2 d3 d4)T, deviations by each criterion on an admissible set S: dk =fk*−fk0, k = 1, 4, and a matrix

of relative estimates λ(X*) = ‖λq(X∗k)‖
k = 1,K
q = 1,K

, where λk(X) = (fk*−fk0)/dk.

F(X∗) =

∣∣∣∣∣∣∣∣∣∣∣
535.1 1731.9 58.1 117.0
317.6 1301.2 51.3 26.5
192.5 3614.3 100.2 24.6
244.0 2458.2 67.7 12.2

∣∣∣∣∣∣∣∣∣∣∣, D =

∣∣∣∣∣∣∣∣∣∣∣
291.8
−2602.0

50.12
−109.58

∣∣∣∣∣∣∣∣∣∣∣,

λ(X∗) =

∣∣∣∣∣∣∣∣∣∣∣
1.0000 0.8345 0.1603 0.0443
0.2548 1.0000 0.0244 0.8697
−0.1740 0.1110 1.0000 0.8870
0.0027 0.5553 0.3532 1.0000

∣∣∣∣∣∣∣∣∣∣∣
(105)

The analysis of the sizes of the criteria in relative estimates shows that at optimal points X*= {X1*,
X2*, X3*, X4*} the relative assessment is equal to unity. Other criteria are much less than unity. It is
required to find such points (parameters) at which the relative estimates are closest to unity. Step 4 is
directed to the solution of this problem.

Step 4. Creation of the λ-problem is carried out in two stages: first, the maximine problem of
optimization with the normalized criteria is constructed:

λ0 = max
x

min
k
λk(X), G(X) ≤ 0, X ≥ 0, (106)

Second, this is transformed into a standard problem of mathematical programming (the λ-problem):

λ0 = max λ, (107)

at restrictions λ− ( f1(X) − f o
1 )/( f ∗1 − f o

1 ) ≤ 0, (108)

λ− ( f2(X) − f o
2 )/( f ∗2 − f o

2 ) ≤ 0 (109)

λ− ( f3(X) − f o
3 )/( f ∗3 − f o

3 ) ≤ 0 (110)

λ− ( f4(X) − f o
4 )/( f ∗4 − f o

4 ) ≤ 0 (111)

0 ≤ λ ≤1, 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8, (112)

where the vector of unknowns had the dimension N + 1: X = {x1, . . . , xN, λ}, the functions f 1(X), f 2(X),
f 3(X), f 4(X) correspond to Equations (100)–(104), respectively. Substituting the numerical values of the
functions f 1(X), f 2(X), f 3(X), f 4(X), we obtain the λ-problem in the following form:

λ0 = max λ, (113)

at restrictions λ−
296.85− 1.875× x1 . . .+0.0734× x1 × x2 . . . −0.0108× x2

1 . . . − f o
1

f ∗1 − f o
1

≤ 0, (114)

λ−
43.73 + 0.659 × x1 . . . − 0.01 × x1 × x2 . . .− 0.0003 × x2

1 . . .− f o
3

f ∗3 − f o
3

≤ 0, (115)

λ−
875.3 + 23.893× x1+ . . . .−0.6984× x1 × x2 . . .+0.036× x2

1 . . . − f o
2

f ∗2 − f o
2

≤ 0, (116)

λ−
19.253− 0.0081× x1 . . .+ 0.0126× x1 × x2 . . .+( − 0.0016× x2

1) . . . − f o
4

f ∗4 − f o
4

≤ 0, (117)

0 ≤ λ ≤ 1, 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8, (118)
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Using function fmincon( . . . ):
[Xo,Lo] = fmincon(‘Z_TehnSist_4Krit_L’,X0,Ao,bo,Aeq,beq,lbo,ubo,’Z_TehnSist_LConst’,options).
As a result of the solution of the vector problem of mathematical programming in Equations

