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Abstract: Robotic systems equipped with a task-multiplexer unit are considered as a class of unknown
non-linear discrete-time systems, where the input is a command voltage of the driver unit and the
output is the feedback signal obtained by the multiplexer unit. With only the input and output data
available, an equivalent identification is formulated by a multi-input fuzzy rule emulated network.
An online-learning algorithm is proposed to tune all adjustable parameters by using convergence
analysis. Using the equivalent model, a controller is developed when the convergence of the tracking
error and internal signals can be guaranteed. An experimental system validates the performance of
the proposed scheme. Furthermore, the comparative results are also included, to demonstrate the
advantage of the proposed controller.

Keywords: robotic systems; discrete-time adaptive control; fuzzy neural networks; data-driven
identification

1. Introduction

Many commercial robotic systems are managed by closed architectures. To expand the
performance of closed-architecture robots, macro-mini approaches have been utilized, such as
in [1,2]. The macro-robot is manipulated by the original closed architecture and a built-in controller.
On the other hand, the mini-robot is handled by the open architecture and an advanced controller.
Improvement of their performance is clearly significant, but the problem of dynamic decoupling
effect has occurred [3]. The complexity of robotic systems has been continuously rising, and more
advanced controllers are required, alongside the the engineering aspect [4,5]. Furthermore, the
robotic architecture itself is currently growing into more complicated systems, where the mathematic
models are hardly determined; especially when the systems are considered as a class of discrete-time
plants [6,7].

Without any use of mathematical models for controlled plants, model-free adaptive controllers
(MFAC) have been developed when the robots are considered as a class of unknown discrete-time
systems [8–10]. By using only the input/output data, the design of MFAC based on the data-driven
concept was established by linearization models that require the existence of a pseudo-partial derivative
and a non-zero change of control effort [11,12]. Without this constraint, the control scheme for the
unknown mathematical model of robotic systems for the discrete-time domain has been proposed
in [13,14], by using direct IF-THEN rules and adaptive networks, but closed-loop analysis has been
limited only the convergence of the tracking error. The convergence of internal signals, such as weight
parameters, has been investigated for controllers designed by artificial neural networks (ANN) [15,16]
or fuzzy neural networks (FNN) [17,18].

However, robotic systems with direct-drive schemes, such as variable-frequency drive (VFD),
actually have high-order non-linear systems [19,20]. The difficulty of acquiring analytic solutions
for high-order systems has become an interesting issue. MFAC approaches in [10–12] have not
determined the controlled plants as naturally high-order systems. Black-stepping controllers have
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been effectively utilized for solving high-order problems [21,22]. Stability analysis has been conducted
for both global and local states at each design-step. By decomposing the original system into several
subsystems, all state variables are usually required for designing the visual control laws of the inner
steps. Nevertheless, the full-state information is very difficult to obtain from robotic systems.

In this work, a controller for an open-architecture robotic system with a task-multiplexer unit is
developed. The robotic arm ABB model IRB-1400 is driven by six VFD units, operated by a digital
computer. This robotic system is considered as a class of unknown discrete-time systems when the
output is directly obtained by the task-multiplexer and the input is the command voltage for VFD units.
By using only the input/output data, the equivalent model is established by the first Multi-input Fuzzy
Rules Emulated Network (MiFREN). Next, the second MiFREN is utilized as an adaptive controller,
where the online-learning algorithm is developed by the information obtained by the equivalent model.
A closed-loop analysis is conducted to guarantee the convergence of the tracking error and internal
signals. The main contributions of this work can be listed as the following:

• Unlike the robotic control systems in [6,7,23], the proposed control scheme can be applied when
the mathematical model of the robotic system is completely unknown.

• The design of the controller requires only the relation between the input and output of robotic
systems within the format of IF-THEN rules, according to basic human knowledge. Unlike the
model-free approaches in [10,24], the covariance matrix and the qualitative dynamic system are
not required in this work.

• The resetting algorithm, which is generally required by MFAC schemes such as in [9,12],
is completely neglected in this work. Therefore, the continuity of the adjustable parameter
is clearly improved.

The remainder of this paper is organized as follows. The open-architecture robot is considered as
a class of unknown discrete-time systems in Section 2. Section 3 establishes the equivalent model for
the robotic system with the task-multiplexer. The controller is designed in Section 4 with closed-loop
analysis. The experimental system and comparison results are presented in Section 5. Section 6
provides the conclusions.

