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Abstract: This paper discusses the development of a coupled Q-learning/fuzzy control algorithm
to be applied to the control of solar domestic hot water systems. The controller brings the benefit
of showing performance in line with the best reference controllers without the need for devoting
time to modelling and simulations to tune its parameters before deployment. The performance of
the proposed control algorithm was analysed in detail concerning the input membership function
defining the fuzzy controller. The algorithm was compared to four standard reference control cases
using three performance figures: the seasonal performance factor of the solar collectors, the seasonal
performance factor of the system and the number of on/off cycles of the primary circulator. The work
shows that the reinforced learning controller can find the best performing fuzzy controller within a
family of controllers. It also shows how to increase the speed of the learning process by loading the
controller with partial pre-existing information. The new controller performed significantly better
than the best reference case with regard to the collectors’ performance factor (between 15% and
115%), and at the same time, to the number of on/off cycles of the primary circulator (1.2 per day
down from 30 per day). Regarding the domestic hot water performance factor, the new controller
performed about 11% worse than the best reference controller but greatly improved its on/off cycle
figure (425 from 11,046). The decrease in performance was due to the choice of reward function,
which was not selected for that purpose and it was blind to some of the factors influencing the system
performance factor.
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1. Introduction

Nowadays, the attention paid by various societal components to the negative impacts of a global
energy supply based largely on fossil fuels is significant [1]. This is reflected by the many public funding
schemes or policies set up at the local, national or international level with the clear intent to orient the
scientific and technological development towards energy efficiency and carbon-free energy sources [2].
The EU Horizon 2020 framework program and the national incentives schemes to advance renewable
energy sources are citable examples. International Energy Agency data support the idea that despite
the intense development and competition among rival renewable energy sources, a high unexploited
potential for the development and diffusion of solar thermal systems still persists [3,4]. Experts in the
field also believe that the market for solar thermal systems will profit from a cost-reducing innovation
step, considering its current period of stagnation.

The natural purpose of the solar system designer is to maximize the solar energy collected and
delivered to the load. To achieve this goal, the traditional (local, without a supervisor) control of discrete
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components utilising proportional, proportional and integral, or proportional–integral–derivative
(P, PI or PID) controllers is not always adequate, as it would be the management of all of the solar
system components at the global level, enabling optimal control strategies to be implemented. The
implementation of complex feedback control strategies requires a certain number of computations.
For this reason, a digital controller is usually a component of modern solar systems. The definition of
simple algorithms with a small memory footprint is of particular interest, as such algorithms can be
implemented on very low-cost hardware.

In such a framework, cost-saving opportunities arise because the optimal control strategy to
achieve the best performance is usually devised heavily relying on time-consuming and computationally
intensive numerical simulations. Such simulations are performed at various stages of the design
process: (a) to validate the models of the single components of the system; (b) to validate the integrated
system as a whole; and (c) to develop the control strategy. Stage (a) is often an iterative process which
may involve collecting experimental data from prototypes. Stage (b) may also involve a comparison
with field data if the solar system (or plant) to be optimized already exists. In stage (c), the model of
the plant is extensively used to perform parametric analyses of the plant model and/or optimizations
of the closed loop system.

Another opportunity for cost-savings, in the form of reduced backup systems use due to higher
solar energy gains, arise in the case of small solar systems because they often get installed directly by
personnel lacking control experience, and an on-field optimization of the control strategy is simply not
performed, resulting in the underperformance of the installed systems.

The idea behind this work is to reduce the time spent on modelling and simulations during the
design of optimized controllers for solar thermal systems. To attain this goal, a self-learning controller
has been designed applying the methods of reinforced learning (RL) and fuzzy control (FC). After
a learning phase, the controller can optimize its internal control parameters without the need of
finding them a priori through simulations. In this work, controller performance was evaluated using a
mathematical model of a simple, well-known solar thermal system. The performance of this coupled
RL/FC controller has been compared to other control practices, such as traditional on/off, proportional
feedback control and FC. The original work presented in Reference [5] is here extended by providing
an extended literature review, a detailed description of the algorithm used, and additional results
about the effect of membership functions and the impact of RL parameters.

The paper is organized into sections and subsections. The rest of the introductory section sets the
background regarding the FC topic (Section 1.1) and RL topic (Section 1.2) and reviews the applications
of traditional control (Section 1.3), fuzzy control (Section 1.4), and reinforcement learning (Section 1.5)
to solar thermal systems or to energy management systems. Moreover, a review of the joint application
of FC and RL is therein given (Section 1.6). Section 2 describes the method and techniques used to
implement the controller and the tool used to assess its quality. In particular, this section covers how a
guided exploration was added to the original Q-learning algorithm (Section 2.1), how the algorithm
was modified to allow full and partial reset of acquired knowledge (Section 2.2), how the coupling
between FC and RL was implemented (Section 2.3), the layout of the domestic hot water system used to
run simulations (Section 2.4), and the performance figures used to assess the controller(s) (Section 2.5).
Section 3 discusses the simulation results which are organized into: results of the reference cases
(Section 3.1), results of the FC alone (Section 3.2), results of the RL controller alone (Section 3.3), and
results of the joint FC–RL controller. Concluding remarks and options for future developments are
given in Section 4.

1.1. Fuzzy Logic Controllers

Fuzzy logic (FL) is a method of rule-based decision making used for expert system and process
control. Fuzzy logic is based on the fuzzy-sets theory, which relates to classes of objects with vaguely
defined boundaries in which membership is a matter of degree. This logic was developed by Lofti
Zadeh in the early 1960s as a way to model the uncertainty of natural language [6–8], and since then it
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has been successfully applied to several areas of science and technology, and in particular to system
control [9,10].

A fuzzy controller (FC) is commonly defined as a control system that emulates a human expert using
the principles of FL. The key elements of an FC are a set of “if–then” rules (knowledge-base), an internal
logic processor (inference mechanism), and two components called fuzzifier and de-fuzzifier [11]. The
rules, in the form “IF u is A THEN y is B”, determine the conclusions of the inference mechanism in a
similar way premises determine the conclusions of a deduction engine based on classical logic (the
inference process follows the so-called modus ponendo ponens: given the rule “IF u is A THEN y is B.”
and the fact that u is µA(u) percent A it concludes that y is µA(u) percent B). In the implementation
of the FC used in this work, the Mamdani fuzzy inference system was considered. This inference
system is characterized by a linguistic variable in the “then” clause of the rules base. The fuzzifier and
de-fuzzifier solve the problem of mapping the scalar variables to fuzzy objects that can be processed
by the inference engine and vice-versa. In a Mamdani system, membership functions (functions from
the domain of real numbers to the closed interval [0,1], µA : R→ [0, 1] ) need to be defined for the
input and output variables. Attention should be paid to the definition of the membership functions,
overlapping them in order to obtain a regular control curve [12]. Three overlapping triangularly shaped
membership functions for both the input and output quantity. Triangularly shaped functions have been
chosen because they are easy to evaluate and are described by only three parameters. Regarding the
de-fuzzifier, several methods exist to compute a numeric value from a set of partially true conclusions.
The centre of gravity de-fuzzification method was selected because, according to what has been found
in the literature, it is currently the most used in concrete applications [13]. The combination of fuzzifier,
set of rules, inference mechanism, and de-fuzzifier results in a non-linear static map between the input
and output of the controller.