(14)–(18) with equivalent criteria and the λ-problem corresponding to Equations (113)–(118), we obtain:

X0 = {X0, λ0} = {X0 = {x1 = 52.9, x2 = 36.097, x3 = 8.8, x4 = 2.2, λ0 = 0.3179} (119)

i.e., the optimum point of the design data of the system, point X0, which is presented in Figure 8,
fk(X0), k = 1, K, the sizes of criteria (characteristics of technical system):

{f 1(X0) = 336.0, f 2(X0) = 2239.5, f 3(X0) = 65.962, f 4(X0) = 58.435}, (120)

And λk(Xo), k = 1, K, the sizes of the relative estimates:

{λ1(X0) = 0.3179, λ2(X0) = 0.6394, λ3(X0) = 0.3179, λ4(X0) = 0.5785}, (121)

λ0 = 0.3179 is the maximum lower level among all relative estimates measured in relative units:
λ0 = min (λ1(X0), λ2(X0), λ3(X0), λ4(X0), λ5(X0)) = 0.3179. A relative assessment, λ0, is called the
guaranteed result in relative units, i.e., λk(Xo), and according to the characteristics of the technical
fk(X0) system is impossible to improve upon, without worsening thus characteristics.

We note that according to Theorem 1, at point Xo criteria 1 and 3 are contradictory. This
contradiction is defined by the equality of λ1(X0) = λ3(X0) =λ0 = 0.3179, and other criteria are subject
to an inequality of {λ2(X0) = 0.7954, λ4(X0) = 0.5557} > λ0.

Thus, Theorem 1 forms a basis for the determination of the correctness of the solution of a vector
problem. In a vector problem of mathematical programming, as a rule, for two criteria an equality
holds: λ0 = λq(X0) = λp(X0), q, p ∈ K, X ∈ S, and other criteria are subject to an inequality: λ0

≤ λk(X0)
∀k ∈ K, q , p , k.

8.4. Geometric Interpretation of Results of the Decision in a Three-Dimensional Coordinate System in Relative
Units

In an admissible set of points, S formed by restrictions of Equation (32), the optimum points
X1*, X2*, X3*, X4* are united in a contour and presented as a set of Pareto optimal points S0

⊂S in
Figure 13. Coordinates of these points, and the characteristics of the technical system in relative units
of λ1(X), λ2(X), λ3(X), λ4(X) are shown in Figure 14 in three-dimensional space, where the third axis λ
is a relative assessment.
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Discussion. Looking at Figure 9, we can provide changes of all functions of λ1(X), λ2(X), λ3(X),
λ4(X) in four-dimensional space. We consider, for example, an optimum point X∗3. The λ3(X) function
is created from the functions f 3(X) with variable coordinates {x1, x2} and with constant coordinates
{x3 = 8.8, x4 = 2.2}, taken from an optimum point X0 (33). At point X∗3 the relative assessment of
λ3(X∗3) = 0.83 is shown in Figure 9 by a black point. However, we know that the relative assessment
of λ3(X∗3) obtained from the function f 3(X∗3) in the third step is equal to unity, which we designate as
λ∆

3 (X∗3
∗

1) = 1, and is shown in Figure 9 by a red point. The difference between λ∆
3 (X∗3

∗

1) = 1 and λ3(X∗3) = 0.83
is an error ∆ = 0.17 due to transitioning from four-dimensional (and generally N-dimensional) to
two-dimensional space.

The point X∗1 and appropriate relative estimates of λ1(X∗1) and λ∆
1 (X∗1) are similarly shown.

Thus, for the first time in domestic and foreign practice, the transition and its geometric illustration
from an N-dimensional to a two-dimensional measurement of function is shown in vector problems of
mathematical programming with the appropriate errors.