2. Problem Formulation

The robotic system equipped with VFD and a task-multiplexer in Figure 1 is considered as a class
of unknown non-linear discrete-time systems, formulated by

qi(k + 1) = fi(wi(k), ui(k)), (1)

where qi denotes the ith output of the robotic arm and i = 1, 2, · · · , n. The control signal is given by ui
and the argument vector wi is defined by wik = [qi(k), qi(k− 1), · · · , qi(k− ni), ui(k− 1), · · · , ui(k−
mi − 1)], where ni and mi are unknown system orders and fi is the unknown function. The control
effort ui(k) is bounded by the actuator limit as |ui(k)| ≤ uMi ≤ uM. By dropping the subscript i, the
relation in (1) can be simplified to the vector form

q(k + 1) = f (w(k), u(k)), (2)

when the unknown discrete-time function in (2) satisfies the following assumption.

Assumption 1. The derivative of the unknown function f (−) in (2), with respect to u(k), exists as

∂q(k + 1)
∂u(k)

=
∂ f (w(k), u(k))

∂u(k)
= fu(k), (3)

when 0 < | fu(k)| ≤ f̄u.



Appl. Syst. Innov. 2019, 2, 12 3 of 16

VFD 

drivers

IRB-1400

Task: Signals and 

conditioning

Multiplexer

Unknown discrete-time system :  q(k+1)=f(w(k),u(k))

Control effort : u(k) Output feedback : q(k+1)
Controller

Task selection signal

Figure 1. Discrete-time robotic control system block diagram. VFD, variable-frequency drive.

In the next section, the adaptive network MiFREN will be implemented to identify the unknown
function f (−) in (2) using the concept of affine systems.

3. Identification of an Equivalent Model

The affine equivalent model of the controlled plant in (2) is defined by

q(k + 1) = fa(wk) + fb(wk)u(k), (4)

where fa(wk) and fb(wk) are unknown functions. According to fu(k) in (3) and the model in (4),
we have

fu(k) =
∂q(k + 1)

∂u(k)
= fb(wk). (5)

The two functions fa(wk) and fb(wk) in (4) are identified by the adaptive network MiFREN,
as illustrated in Figure 2. The estimated output of q̂(k + 1) is obtained as

q̂(k + 1) = f̂a(k) + f̂b(k)u(k), (6)

where f̂a(k) and f̂b(k) are the estimated functions of fa(wk) and fb(wk), respectively. By using the
general relation of MiFREN, the functions f̂a(k) and f̂b(k) are utilized as

f̂a(k) = βT
a (k)ϑ(k), (7)

and
f̂b(k) = βT

b (k)ϑ(k), (8)

where βa(k) and βb(k) are weight parameter vectors, and ϑ(k) is the membership vector, as depicted
in Figure 2. The network architecture in Figure 2 is designed by a set of IF-THEN rules, such as:

IF q(k) is positive and q(k + 1) is positive THEN f̂a(k) should be positive and f̂b(k) should be positive.

In this case, two inputs q(k) and q(k + 1) have three linguistic variables, as the following
membership functions: Positive (p), Zero (z), and Negative (n). The design of membership functions
will be demonstrated by the experimental system in Section 5.

Next, the online learning scheme for adjustable parameters βa(k) and βb(k) is established with
the convergence analysis by the following Theorem.
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Figure 2. MiFREN identification model.

Lemma 1. For the equivalent model given by (6)–(8) with the idea weight parameters β∗a and β∗b , the
convergence of the internal signals β̃a(k) = β∗a − βa(k) and β̃b(k) = β∗b − βb(k), and the approximation error
ê(k + 1) = q(k + 1)− q̂(k + 1) can be guaranteed by the tuning laws given by

βa(k + 1) = βa(k) + ηh(k)ê(k + 1)ϑ(k), (9)

and
βb(k + 1) = βb(k) + ηh(k)ê(k + 1)u(k)ϑ(k), (10)

where the learning rate ηh(k) is determined by

ηh(k) =
γh

||ϑt(k)||2
, (11)

with 0 < γh < 1.