The FC is also useful because the inference engine can easily be linked to an adaptive system [14]
or a learning system such as the reinforcement learning process [15]. Here, the agent adjusts the
parameters of the fuzzy controller at a different level (membership functions, rules) in order to tune
the controller and find the optimal configuration of the control parameters. How this has been done in
this paper is explained in detail in the following sections.

1.2. Reinforcement Learning—Q-learning

Systematic research in what is today called the reinforcement learning (RL) field started in late
1979 [15]. The RL approach is based on the interaction between an agent and his environment (Figure 1).
The agent is something that can see the status or configuration (s ∈ S) of the environment and that can
perform actions (a ∈ A) to change it. Moreover, upon application of an action, the agent receives from
the environment an evaluative feedback signal. This signal is called reinforcement and can be a reward
or a punishment. All the actions that the agent applies have an impact on the environment, and the
agent learning process is influenced by the environment through the rewards.
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The objective of the whole learning process is to find the optimal policy π∗ : S→ A to perform
whatever task the agent is supposed to carry out. The optimal policy is defined as the one that
maximizes the cumulative reward (or the expected cumulative reward) given by the environment.
This is achieved by mapping states (configurations) to actions and modifying that mapping until the
optimum is encountered.

The RL technique used in this paper, where an agent learns a policy to maximize an objective
function, is based only on the current and next state of the system, st and st+1, respectively, without
using prior history. This approach is justified because the reward depends only on the current state and
current action. Normally RL problems are modelled in the framework of Markov decision processes
(MDP), that is stochastic processes where the probability of transition from one state to the next one
depends only on the actual state, although a deterministic formulation of the method can be given [16].

To implement a self-optimizing controller for the reference system, a particular RL algorithm
called Q-Learning, originally developed in Reference [17], was applied. This algorithm belongs to the
class of unsupervised, model-free RL methods. Here the agent does not have any prior knowledge or
model of the system characteristics from which it could estimate the next possible state. Essentially,
the agent does not know what the effects on the environment of a certain action are and chooses the
next action on the basis of the cumulative effect of the actions performed in the past.

All reinforced learning problems are solved by applying the dynamic programming paradigm
to the so-called value function, which is usually defined as a weighted sum of the rewards received
by the agent. Model-free methods need to find both the value function and the optimal policy from
observed data. Q-learning solves this problem by introducing an evaluation function Q : S×A→ R
representing the total cumulative reward obtainable if an action at is carried out in a certain state st

and then the optimal policy is followed afterwards. The value of this function indicates how good is to
perform action at in state st.

For practical application, it is reasonable to assume that the number of states describing the
environment and the number of actions that the agent can perform are both limited. Then, the
Q-learning algorithm calculates the Q(st, at) function iteratively, storing it in a lookup table Q (Figure 1).
During the learning phase, the agent updates the values of the Q matrix (initialised to zero) at each
step according to the well-known Equation (1):

Qt+1(st, at) = Qt(st, at) + α
(
rt + γ max

a
Qt(st+1, a) −Qt(st, at)

)
(1)

where α is the learning rate and γ is the discount factor and both take values in the [0,1] interval.
These two factors weight, respectively, the increment to the present Q-value (learning speed) and the
contribution from the future states (decay or discount). The value multiplied by factor α is also known
as the temporal difference error [15]. In this application, a one-step backup method was used. In this
method, the matrix Q is updated using the value observed only in the next state [17] and rt represents
the reward returned by the environment in the step analysed. Often, the reward is a value from a finite,
conventionally defined set such as {100, 0, −100}. In this investigation, we opted to directly link the
reward to the energetic performance of the control—essentially the objective function. Details on how
the reward is calculated will be given in Section 3.3.

One of the main RL challenges is finding the correct trade-off between the so-called exploration
and exploitation phases [15]. The trade-off arises because in order to choose the optimal action in every
state, the agent has first to discover what the cumulative effect of the actions is, which can be done only
by choosing an action with the purpose of exploring the environment, something that most of the time
is far from being optimal from the reward point of view.

One of the simplest local methods for the exploration applied in the literature is the ε-greedy
method [15]. Following this method, the next action at is selected following two alternative strategies
chose randomly. The selection is governed by the ε parameter, which can be set constant throughout or
decreasing during the learning process. The action is then chosen through a uniform random selection
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with probability ε and using the Q-learning method otherwise. This is described by Equation (2),
where z is a uniform random variable on the interval [0,1].

at =

 argmax
a

Qt(st, a) if z > ε

random selection if z ≤ ε
(2)

Normally, the algorithm is stopped when a sort of global convergence indicator reaches a threshold.
In the application described in this paper, instead, the learning algorithm goes from exploration to full
exploitation using an alternative local method. Unexpected difficulties have indeed been found with
the convergence speed of the ε-greedy implementation, which is particularly critical in this type of
application. This will be discussed in detail in Section 2.1.

1.3. Traditional Control of Solar Systems

In their dissertations, Kaltschmitt [18] and Kalogirou [19] show how to control two different kinds
of solar thermal systems, named Low-Flow and High-Flow, by simply switching on and off the solar
circulation pump depending on the differential temperature between the collectors and the thermal
storage. They also give some indication of the impact of the pump electrical consumption in relation to
the heat available at the outlet of the solar installation. Streicher in [20] analyses different schemes of
solar thermal systems with internal and external heat exchange and the effect of these characteristics
on the behaviour of the whole system.

Badescu [21] studied the optimal flow control for a solar domestic hot water (SDHW) system with
a closed loop flat plate collector system, using two levels of constant mass flows in the systems. For an
open loop, the same author [22] finds the optimal flow in order to maximize the exergy extraction from
a solar thermal system for DHW. Different strategies for flat-plate collector operation are reported in
Reference [23]. Here, the best strategy to optimize the efficiency of the collectors is applying a constant
inlet temperature control (to allow simple connection with other systems) when flow-rate control is not
possible (best at 7.8 L/hm2). For applications where a set point temperature is required as a collector
output, the control of the mass flow-rate (with a max of 7.8 L/hm2) gives the best performance in terms
of useful energy and collector efficiency.

As reported in Reference [22], different control studies were carried out in the past with the
optimization of different objective functions. Kovalik and Lesse [24] and Bejan and Schultz [25]
studied the optimization of the mass-flow rate for a solar system and for heating or cooling an object,
respectively, as well as Hollands and Brunger [26] who studied the flow optimization for a closed loop
system. Additional comments could be found in De Winter [27]. In a recent study, Park [28] briefly
analysed the behaviour of the numerical model of a solar thermal installation in Korea regulating the
mass flow in relation to the collector’s area when the state of the system was not observable.