8.5. The Solution of a Vector Problem of Mathematical Programming—Model of the System at the Given
Priority of the Criterion

The decision maker is usually the system designer.
Step 1. We solve a vector problem with equivalent criteria. The algorithm of the decision is

presented in Section 8.3. The numerical results of the solution of the vector problem are given above.
Pareto’s great number S0

⊂S lies between optimum points X∗1 X0 X∗3 X0 X∗4 X0 X∗2 X0 X∗1. We carry
out the analysis of a great number of Pareto So

⊂S. For this purpose, we will connect auxiliary points:
X∗1X∗3X∗4X∗2X∗1 with a point X0 which conditionally represents the center of a great number of Pareto. As
a result, we obtain four subsets of points X∈So

q⊂S0
⊂S, q = 1, 4. The subset So

1⊂S0
⊂S is characterized by

the fact that the relative assessment λ1 ≥λ2, λ3, λ4, i.e., in the field So
1, the first criterion has priority over

the others. Similarly, So
2, So

3, So
4 are the subsets of points where the second, third and fourth criterion has

a priority over the others, respectively. We designate the set of Pareto optimal points S0=So
1∪So

2∪So
3∪So

4.
Coordinates of all obtained points and relative estimates are presented in two-dimensional space {x1,
x2} in Figure 13. These coordinates are shown in three-dimensional space {x1, x2, λ} in Figure 14 where
the third axis λ is a relative assessment. The restrictions of the set of Pareto optimal points in Figure 14
are lowered to −0.5 (so that restrictions are visible). This information is also a basis for further research
on the structure of a great number of Pareto. The person making decisions, as a rule, is the designer of
the system. If results of the solution of a vector problem with equivalent criteria do not satisfy the
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person making the decision, then the choice of the optimal solution is taken from any subset of points
So

1, So
2, So

3, So
4. These subsets of Pareto points are shown in Figure 8 in the form of functions f 1(X), f

2(X), f 3(X), f 4(X).
Step 2. Choice of priority criterion of q∈K. From the theory (see Theorem 1) it is known that at an

optimum point X0 there are always two most inconsistent criteria, q∈K and v∈K for which in relative
units an equality holds: λ0 =λq(X0) =λp(X0), q, v∈K, X∈S. Others are subject to inequalities: λ0

≤ λk(X0)
∀k∈K, q , v , k.

In a model of the system in Equations (100)–(104) and the corresponding λ-problem in Equations
(113)–(117), such criteria are the first and third:

λ0 = λ1(X0) = λ3(X0) = 0.3179. (122)

We show the λ1(X) andλ3(X) functions separately in Figure 15 for an optimum point Xo = {Xo, λo}.
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All points and data are shown in Figure 14.
As a rule, the criterion which the decision-maker would like to improve is taken from a couple of

contradictory criteria. Such a criterion is called the “priority criterion”, which we designate q=3∈K.
This criterion is investigated in interaction with the first criterion of k = 1∈K. We allocate these two
criteria from the set of all criteria K = 4 shown in Figure 15.

On the display the message is given:
q=input (‘Enter priority criterion (number) of q =‘), have entered: q = 3.
Step 3. Numerical limits of the change of the size of a priority of criterion of q = 3∈K are defined.
For priority criterion q = 3, the numerical limits in physical units upon transition from an optimal

point Xo (119) to the point X∗q obtained in the first step are defined.
Information about the criteria for q = 3 are given on the screen:

fq
(
X0

)
= 65.96 ≤ fq(X) ≤ 100.15 = fq(X∗q), q ∈ K. (123)

In relative units the criterion of q = 2 changes according to the following limits:
λq(X0) = 0.3179 ≤ λq(X) ≤ 1 = λq(X∗q), q = 3 ∈ K.
These data are analyzed.
Step 4. Choice of the size of priority criterion q∈K (decision making).
The message is displayed: “Enter the size of priority criterion fq = “, we enter, for example, fq = 80.
Step 5. Calculation of a relative assessment.
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For the chosen size of the priority criterion of fq =80 the relative assessment is calculated:

λq =
fq − f o

q

f ∗q − f o
q

=
80 − 50.03

100.15− 50.03
= 0.5979, (124)

which upon transition from point X0 to X∗q according to Equation (38) lies in the limits:

0.3179 = λ3
(
X0

)
≤ λ3 = 0.5979 ≤ λ3(X) = 1, q ∈ K. (125)

Step 6. Calculation of the coefficient of linear approximation.
Assuming a linear nature of the change of criterion of fq(X) in Equation (123) and according

to a relative assessment of λq(X), using standard methods of linear approximation we calculate the
proportionality coefficient between λq(X0), λq, which we call ρ:

ρ =
λq − λq(Xo)

λq(X∗q) − λq(Xo)
=

0.5979− 0.3179
1− 0.3179

= 0.4106, q = 3 ∈ K. (126)

Step 7. Calculation of the coordinates of priority criterion with the size fq.
Assuming a linear nature of the change of a vector Xq = {x1 x2}, q = 3 we determine coordinates of

a point of priority criterion with the size fq with a relative assessment (95):

Xq = {x1 = X0(1) + ρ(X∗q(1) −X0(1))x2 = X0(2) + ρ(X∗q(2) −X0(2))}. (127)

where X0 = {X0(1) = 80.0, X0 (2) = 69.11}, X∗3 = {X3*(1) = 80.0, X3*(2) = 0.0}.
As a result of the calculations, we obtain point coordinates: Xq = {x1 = 67.31, x2 = 21.27}.
Step 8. Calculation of the main indicators of a point Xq.
For the obtained point Xq, we calculate:

• all criteria in physical units fk(Xq) = {fk(Xq), k = 1, K}: f (Xq) = {f 1(Xq) = 313.45, f 2(xq) = 2575.7,
f 3(xq) = 74.2, f 4(xq) = 60.6},

• all relative estimates of criteria λq = {λq
k, k = 1, K}, λk(Xq) =

fk(Xq)− f o
k

f ∗k− f o
k

, k = 1, K1,K:

λk(Xq) = {λ1(Xq) = 0.2405, λ2(xq) = 0.5102, λ3(xq) = 0.4825, λ4(xq) = 0.5586}1,K,

• the minimum relative assessment: minLXq = min(LXq): minLXq = min(λk(Xq)) = 0.2405,

• the vector of priorities Pq = {pq
k =

λq(Xq)

λk(Xq)
, k = 1, K}: Pq = (p3

1 = 2.0061, p3
2 = 0.9458, p3

3 = 1.0, p3
4 = 0.8637),

• the relative assessment taking into account a criterion priority: LXqPq = λk(Xq).*Pq = {p3
1λ1(Xq),

p3
2λ2(Xq), p3

3λ3(Xq), p3
4λ4(Xq)} λk(Xq).*Pq = {0.7968 0. 7968 0. 7968 0. 7968},

• the the minimum relative assessment taking into account a criterion priority: λ00 = min
(p2

1λ1(Xq) = 0.4825, p2
2λ2(Xq) = 0.4825, p2

3λ3(Xq) = 0.4825, p2
4λ4(Xq)) = 0.4825

Any point from Pareto’s set Xo
t = {λo

t , Xo
t }∈So can be similarly calculated.

Step 9. Analysis of results. The calculated size of criterion fq(Xo
t ), q∈K is usually not equal to the

set fq. The error of the choice of ∆fq = |fq(Xo
t ) − fq| = |74.2 − 80|= 5.8 is defined by an error of linear

approximation, ∆fq% = 7.25%.
In the course of modeling and simulation, as well as in the previous example, Section 7.5, the

parametric restrictions of Equation (118) can be changed, i.e., some set of optimum decisions is obtained.
We can choose a final version from, in our example, this set of optimum decisions: parameters of
technical system X0 = {x1 = 52.9, x2 = 36.097, x3 = 8.8, x4 = 2.2, λ0 = 0.3179, the parameters of the
technical system at a given priority criterion q = 2: Xq = {x1 = 67.31, x2 = 21.27}.