Proof. By combining the tuning laws (9) and (10), we get

βt(k + 1) = βt(k) + ηh(k)ê(k + 1)ϑt(k), (12)

where βt(k) = [βa(k) βb(k)]T and ϑt(k) = [ϑ(k) ϑ(k)u(k)]T . There exists an idea weight parameter
β∗t = [β∗a β∗b ]

T for MiFREN such that

q(k + 1) = β∗Tt ϑt(k) + εh(k), (13)

where εh(k) is the residue error and |εh(k)| ≤ εH where εH a positive constant. The approximation
error dynamic ê(k + 1) can be expressed as

ê(k + 1) = q(k + 1)− q̂(k + 1),
= [β∗t − βt(k)]Tϑt(k) + εh(k),
= β̃T

t (k)ϑt(k) + εh(k),
(14)

where β̃t(k) = β∗t − βt(k). Subtraction of β∗t from both sides of the tuning law (12) leads to
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β̃t(k + 1) = β̃t(k)− ηh(k)ϑt(k)ê(k + 1). (15)

Substitution of (14) into (15) gives

β̃t(k + 1) = β̃t(k)− ηh(k)ϑt(k)[β̃T
t (k)ϑt(k) + εh(k)],

= [I − ηh(k)ϑt(k)ϑT
t (k)]β̃t(k)− ηh(k)εh(k)ϑt(k),

≤ [1− ηh(k)||ϑt(k)||2]β̃t(k) + ηh(k)εHϑt(k).
(16)

The second term of the right-hand side of (16) is always bounded. Thus, the convergence of the
sequence β̃t(k) requires

− 1 < 1− ηh(k)||ϑt(k)||2 < 1. (17)

By using the learning rate ηh(k) from (11), the condition (17) always holds. The convergence proof
of internal signals is completed.

Next, the convergence proof of ê(k) is conducted. Let’s define the change of ê(k) as

∆ê(k) = ê(k + 1)− ê(k). (18)

The change in (18) can be approximated by

∆ê(k) ≈
[∂ê(k + 1)

∂βt(k)

]T
∆βt(k). (19)

According to (12), we have
∂ê(k + 1)

∂βt(k)
= ηh(k)ϑt(k), (20)

and
∆βt(k) = ηh(k)ϑt(k))ê(k + 1). (21)

Substitution of (20) and (21) into (19) leads to

∆ê(k) .
= η2

h(k)||ϑt(k)||2 ê(k + 1). (22)

By setting (18) equal to (22), we have

ê(k + 1)− ê(k) = η2
h(k)||ϑt(k)||2 ê(k + 1), (23)

and
ê(k + 1) =

1
1− η2

h(k)||ϑt(k)||2
ê(k). (24)

The convergence of the sequence ê(k) in (24) can be guaranteed when

− 1 <
1

1− η2
h(k)||ϑt(k)||2

< 1. (25)

By using the learning rate in (11), the condition in (25) always holds. The convergence proof of
the approximation error is completed.

Utilizing the equivalent model given by (6)–(8), the controller will be established by another
MiFREN in the next section.
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4. MiFREN Adaptive Control and Closed-Loop Analysis

4.1. MiFREN Adaptive Controller

Another MiFREN is established for the design of the controller. The purpose of the controller is to
generate the control effort u(k) that forces the system to follow the desired trajectory r(k + 1). For the
class of discrete-time systems given by (1) and (2), some essential assumptions are stated, as follows:

Assumption 2. There exists an idea control effort u∗(k) for the controlled plant (1) and (2), such that
r(k + 1) = f (w(k), u∗(k)) and and r(k + 1) are known in advance.

Assumption 3. There exists an idea weight parameter β∗ ∈ RF for MiFREN, where F denotes the number of
IF-THEN rules for the network structure, such that

u∗(k) = β∗T ϕ(k) + εu(k), (26)

where ϕT(k) ∈ RF is the regressive vector from the rule interface of MiFREN and εu(k) is the residue error,
where |εu(k)| ≤ εM.

Remark 1. Assumption 2 is very general for the design of adaptive controllers, and Assumption 3 is the
universal function approximation of MiFREN [18].

For the negative feedback of the output q(k), the tracking error e(k) is defined by

e(k) = r(k)− q(k). (27)

The practical control effort u(k) is utilized by MiFREN as

u(k) = βT(k)ϕ(k), (28)

where β(k) ∈ RF denotes the weight parameters and ϕ(k) is a regressive vector for the IF-THEN rules
of the tracking error and the desired trajectory. In general, the vector ϕ(k) can be expressed as

ϕ(k) = [µe1(ek)µr1(rk+1), · · · , µei(ek)µri(rk+1), · · · , µeF(ek)µrF(rk+1)]
T , (29)

where µei(−) and µri(−) are the membership functions of e and r for the ith rule, respectively.
The IF-THEN rules are established by the relation between the tracking error and the desired

trajectory, such that:

IF e(k) is Positive Large AND r(k + 1) is Positive Large THEN u(k) should be Positive Large.