A deep analysis of the effect of mass flow on the collectors of small and large SDHW systems is
reported in Furbo [29]. For small SDHW systems, the greatest performance is claimed at a flow rate
from 12 to 18 L/hm2 for combi-tank systems and 18 to 24 L/hm2 for preheating systems. Moreover,
analysis of the performance of these systems are reported when the mass flow control is based on the
temperature difference (∆T between the collector’s output and the bottom of the storage m’ = 1.5* ∆T
(L/hm2)) or on the global radiation on the collectors (G (W/m2), resulting in m’ = 0.6 × G0.5 (L/hm2)).
These two approaches show an increase in the thermal performance of the system, with respect to the
reference case, by 0.9% and 0.8%, respectively. For large scale plants (20–50 m2; 1–2.4 m3) two systems
were analysed: a low-flow system with a mantel tank and a system made of a spiral tank or storage
equipped with external exchanger. Also, this class of systems was analysed to understand the effect of
different control strategies.
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1.4. Applications of Fuzzy Control to Solar Thermal Systems

In their review of the control techniques concerning buildings integrated with thermal energy
storages, Yu et al. cite a work where fuzzy control is used in a peak-shaving controller [30]. Their
comments about the feasibility of such type of control for solar thermal systems are in line with those
of Camacho [31,32], where the usefulness of a fuzzy controller is ascribed to its ability to deal with
nonlinear or complex behaviours. Compared with other thermal systems, where the availability of
the energy source is under control of the plant operating agent, in solar plants, the availability of the
primary energy source cannot be manipulated, and it is stochastic in nature. The position of the sun, the
intensity of direct and diffuse solar radiation modified by cloud cover in addition to components like
storage, thermal machines, and heat exchangers that are traditionally part of solar thermal applications
heavily affect the dynamic behaviour of such systems. Salvador and Grieu [33] give an example of
how fuzzy logic can be used to model occupancy in an optimization problem regarding the impact of
thermal loads such systems and the power grid.

An exhaustive paper written by Kalogirou [34] presents the application of artificial intelligence
techniques to solar energy applications. Here, after an introduction of artificial intelligence techniques,
their application to solar systems are listed. Concerning fuzzy controllers, only a selection of the most
significant control strategies are reported here. The first one regards a fuzzy controller predicting
the internal air temperature used to manage the house heating system [35]. The others, due to
Lygouras [36,37], regard the application of fuzzy control and its comparison with a traditional PID
control to a solar cooling air conditioning system using two different approaches. An adaptive fuzzy
algorithm for a specific domestic hot water system (instantaneous boiler) was proposed by Haissing
and Wössner [38]. The motivations behind their approach are the same as this paper, although the
purposes are different: there, the optimization of a PID controller was performed, and here, the
energetic aspects of the application were considered.

1.5. Applications of Reinforced Learning to Energy Systems

Many applications of RL in the fields of combinatorial search and optimization process like
board games, industrial process control, manufacturing, robotics, and power systems appeared in
the literature over the past years. Focusing on energy systems, an application of RL to the automatic
generation control (AGC) of a power system is reported in References [39,40], where the performance of
an RL algorithm is compared with that of a properly designed linear controller. The paper underlines
the potential of the method related to the flexibility in specifying the control objective before the
learning phase. Other applications in this field are reported in the PhD thesis of Jasmin [41], focused
on the application of RL for solving the power scheduling problem.

Regarding the application of RL to thermal systems, Anderson [42] presents a comparison between
the different control strategies for a heating coil in a simulated domain. Here, the RL is combined with a
PI controller to reduce the error of the controlled variable over the time. The result of this combination
shows, after an opportune training phase, a reduction of the root mean square error compared with the
simple PI controller. Reinforced learning is also covered in the review by Yu et al. [30] cited above.

A couple of papers by Dalamagkidis and Kolokotsa [43,44] present an implementation of RL using
a temporal difference (TD) error method for optimising the thermal comfort control of commercial
buildings without requiring an environment model. In these works, the authors coupled the RL with
a recursive least squares method to increase the method convergence speed. In Reference [43], in
particular, the authors show the use of a reward composed of different parameters, properly weighted,
in order to minimise the energy consumption while maximising, at the same time, the comfort and
air quality. The state of the system is related to the internal and external temperature and the actions
are related to the operation of the heat pump, the compression chilling system or the automatically
opening windows function. One of the issues underlined from the authors is the lack of scientific
contributions related to the application of this methodology to internal comfort control; therefore, the
choice of the reinforcement learning parameters was made on the experience and test effectuated on
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the system. Moreover, the authors stress the importance of the reward mechanism in the learning
process and this topic will be addressed with future development. Finally, it is claimed that the
environmental inertia must be deeply analysed in order to understand the time response of the
environment and correctly compute its effect in the learning analysis. Concerning the energy efficiency
of next generation buildings, the papers of Yang et al. [45] and Kim and Lim [46] give details on
how the power consumption can be reduced utilising the Q-learning algorithm. Both papers provide
details on how the state space is constructed and employ a stochastic framework for the problem
formulation. Yang et al. [44] is very effective in describing the problem, the demo case, the theoretical
references, and the details of the implementations. Moreover, it deals with the curse of dimensionality
by coupling Q-learning with artificial neural networks. In Yang et al. [44], the benefits are a result
of the combination of reinforced learning and the solution for an optimization problem, while Kim
and Lim [45] solve the optimization problem implicitly using the Q-learning algorithm itself. Both
papers are relevant to this work, although here the scope is narrower: not the building but the solar
DHW system alone. Kazmi et al. [47] proposed a solution for this problem employing a set of tools
including a hybrid reinforcement learning process, seasonal auto-regressive integrated mobile average
(SARIMA) model, and a hybrid ant-colony optimization (hACO) algorithm. The paper contains useful
remarks about thermal energy storage modelling.

In a two-paper work, Liu and Henze [48,49] present the RL application to the optimal control of
building passive and active systems. In particular, a thermal passive system is controlled in order to
minimize the energy consumption of the heating and cooling system installed in a commercial test
structure. In this work, an interesting hybrid approach is presented based on two different phases: the
simulated learning phase and the implemented learning phase. This idea came from the knowledge
that the RL method for control gives near optimal results compared with the optimal control strategy
based on predictive control, but takes an unacceptably long time during the learning phase. Starting
from these premises, the hybrid approach was developed to combine the positive features of both the
model-based and the RL approach. In this way, in the first learning phase, the agent is trained using a
model of the system followed by a refined learning phase (or tuning phase) when the agent finalises
the learning phase in direct connection with the real system.