If the error ∆fq = |fq(X00) − fq| = |79.6−80| = 0.4, measured in physical units or as a percentage
∆fq% = ∆fq / fq × 100 = 0.5%, is more than set ∆f, ∆fq > ∆f, f, we pass to Step 2, else if ∆fq ≤ ∆f, calculations
come to an end.
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8.6. Geometric Interpretation of Results of the Decision in a Three-Dimensional Coordinate System in Physical
Units

In the course of modeling, the parametric restrictions of Equation (32) and functions can be
changed, i.e., some set of optimum decisions is obtained. We can choose a final version from, in our
example, this set of optimum decisions:

• parameters of the system X0 = {x1 = 80.0, x2 = 69.11, x3 = 32.58, x4 = 20.0},
• the parameters of the system at a given priority criterion q = 3: Xq = {x1 = 67.313, x2 = 21.276}.

We represent these parameters in a two-dimensional (x1, x2) system in Figure 13, in a
three-dimensional coordinate (x1, x2and λ) system in Figure 14, and, in physical units for each
function f 1(X), . . . , f 4(X) in Figures 16–19, respectively. The first characteristic f 1(X) in physical units is
shown in Figure 16.
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transition errors from four-dimensional X0 = {x1, x2, x3, x4} to two-dimensional X0 = {x1, x2} systems of
coordinates. The second characteristic f 2(X) in physical units is shown in Figure 17.
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transition errors from four-dimensional X0 = {x1, x2, x3, x4} to two-dimensional X0 = {x1, x2} systems of
coordinates. The third characteristic f 3(X) in physical units is shown in Figure 18.
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coordinates. The fourth characteristic f 4(X) in physical units is shown in Figure 19.
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there is an optimum decision with equivalent criteria (characteristics) and, for the procedure of
obtaining the optimum decision with equivalent criteria (characteristics):

• point Xq, characteristics of f 1(Xq), f 2(Xq), f 3(Xq), f 4(Xq),
• relative estimates of λ1(Xq), λ2(Xq), λ3(Xq), λ4(Xq),

• maximum relative level λo such that λo
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there is an optimal solution at the set priority of the qth criterion (characteristic) in relation to other
criteria. The procedure of obtaining a point Xq is the adoption of the optimal solution at the set priority
of the second criterion.

Based on the theory of vector optimization, methods of solution of vector problems with equivalent
criteria, and a given priority of criterion, we can choose any point from the set of Pareto optimal points,
and show the optimality of this point.

Conclusions. The problem of the development of mathematical methods of vector optimization
and the adoption of the optimal solution in a difficult technical system based on some set of experimental
data and functional characteristics are some of the most important tasks of system analysis and design.

In this work, the methodology of the creation of a mathematical model of a technical system under
the conditions of definiteness and indeterminacy in the form of a vector problem of mathematical
programming is developed. New methods of vector optimization based on normalization of criteria
and the principle of the guaranteed result are developed for the solution of a vector problem. Methods
of vector optimization allow making a decision, first, with equivalent criteria, and second, with a given
priority of criterion. In the creation of the characteristics under conditions of indeterminacy, regression
methods of transformation of information are used. The practice of “making optimal decisions” on
the basis of a mathematical model is shown using a number of numerical examples of solutions of
vector problems of optimization. The solution to the problem of “acceptance of an optimal solution” is
realized with examples of 1, 2, 3 and 4 variables, respectively.

These methods of processing experimental data and vector optimization can be used in the
design of technical systems of various industries: electro-technical, aerospace, metallurgical, etc. This
methodology has system characteristics and can be used when modeling technical, economic and
other systems. The author is ready to contribute to the solutions of vector problems of linear and
nonlinear programming.
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