Each of the inputs e(k) and r(k + 1) have five membership functions: Positive Large (PL), Positive
Small (PS), Almost Zero (AZ), Negative Small (NS), and Negative Large (NL). This leads to 25 IF-THEN
rules. Figure 3 represents the network architecture of MiFREN for the controller design.
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Figure 3. Multi-input Fuzzy Rule Emulated Network (MiFREN) Controller with an IF-THEN rule.

4.2. Adaptive Algorithm and Closed Loop Analysis

An adaptive algorithm will be established to tune the adjustable parameters β(k) under the
consideration of closed-loop performance and stability analysis. By using the dead-zone function,
the adaptive algorithm is proposed as

β(k + 1) = β(k) +
η(k)

γ̄u||ϕ(k)||2
ek+1 ϕ(k), (30)

where η(k) is the time-varying learning rate and γ̄u is a constant, which will be discussed below.
The learning rate plays an importance role of the controller performance. The following theorem

manifests the selection of the learning rate, regarding the closed loop analysis.

Theorem 1. For the control law (28) with the adaptive algorithm (30) applyied to the discrete-time systems (1)
and (2), the convergence of tracking error and internal signals can be guaranteed when the learning rate is
given as

η(k) =
γ̄u

f̂b(k) + εo
<

γ̄u

εo
, (31)

where
0 < γ̄u ≤ εo, (32)

and
0 < f̄u ≤ γ̄u. (33)

Remark 2. Practically, γ̄u is unknown and, thus, it can be approximated by γ̄u = Cu max{ f̂b(k)},
where 1 ≤ Cu.
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Proof. The proof is conducted with two parts. The first part is to prove the convergence of the internal
signals β̃T(k) when β̃(k) = β∗ − β(k). Subtraction of β∗ from both sides of (30) leads to

β̃(k + 1) = β̃(k)− η(k)
γ̄u||ϕ(k)||2

ek+1 ϕ(k). (34)

By using (27) with (26) and (28), the error dynamic can be rearranged as

e(k + 1) = r(k + 1) + q(k + 1),

= f (w(k), u∗(k))− f (w(k), u(k)), (35)

=
∂ f (w(k), ν)

∂ν

∣∣∣
ν=uc(k)

[
u∗(k)− u(k)

]
,

= γuc(k)β̃T(k)ϕ(k) + γuc(k)εu(k), (36)

where

γuc(k) =
∂ f (w(k), ν)

∂ν

∣∣∣
ν=uc(k)

, (37)

with uc(k) ∈ [min(u∗k , uk), max(u∗k , uk)]. Substitution of (35) into (34) gives

β̃(k + 1) =
[

I − η(k)
γuc(k)

γ̄u

]
β̃(k)− εB(k), (38)

where

εB(k) =
η(k)γuc(k

γ̄u||ϕ(k)||2
εu(k)ϕ(k). (39)

According to (31) and as |εu(k)| ≤ εM, we have that εB(k) in (39) is clearly bounded. Thus,
the convergence of (38) can be guaranteed when∣∣∣1− η(k)

γuc(k)
γ̄u

∣∣∣ < 1. (40)

By using the learning rate in (31), it’s clear that the condition in (40) always holds. The convergence
proof of the internal signals β(k) is completed.

The second part is to prove the convergence of the tracking error e(k). By using the chain rule,
we have

∂e(k+1)
∂β(k) = ∂e(k+1)

∂q(k+1)
∂q(k+1)

∂u(k)
∂u(k)
∂β(k) ,

= − fu(k)ϕ(k),
(41)

where

fu(k) =
∂q(k + 1)

∂u(k)
=

∂ f (w(k), u(k)))
∂u(k)

. (42)

With the equivalent model (7), it is clear that

fu(k) =
∂q̂(k + 1)

∂u(k)
= f̂b(k). (43)

By using (41), the change of tracking error ∆e(k) can be approximated by

∆e(k) = e(k + 1)− e(k),

≈
[

∂e(k+1)
∂β(k)

]T
∆β(k),

= − f̂b(k)ϕT(k)∆β(k).

(44)
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Referring to the adaptive algorithm in (30), it is clear that

∆β(k) = β(k + 1)− β(k),

=
η(k)

γ̄u||ϕ(k)||2
ek+1 ϕ(k). (45)

Substitution of (45) into (44) gives

∆e(k) = −η(k)
f̂b(k)
γ̄u

e(k + 1). (46)

Thereafter, the relation in (46) can be rearranged as

e(k + 1)− e(k) = −η(k)
f̂b(k)
γ̄u

e(k + 1),

e(k + 1) =
1

1 + η(k) f̂b(k)
γ̄u

e(k). (47)

For the convergence of the sequence in (47), it is required that∣∣∣ 1

1 + η(k) f̂b(k)
γ̄u

∣∣∣ < 1. (48)

By using the learning rate in (31), it’s clear that the condition in (48) always holds. The convergence
proof of the tracking error is completed.