In a previous work, Henze [50] showed how to generate an increase in the peak savings and a
reduction of the costs for the same class of problems (related to the charging and discharging phases
control of a cool thermal storage system) using a model-free RL to optimize the control. Henze
points out that the RL controller does not reach the best performance of a model-based predictive
optimal control but shows a favourable comparison with conventional control strategies for cooling.
Furthermore, the RL approach allows, using past experience and actual exploration, to account for
the non-stationary features of the physical environment related to seasonal changes and natural
degradation. An example application of RL techniques can be found in Reference [51], where the
authors present a model-based RL algorithm to optimize the energy efficiency of hot water production
systems. The authors make use of an ensemble of deep neural networks to approximate the transition
function and get estimates of the current state uncertainty.

1.6. Joint Applications of FC and RL

Several applications where FC and some sort of learning or self-tuning procedures are applied
synergistically have been found. However, this synergy does not seem to be often exploited in energy
systems. A few non-exhaustive examples of the joint application of the two techniques are: the
optimization of the data traffic in a wireless network [52]; the tuning of a fuzzy navigation system
for small robots [53]; the robust control of robotic manipulators [54]; and the PI and PD controllers’
tuning [55,56]. All these papers refer to an adaptation of the Q-learning algorithm called Fuzzy
Q-learning [57,58]. Kofinas et al. [59] applied this algorithm also to manage energy flows in micro-grids.
Other applications where fuzzy logic is coupled to other self-learning approaches are: Reference [60],
where actor–critic learning, neural networks, and fuzzy inference mechanism are used to design an
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adaptive goal-regulation mechanism for future manufacturing systems; Reference [61], where RL and
the adaptive neural fuzzy inference system (ANFIS) are used to implement a non-arbitrage algorithmic
trading system; the inspiring work of Onieva et al. [62], where an on-line learning procedure is
implemented to adapt the number and shape of input linguistic terms and the position of the output
singletons of a vehicle cruise control system FC; and Reference [63], where an iterative procedure called
iterative learning tuning, based on minimization of a cost function, is used to tune the singletons output
membership functions of a monocycle controller. Integration of reinforced learning and fuzzy logic at
high level is found in the work of Haber et al. [64], where these techniques are used to demonstrate the
feasibility of what is called artificial cognitive control architecture. The paper describes the design
of the architecture and its implementation to an industrial micro-drilling process. The work is an
excellent example of how the tools and concept of theoretical computer science and cognitive sciences
can be applied to the control of complex industrial systems. Details about the design of the reinforced
learning component of the cognitive controller are found in the Reference [65].

In the field of energy systems for buildings, an interesting work by Yu and Dexter [66] appeared,
where the authors present the application of RL to tune a supervisory fuzzy controller for a low-energy
building. In this work, the authors showed an application of online learning scheme based on
pre-generated fuzzy rule-based. Here, the learning process is accelerated with the use of the Q(λ)
algorithm with a fuzzy state variable and eligibility traceback. The successful application of RL to the
supervisory control of buildings is strongly dependent on reducing the state space and action space of
the controller. As reported in other papers, the importance of off-line learning is underlined, included
in this case in the knowledge used to devise the fuzzy controller rules. The approach based solely on
the online learning takes an unacceptably long training time.

The above discussion suggests that despite its potentiality, the application of an FL control and
RL to thermal energy systems is lacking (Table 1). It seems, therefore, reasonable to investigate their
application to this type of system.

Table 1. Joint applications of fuzzy control (FC) and reinforced learning (RL).

Applications
Algorithms

W
ir

el
es

s
N

et
w

or
k

In
te

rn
al

C
om

fo
rt

/E
ne

rg
y

C
on

su
m

pt
io

n

M
an

uf
ac

tu
ri

ng
Sy

st
em

s

Fi
na

nc
ia

l

A
ut

on
om

ou
s

C
ar

dr
iv

in
g

U
nd

er
ac

tu
at

ed
U

ni
cy

cl
e

Sy
st

em

R
ob

ot
M

ov
em

en
t

PI
PD

C
on

tr
ol

le
r

M
ic

ro
-g

ri
ds

Q-Learning and FC [52] [66] [53,54] [55,56] [59]

Actor–critic learning
and neural network

fuzzy
[60]

RL and ANFIS [64] [61]

FC and online learning [62]

FC and iterative
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2. Methods and Performance Figures

The typical cycle time of digital controllers employed in solar thermal systems ranges from
about a few seconds to several minutes. This is quite large compared to other industrial fields (e.g.,
power electronics, robotics) where the cycle time can be more than three orders of magnitude smaller.
This is a consequence of the small value of the thermal diffusivity and long transport delays of such
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systems, which limits their bandwidth and makes them more difficult to control. Often, it takes
several seconds to see the effect of an action, such as the activation of a circulator, on the temperature
measurements. Of course, the slower the controller, the fewer data per the unit of time are available for
exploration, making the Q-learning algorithm slower to understand how the environment responds to
exogenous stimuli.

The size of the state-space representing the system, i.e., the size of the so-called Q matrix, has
obviously a great impact on the convergence time of the algorithm. In fact, the larger the state-space
and the number of possible actions, the longer it takes to explore. This is particularly true when the
state-space describing the system is multi-dimensional and continuous. Such state spaces need to
be discretized with caution (due to the curse of dimensionality) before applying any reinforcement
learning algorithm [67,68].

These are major challenges to the development of self-learning controllers for solar thermal
systems which are naturally described by continuous variables (temperature, pressure, flow) and face
daily and yearly seasonality. Obviously, a controller taking several years to find the optimal policy
does not sound so smart to the potential customer. In the test case, the state space S was obtained by
discretizing the Cartesian product of two continuous variables.

2.1. Q-Learning with Guided Exploration

The application of the standard ε-greedy Q-learning algorithm to the test case described in
Section 2.4 required modifications to overcome a problem during the explorative iterations.

Being that the number of explorative actions was relatively low and the number of trials quite
small in the present application, there was no guarantee that the pseudo-random generator would
distribute the various actions evenly across the action space within a reasonable time. This can lead to
runs where some points of the state–action matrix are not visited for long times. In order to overcome
this limitation, a guided exploration algorithm was implemented in place of the random ε-greedy
approach. The idea is to explore, at each step, the action whose outcome is less known until a sufficient
number of explorations has been performed. To implement this idea, a second matrix K was introduced.
K. has the same dimensions as Q (p rows and l columns) and contains the number of times each
state–action pair has been visited up to the current time-step. Given a certain state, the new action is
selected evaluating the minimum of the matrix K along the row corresponding to that state, until a
minimum number of trials per action (Ne,a) is performed. In this way, the exploration of each action
is ensured in a minimal number of trials. Moreover, if some states are visited more frequently than
others, they reach convergence before those visited less frequently. This means that after a state reaches
convergence, in that state the following actions are chosen purely based on the Q-value. In this paper,
this is called a local convergence criterion because the transition from the exploration to the exploitation
phase was evaluated for each state independently.

To understand how this was achieved in detail, the vector c is introduced. For every state s ∈ S,
cs is defined to be 1 when the sum of the numbers in the row of K referring to state s is greater than
Ne = Ne,al and 0 otherwise. This is concisely expressed by Equation (3).

ci = 1⇔
l∑

j=1
Ki, j ≥ Ne

ci = 0⇔
l∑

j=1
Ki, j < Ne

(3)

The action to be performed at time t is then selected by means of Equation (4) instead of
Equation (2).

at =


argmax

a
Qt(st, a) if cst = 1

argmin
a

Kt(st, a) if cst = 0
(4)
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In either case, matrix K is updated by incrementing the entry referring to the current state st and
the so selected action at, like in Equation (5),

Kt+1(st, at) = Kt(st, at) + 1 (5)

while matrix Q is update with Equation (1) as usual. From how the K matrix is updated, it follows that
cs is equal to one if and only if the state s has been fully explored, that is all the actions in state s have
been tried out at least an Ne,a number of times.

The vector c is used to define a convergence criterion for the RL algorithm. Considering that
0 <

∑p
i=1 ci < p always holds (with

∑p
i=1 ci = 0 at the beginning of the exploration phase and

∑p
i=1 ci = p

at the end), the exploration factor can be defined (Equation (6)).

ξ =

∑p
i=1 ci

p
(6)

This parameter indicates the percentage of the matrix explored, and consequently the progress of
the learning process toward its end.

The RL algorithm is also beneficial for tracking an evolution in the behaviour of the system (or
more generally the environment), e.g., due to ageing of components or to the time variance of its
boundary conditions. In these circumstances, the agent should be able to recognize the new distribution
of the optimal actions to do. However, making an analogy with the human learning process, this can
be as difficult as trying to correct a bad habit (or “wrong learning”). If an output pattern or a sequence
of events has been tried a lot of time, it brings with itself an experience (the data stored in the Q and
K matrices) that is difficult to discard when the optimal policy changes. Moreover, in the adapted
algorithm the exploration phase stops when a state is fully explored.

2.2. Partial Reset of Stored Information

To overcome these limitations, the Q and K matrices are periodically reset by partially discarding
the information therein stored. To clarify this point, it is understood that the information is totally
discarded when the two matrices are reset to zero. In this way, all the information that the system has
gained in the previous period is forgotten and the algorithm restarts from arbitrary initial conditions.
Totally discarding the accumulated knowledge is, however, not adequate for tracking slow changes of
the system parameters such as fouling. Thus, a “partial discard” is more useful. The information in the
two matrices is said to be partially discarded when the new matrices in the learning are computed as:{

Qt+1 = βQQt
Kt+1 =

⌊
βKNeO

⌋ (7)

The parameters βQ and βK (βQ = βK = β in the following) span between 0 and 1 and are understood
as a sort of “exploration degree” when a new explorative phase is started. O represents a matrix
the same size as Q. and K composed entirely by identity elements. When the RL agent updates
the matrices with Equation (7), a new exploration phase with a duration depending on the selected
parameter β is started.

2.3. Coupling between FC and RL

Two aspects motivate the coupling of the Q-learning algorithm with a fuzzy logic controller.
The first one is the easiness with which complex controls can be designed and modified using fuzzy
logic. The second one is their intrinsic ability to approximate and discretize functions [69]. Essentially,
the FC is designed as a function of a limited input quantity (solar irradiation) x to a limited output
quantity (circulator command) y. The input quantity is transformed into a linguistic variable by using
the linguistic values “low”, “medium”, and “high”. A similar transformation is used for the output
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quantity. The rule base embedded in the inference engine represents the identity and is not subject to
change. The RL is coupled to this FC by changing the definitions (in terms of membership functions)
of the input linguistic values, i.e., the actions made by the Q-learning agent are performed directly on
the FC fuzzifier (Figure 2).
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Two ways to perform the coupling were considered: changing the position of the peak of the
“high” linguistic value and changing the position of the “medium” linguistic value. Figure 3a,b clarifies
how the membership functions were modified by a change of the controlled parameters in the two
cases. Figure 4a,b shows the resulting input–output mappings under seven different values of the
control parameter.
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Figure 3. Deformations of the input membership function by changing the position of the maximum
value, generating the family of the high radiation peak fuzzy controllers, (H)-FC (a) and the position of
the medium value, generating the family of the medium radiation peak fuzzy controllers, (M)-FC (b).
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Figure 4. Output signal of the FC under two different types of membership function deformations.
(a) (H)-FC family; (b) (M)-FC family.

The action performed by the RL is the selection of the trans-characteristic to be in the next period.
In the first case, this is like changing the control gain used in the circulator control.

This arrangement allowed us to come up with a controller with a relatively small state-space
(693 states) and a behaviour not too far from those used in experimental practice (control proportional
to the solar irradiation).

2.4. System Description

As an application example of the methodology explained previously, a simple traditional solar
thermal system for domestic hot water (SDHW) was considered. A Trnsys model of such system
was developed to understand the effect of different control strategies. The design and components
sizing was made starting from the thermal storage because the numerical model of this component [70]
was validated using monitoring data from a SolarCombi+ installation [71] following the procedure
reported in Reference [72].

The thermal storage consists of a 1 m3 water container with two internal heat exchangers, one for
the solar primary loop and one for the domestic water loop, as shown in Figure 5. A stratifying storage
was employed to take advantage of the increased heat exchange between the stored water and the
DHW heat exchanger due to the stratification of the temperature inside the storage. It was assumed
that a mixture of water and propylene glycol (30% in volume) was present in the primary loop to avoid
freezing during winter seasons. A collectors area of 12 m2 was adopted using standard design rules
of thumbs of solar thermal systems for DHW [20]. The DHW request profile was computed using
DHWcalc [73,74] considering a multi-family house with a daily consumption of 50 L/gg per person
and three families composed of four persons each. An electrical backup system was considered to
fulfil the energy demand reaching the DHW set temperature of 40 ◦C when not enough solar energy
was harvested and stored in the tank. The configuration with two heat exchangers was used also to
avoid problems with bacteria from the Legionella genus [20].
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2.5. Performance Figures

Some figures of merit were used for the evaluation of the system’s thermal performance and the
variation of the behaviour using different control logics.

• Collectors’ efficiency “ηcoll”: the ratio of the energy collected in the reference period (T = {year,
month}) by the solar system over the energy that hits the collectors.

ηcoll =

∫
T

.
Qcolldt∫

T IGAcolldt
[−] (8)

• Gross solar yield “GSY”: represents the energy captured from the solar field per square meter of
collectors. Like the efficiency, this parameter shows how efficiently the collectors do their work.

GSY =

∫
T

.
Qcolldt

Acoll

[
kWh/m2

]
(9)

• Seasonal performance factor of the primary circuit “SPFcoll”: a seasonal index obtained by forming
the ratio of the thermal energy collected by the system over the electrical energy consumed by the
circulation pump of the solar circuit.

SPFcoll =

∫
T

.
Qcolldt∫

T Wpumpdt
[−] (10)

• Seasonal performance factor of system “SPFdhw”: the ratio of the thermal energy used to cover
the DHW demand over the total electrical energy employed for fulfilling this demand. The
total electrical demand is composed of the consumption of the auxiliary electrical heater and the
electrical energy consumed by the circulation pump of the solar circuit (Wdhw = Wpump + Wbackup).