The validation of the proposed control scheme and the setting of the designed parameters and
membership functions will be addressed in the following section.

5. Experimental Results

This experimental system with the robotic arm ABB model IRB-1400 is constructed using the
configuration mentioned in Section 2. The membership functions for MiFREN identification are
given in Figure 4, and cover the robotic operating range ±2 Rad. The membership functions for the
tracking error e(k) and the desired position r(k + 1) of the MiFREN controller are shown in Figure 5.
The designed parameters are given as γh = 0.5, εo = 2.15, and Cu = 1.05.

The tracking performance and the tracking error are illustrated in Figure 6 and the control effort
is shown in Figure 7. The control signal contains the high-frequency components which compensate
for the non-linearities. The estimated functions f̂a(k) and f̂b(k) are presented in Figure 8. The learning
rate ηh(k), given by Lemma 1, is shown in Figure 9. In Figure 10, the plots of ||βa||2 and ||βb||2 are
given to demonstrate the convergence of the internal signals in the MiFREN equivalent model. From
the plot of f̂b(k) in Figure 8, it’s clear that the maximum of f̂b(k) is around 2, or

max{ f̂b(k)} ≈ 2. (49)

Referring to the remark following Theorem 1, and as Cu = 1.05, the parameter γ̄u can be
determined by

γ̄u = Cu max{ f̂b(k)},
= 1.05× 2 = 2.1. (50)

By setting εo = 2.15, we have γ̄u ≤ εo. Thus, the condition (32) of Theorem 1 has been completely
fulfilled. Thereafter, the learning rate of the MiFREN controller is shown in Figure 11 and the
convergence of the weight parameters is displayed in Figure 12.
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Figure 4. Membership functions of the MiFREN equivalent model: q(k) and q(k− 1).
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Figure 5. Membership functions of the MiFREN controller: e(k) and r(k + 1).
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The comparison results with other MFAC schemes are given next. For the case of Controller A,
the DDC scheme, developed by the results in [9,13], is implemented for the robotic systems when the
designed parameter γu in (14) of [13] is given as γu = 0.5 and the membership functions of e(k) are
defined as the same as in Figure 5 for the proposed controller. The tracking performance is presented
by the plots in Figure 13, and the sum square error (SSE) is 24.9450, where the SSE is defined by

SSE =
kmax

∑
k=1

e2(k), (51)

with kmax = 10,000. Controller B is established by using the strong Kalman filter proposed in [10].
In this application, the input is converted to be the joint velocity for the estimated Jacobian matrix.
The tracking performance is shown in Figure 14, and the SSE value is 18.7044. A PID controller,
based on a fourth-order infinite impulse response filter and developed in [6], is selected as Controller
C. For all of the six joints of the robot, the controller parameters are given in Table 1. Figure 15
displays the tracking performance of Controller C, and the SEE value is 96.2553. Table 2 concludes the
comparison results.
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Figure 13. Tracking performance: Controller A.
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Figure 14. Tracking performance: Controller B.
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Figure 15. Tracking performance: Controller C.

Table 1. Parameter settings for Controller C [6].

Joint Kp Ti Td

1 5.26 0.36 0.11
2 8.74 0.27 0.11
3 13.91 0.21 0.17
4 2.72 0.11 0.14
5 6.83 0.13 0.12
6 4.85 0.07 0.12

Table 2. Comparison Results.

Controller SSE Remark

A: [9,13] 24.9450 Figure 13
B: [10] 18.7044 Figure 14
C: [6] 96.2553 Figure 15

Proposed controller 6.1437 Figure 6

6. Conclusions

An open-architecture robot with VFD and a task-multiplexer has been considered as a class
of unknown discrete-time systems. By using only the input/output data set of the robotic system,
the equivalent model has been developed by MiFREN, where the convergence of the model error and
adjustable parameter have been established. Another MiFREN has been established as the adaptive
controller, where the IF-THEN rules have been defined by using general human knowledge of the
robotic system. The proposed controller is completely model-free where the convergence of the
tracking error is definitely guaranteed. Thereafter, the performance of the closed-loop system has been
clearly demonstrated through both theoretical and practical aspects. The comparison results with
well-known robotic controllers and recent approaches have shown the advantage of the proposed
scheme. Development of the task-multiplexer and control high-frequency reduction are efforts to be
addressed in our future investigations.
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