SPFdhw =

∫
T

.
Qdhwdt∫

T Wdhwdt
[−] (11)

• The global radiation on the collectors’ plane “RG”: simply the integral of the global irradiance IG.

RG =

∫
T

IGdt
[
kWh/m2

]
(12)

• Lost heat for control purposes Qloss: a parameter quantifying the inconvenient situation where the
difference between the inlet and outlet temperature of the internal heat exchanger is negative,
which may happen during the initial phases of the system start-up or in the evenings.

Qloss =
1
2

∫
T

∣∣∣∣ .
Qcoll

∣∣∣∣− .
Qcolldt[kWh] (13)

3. Results Discussion

3.1. Base Cases

As mentioned in the introduction, solar DHW systems are traditionally controlled using the
temperature difference between the fluid in the collectors and in the thermal storage. More evolved
systems take into account a minimum radiation at which the system is switched on, and as reported
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in Ref. [29], the control signal of the pump can be a function of the radiation itself. Therefore, four
different control strategies were applied to this system in order to form a solid base of reference cases:

A. Control of the primary pump based on the temperature difference between the collectors and
the thermal storage (DT) using a hysteresis with fixed values (2–7 ◦C);

B. Control of the primary pump based on the global irradiance using a hysteresis with fixed values
(100–150 W/m2);

C. A combination of controls A and B. The A controller is qualified by the output of the hysteresis
of the B controller;

D. Control C where the primary pump modulates the mass flow as a function of the radiation
(linear modulation with the maximum at 600 W/m2).

In all the above cases, a further control on the maximum temperature allowed in the storage has
been implemented to avoid overheating and stagnation problems in the solar circuit during simulations.

Table 2 compares the yearly performance of the four control strategies using the performance
figures introduced above, while Figures 6 and 7 graph the monthly performance. The SPFcoll increases
from case B, to cases A, C, and D mainly for the use of a control strategy based on two parameters
(radiation and temperature) that allows a reduction of the thermal losses and the electrical consumption
of the pump. The best SPFcoll performance was achieved in case “D” where the control of temperature,
radiation, and the modulation of the pump (as a function of the radiation) were adopted. From the
system point of view, the best performance in terms of SPFDHW was achieved when the losses (reversed
energy flow) were minimized using the DT control and temperatures in the storage were maximized,
reducing the usage of electrical backup (case “C”). In this case, however, the number of times the
circulator was switched on and off was higher, as clearly shown by the monthly profiles reported in
Figure 7.

Table 2. Comparison between the four different control strategies—yearly data.

Case
ηcoll SPFcoll On/Off Pump GSY RG Wpump Ddhw SPFdhw Wbackup Qloss
(−) (−) (−) (kWh/m2) (kWh) (−) (kWh)

A 0.410 301 47,426 602

1467

24.3

7660

5.394 1396 95
B 0.398 159 371 583 44.6 4.962 1499 215
C 0.398 267 11,046 635 28.9 5.531 1356 56
D 0.413 319 7606 606 23.1 5.288 1425 52
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Figure 7. Monthly profile of the solar pump on/off cycles between the four different control strategies.

Increasing the hysteresis controlling the temperature difference in the cases A, C, and D (from
2–7 ◦C to 2–14 ◦C) allows decreasing the number of on/off cycles with a limited impact on the
performance. A slight increase of SPFcoll can be observed in case C and D and a slight decrease in case
A, all between 2.5% and 7.5%. The situation was opposite for SPFdhw, where a slight increase in case A
and a slight decrease in cases C and D was observed. The number of on/off cycles, however, remained
elevated, between 5200 and 7200 per year.

3.2. Fuzzy Logic Controller

The development of a fuzzy–based reinforcing learning algorithm was seen as a way to attain
good performance both in terms of SPF and in terms of on/off cycles. Reducing on/off cycles to a
minimum can have a great impact on the expected life of circulators, increasing it significantly.

The fuzzy controller was designed starting from the logic of case B where the independent quantity
was the solar irradiance and the control variable the circulator speed. As mentioned in Section 2.3, the
linguistic terms “low”, “medium”, and “high” were implemented with three triangular membership
functions centred at about 0, 600, and 1200 W/m2, respectively. The output membership functions
were defined in the same way, with three triangular membership functions, equally distributed on
the universe of discourse of the control parameter (between 0 and 1). The method used for the
defuzzification phase was the centre of area [11,66] and three rules were defined that related the three
membership functions on the input with three membership functions on the output (low radiation
with low speed, medium radiation with medium speed, and high radiation with high speed).

In order to assess the robustness of the controller and to provide a connection to the RL algorithm,
the FC controller was implemented with two different parametrizations of the input linguistic terms.
In the first one, denoted by letter H, the membership functions were parameterized by the “high”
radiation peak. In the second one, denoted by letter M, the parameterization was done by the “medium”
peak. The two families of membership functions are shown in Figure 4, while the resulting control
characteristics are shown in Figure 5. In the following tables, the yearly results of the H-FC are reported
in Table 3, while those of the M-FC are reported in Table 4.
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Table 3. Comparison of performance using different controllers of the (H)-FC family; yearly data.

Action No.
(H-FC) ηcoll SPFcoll

On/Off
Pump GSY RG Wpump Ddhw SPFdhw Wbackup Qloss

(W/m2) (−) (−) (−) (kWh/m2) (kWh) (−) (kWh)

a1 0 0.391 114 367 574

1467

61.1

7660

4.901 1502 547
a2 200 0.396 150 399 581 46.9 5.052 1470 458
a3 400 0.398 188 414 584 37.8 5.139 1453 387
a4 600 0.399 231 406 585 30.8 5.136 1461 326
a5 800 0.398 287 420 584 24.7 5.105 1476 271
a6 1000 0.397 352 428 583 20.1 5.005 1510 243
a7 1200 0.396 415 413 580 17.0 4.915 1542 212

Table 4. Comparison of performance using different controllers of the (M)-FC family; yearly data.

Action No.
(M-FC) ηcoll SPFcoll

On/Off
Pump GSY RG Wpump Ddhw SPFdhw Wbackup Qloss

(W/m2) (−) (−) (−) (kWh/m2) (kWh) (−) (kWh)

a1 0 0.395 215 377 580

1467

32.7

7660

5.051 1484 493
a2 200 0.397 264 414 583 26.8 5.128 1467 366
a3 400 0.398 336 423 584 21.1 5.068 1491 258
a4 600 0.395 422 419 580 16.7 4.894 1549 194
a5 800 0.391 529 436 573 13.2 4.654 1633 150
a6 1000 0.385 633 423 565 10.8 4.395 1732 122
a7 1200 0.380 691 415 558 9.8 4.211 1809 104

A higher level of SPFcoll can be reached with the “medium” radiation setup, although this is
attained decreasing the electrical consumption of the pump at the expanses of the captured solar
energy (GSY). The “high” radiation setup, instead, achieved the maximum values in terms of SPFdhw.
Monthly data of SPFcoll for the H-FC case were also reported in Figure 8 with different lines for seven
different values of the parameter defining the family, from 0 to 1200 W/m2. To ease comparison with
the previous four control strategies shown in Figure 4, its bars were re-plotted in the background of this
figure. Looking at this graph, the big difference notable is between case D and the FC with the action
a7 (high radiation imposed at 1200 W/m2) that allows to reach the best performance in terms of SPFcoll.
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Figure 8. Monthly profile of the SPFcoll using a different level of the maximum radiation in the definition
of the input membership function compared with the four basic control strategies.
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3.3. Reinforced Learning Controller

The RL was applied to both cases of FC introduced above by means of the modified Q-learning
algorithm described in Section 2.1. The RL and FC parts were connected, as described in Section 2.3,
because the learning agent (controller) can choose which membership function to employ in the
FC. This resulted in the selection of one out of seven characteristic functions (shown in Figure 5 left
or right) to be used in the real-time control for the entire period ∆t between two iterations of the
Q-learning algorithm.

The definition of the state-space variables for the application of RL techniques was performed,
trying to minimize the number of states, and therefore, the number of variables involved. Two
parameters were identified as essential to describe the system dynamics: the solar radiation at the
collectors and the temperature of the storage. Since no reference was found in literature covering the
discretization of the state-space in such an application, the following arbitrary choices were made:

• The average temperature of the storage was modelled with nine intervals of 10 ◦C each from 0 to
90 ◦C;

• The radiation on the collectors’ plane was modelled with 11 intervals of 100 W/m2 each from 0 to
1100 W/m2.

The Cartesian product of these two grids represents the Q-learning algorithm state-space. The
elements of such space were ordered and rearranged as a vector to be addressed linearly. This vector
had a total of p = |S| = 99 components. The size of the action space was l = |A| = 7, as there were
seven curves in each FC family to be selected from. The period of the Q-learning iteration ∆t was set to
5 min down from the initial 15 min which were initially considered in order to reduce the algorithm
convergence time. The parameters affecting the implemented Q-learning algorithm are summarized in
the following Table 5.

Table 5. Parameters of the Q-learning algorithm used to produce the data (where not otherwise
indicated).

Parameter Unit Value

p = |S| - 99
l = |A| - 7

Ne,a - 10
α - 0.5
γ - 0.5

Iterative cycle - ∆t min 5
w1 - 1
w2 - 370

The objective of this work was to compare the performance of the coupled RL and FC controller
with the reference cases. In particular, the SPFcoll indicator was considered because it is directly
influenced by the variables selected to construct the Q-learning state space. The SPFdhw is somewhat
more relevant from the economic point of view but it is influenced by a variable (the DHW draws)
which is not in the selected state-space, and therefore, the algorithm cannot learn anything about it.

The reward function was defined assuming that rewards proportional to the current value of
the quantity to maximise (SPFcoll) results in the actual maximization of that quantity. A preliminary
analysis used a reward equal to SPFcoll measured on the ∆t interval, but simulations showed that the
learning was not effective, and the best performance of the reference cases could not be achieved. The
following additive form of the SPFcoll has proven to give better results than using directly its fractional
form (10):

r =
w1

∫
∆t

.
Qcolldt−w2

∫
∆t Wpumpdt∫

∆t IGAcolldt
[−] (14)
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3.4. Coupled RL and FC Simulations Outcomes

The results of two simulations of the coupled control algorithm spanning 5 years are shown in
Table 6. The first five rows refer to the H parametrization, while the successive five rows refer to the
M parametrization. In either case, after the second year, the SPFcoll value gets close to the maximum
attained by the reference cases (Tables 2 and 3). Figure 9 shows a clear difference between the first
and the second year of the monthly profile of the performance indicator for the five years of learning
(reported also in the first five rows of Table 6), while in the following years, the values are close to each
other. Most of the learning phase happens during the first seven months of the first year.

Table 6. Q-learning applied to the H- and M-FCs.

Case Year
ηcoll SPFcoll

On/Off
Pump GSY RG Wpump Ddhw SPFdhw Wbackup Qloss

(−) (−) (−) (kWh/m2) (kWh) (−) (kWh)

H-FC

1st 0.397 370 446 582

1467

19.1

7660

4.969 1523 225
2nd 0.396 409 425 581 17.3 4.936 1535 217
3rd 0.396 408 422 581 17.3 4.930 1537 216
4th 0.396 410 420 581 17.2 4.928 1537 216
5th 0.396 411 422 581 17.2 4.924 1539 215

M-FC

1st 0.385 611 437 565

1467

11.2

7660

4.377 1739 114
2nd 0.382 680 414 561 10.0 4.285 1778 104
3rd 0.382 685 409 560 9.9 4.266 1786 102
4th 0.382 682 415 560 10.0 4.263 1787 104
5th 0.382 687 416 560 9.9 4.278 1781 102
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Figure 9. Monthly profile of the SPFcoll with Q-learning coupled to the H-FC, comparing the monthly
performance of the different year during the learning phase.

This was confirmed by the exploration factor (ξ) reported in Figure 10. It becomes apparent
why the performance profile did not change significantly after the first year: the maximum of the
exploration factor was reached within this time (in fact the first five months), meaning that what the
Q-learning had to learn about the system, it had learnt it within this time. Minor increments in the
following seven months were due to states visited rarely during the normal operation of the system.
The reader may wonder why the exploration factor did not reach 100% after enough time. This was
unavoidable and happens because some states (for example, a temperature of the storage less than
10 ◦C with a level of radiation higher that 900 W/m2) were not reachable, and therefore, never explored.



Appl. Syst. Innov. 2019, 2, 15 19 of 25

Appl. Syst. Innov. 2019, 2, 15 18 of 25 

 

Figure 9. Monthly profile of the SPFcoll with Q-learning coupled to the H-FC, comparing the monthly 

performance of the different year during the learning phase. 

This was confirmed by the exploration factor (𝜉) reported in Figure 10. It becomes apparent why 

the performance profile did not change significantly after the first year: the maximum of the 

exploration factor was reached within this time (in fact the first five months), meaning that what the 

Q-learning had to learn about the system, it had learnt it within this time. Minor increments in the 

following seven months were due to states visited rarely during the normal operation of the system. 

The reader may wonder why the exploration factor did not reach 100% after enough time. This was 

unavoidable and happens because some states (for example, a temperature of the storage less than 

10 °C with a level of radiation higher that 900 W/m2) were not reachable, and therefore, never 

explored. 

 

Figure 10. Exploration factor (ξ) as a function of time. 

Different simulation runs were performed increasing the Q-learning cycle time ∆𝑡, the minimum 

number of events 𝑁𝑒,𝑎 , and the total number of states 𝑝  (by discretizing more). In all cases, the 

duration of the explorative phase increases, and therefore, so does the time required to reach 

convergence, while the final performance of the controller does not change substantially. 

For the H-FC case, further simulation runs were performed varying the learning factor 𝛼 and 

the discount factor 𝛾. Figures 11 and 12 show the deviations in the monthly performance and the 

exploration factor, respectively, by varying 𝛼, while Figures 13 and 14 show the deviation when 𝛾 

was varied. Evidently, these parameters affect only modestly the performance and exploration 

factors. 

0

50

100

150

200

250

300

350

400

450

500

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

SP
Fc

o
ll 

[-
]

1st_year 2nd_year 3rd_year 4th_year 5th_year

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

7
3

0

1
4

6
0

2
1

9
0

2
9

2
0

3
6

5
0

4
3

8
0

5
1

1
0

5
8

4
0

6
5

7
0

7
3

0
0

8
0

3
0

8
7

6
0

%
 M

at
ri

x 
C

o
n

ve
rg

e
n

ce
 

Time [hr]

Figure 10. Exploration factor (ξ) as a function of time.

Different simulation runs were performed increasing the Q-learning cycle time ∆t, the minimum
number of events Ne,a, and the total number of states p (by discretizing more). In all cases, the duration
of the explorative phase increases, and therefore, so does the time required to reach convergence, while
the final performance of the controller does not change substantially.

For the H-FC case, further simulation runs were performed varying the learning factor α and
the discount factor γ. Figures 11 and 12 show the deviations in the monthly performance and the
exploration factor, respectively, by varying α, while Figures 13 and 14 show the deviation when γ was
varied. Evidently, these parameters affect only modestly the performance and exploration factors.
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Figure 11. Monthly profile of SPFcoll with Q-learning and different learning factors (α =

0.1, 0.25, 0.5, 0.75, 0.9).
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Figure 12. Convergence of the learning method using different learning factors (α =

0.1, 0.25, 0.5, 0.75, 0.9).
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Figure 13. Monthly profile of the SPFcoll with Q-learning and different parameters gamma.
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Figure 14. Convergence of learning method with different parameters gamma.

Other tests have been done by varying physical parameters of the solar system, i.e., the efficiency
of the collectors and the electrical consumption of the pump, within 75% and 125% of their original
value resulting in changes too small to change the optimal control policy.

In the rest of this section, the partial reset of the stored information, an essential feature to handle
slowly time-variant systems, is discussed. To illustrate the behaviour of the Q-learning algorithm, an
artificial use case was constructed. A baseline was created by letting the Q-learning controller explore
and exploit the system for 5 years. After this period, a sudden and structural change of the system
was simulated by reversing the definition of the agent actions. This modified system was simulated
for another period of 5 years. Reversing the order of the actions implies that if action a1 corresponds
to making use of the membership function associated with the minimum value of the parameter in
the baseline, later it corresponds to using the one associated to the maximum. This rather academic
example with no physical meaning was extremely useful to test the behaviour of the system. That is
because what to expect was known a priori and the outcome was clearly visible in the values stored in
the Q matrix. In the absence of a full reset after the system change, the Q-learning algorithm is rather
slow in forgetting the knowledge acquired in the first phase and adapts to the altered system. If a full
reset is applied, the re-learning time is substantially the same as in the first phase.

In the last less academic use case, the controller was partially reset after five years of learning
using different values of the β parameter without changes in the system. The results are shown in
Figure 15, where the relative errors of SPFcoll (with respect to the convergence values after five years)
for four different values of β are plotted, and in Figure 16, where the exploration factor can be seen.
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Figure 15. Monthly SPFcoll relative errors (convergence values after five years) comparing the first
learning and the second learning phase with different β values (0.2, 0.5, 0.8).
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Figure 16. Convergence of the learning method comparing the first learning and re-learning with
different β values (0.2, 0.5, 0.8).

As expected, the more knowledge was retained the faster the algorithm converged. However,
the convergence speed with β = 0.8 may seem relatively slow. This is an effect of yearly seasonality.
Although the number of explorations per state before reaching convergence was only 2, the exploration
was limited because some states were not reachable during that period of the year. This was proven by
the fact that the exploration factor tends to form steps where ξ stays constant when all the reachable
states have already been fully explored.

4. Conclusions and Future Developments

The results of the controller proposed in this work provide a further confirmation of the benefits
of applying a reinforced learning approach to the control of a SDHW system. The main contribution of
this paper being that, to the authors’ knowledge, no other study has assessed the performance of a
coupled Q-learning-fuzzy control controller on a simple system such as a SDHW. The fact that the
underlying system is simple (deterministic) and well known (compared to those investigated in the
many works cited in the introductory section generally describing methods to optimize the overall
consumptions of a building) has the merit of making immediately clear which component brings what
benefit. Moreover, no other study, to the authors’ knowledge, compares the results of such a controller
against a simple fuzzy controller alone, and four other simpler control mechanisms (A, B, C and D).
The results were not obvious. For example, disregarding certain metrics (circulators on/off cycles),
it may turn out that a hysteretic thermostatic control (A), using which there would be no need of
installing any micro-processor in a real-life application, is close to providing best system performances.
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Regarding the benefits of the proposed controller, experimental results show that it can provide
good performance while keeping the number of on/off cycles of the primary circulator low. Looking at
this metric, the controller performs only 14% worse than the best reference controller (B), while, at
the same time, performing 2.6 time better in terms of SPFcoll. The work shows that the reinforced
learning controller can find the best fuzzy controller among those described by a parameter. Looking
at the SPFcoll indicator, the new controller shows significantly better performance compared to the
best reference cases (between 15% and 115%), while keeping low the number of on/off cycles of the
primary pump (1.2 per day down from 30 per day). Regarding the SPFdhw metric, the performance of
the self-learning controller was about 11% percent worse than the best reference controller (C). This
happened since (a) optimizing the overall performance factor required deciding when to sacrifice
solar energy to avoid an unneeded temperature rise, which in turn, required a guess as to when the
water would be used in the future; and (b) the creation of a predictor for the DHW load requests
was purposely left outside the scope of this work. From this it can be concluded that if the proposed
controller is not extended to include a prediction of the load demand, users can be better off relying
on a much simpler control strategy. Determining whether this is a fact concerning only the proposed
controller or a general fact concerning any so-called smart or advanced SDHW controllers, would
require a formal proof or a much broader body of evidence to be gained with further investigations.
The literature review indicates that this does not seem to be the case when the energy consumption of
an entire building is considered. The last point made by this work is that that the convergence speed
of the proposed controller can be increased initialising the algorithm’s internal state with a suitable
pre-defined pattern. This is a fundamental property for real-world applications.

Looking for ways to improve the performance of the proposed controller, the most promising
option seems to be including a model of the DHW load, which necessarily requires moving from a
deterministic approach to a stochastic approach in the problem formulation. Alternative formulations
of the reward function, including an extended state, would be required in this case. Another interesting
point to be investigated, which seems to be not covered in the literature, is the relation between the γ
parameter, the Q-learning cycle time ∆t, and the characteristic time constant of the controlled system.
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