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Abstract: This paper presents a novel method of restoring the electron beam (EB) measurements
that are degraded by linear motion blur. This is based on a fuzzy inference system (FIS) and Wiener
inverse filter, together providing autonomy, reliability, flexibility, and real-time execution. This system
is capable of restoring highly degraded signals without requiring the exact knowledge of EB probe
size. The FIS is formed of three inputs, eight fuzzy rules, and one output. The FIS is responsible
for monitoring the restoration results, grading their validity, and choosing the one that yields to a
better grade. These grades are produced autonomously by analyzing results of a Wiener inverse
filter. To benchmark the performance of the system, ground truth signals obtained using an 18 µm
wire probe were compared with the restorations. Main aims are therefore: (a) Provide unsupervised
deblurring for device independent EB measurement; (b) improve the reliability of the process; and
(c) apply deblurring without knowing the probe size. These further facilitate the deployment and
manufacturing of EB probes as well as facilitate accurate and probe-independent EB characterization.
This paper’s findings also makes restoration of previously collected EB measurements easier where
the probe sizes are not known nor recorded.

Keywords: fuzzy inference system; fuzzy logics; linear motion blur; fuzzy deblurring; electron beam
calibration; signal and image processing

1. Introduction

The main goal of fuzzy systems is to define and control sophisticated processes by incorporating
and taking advantage of human knowledge and experience. Nowadays, fuzzy logics are widely
used in industry for various applications ranging from cameras to cement kilns, trains, and vacuum
cleaners [1]. Furthermore, deblurring techniques have versatile applications and they are either
performed in spatial [2] or frequency domains [3–5]. Hosseinzadeh [6] modeled the electron beam (EB)
measurement process with a linear motion blur and evaluated three of the well-established deblurring
techniques for EB restoration. In this study [6], Hosseinzadeh used a Weiner inverse filter and blind
Richardson-Lucy deconvolutions to restore the EB distribution and correct the measurements through
deblurring. A simple motion blur is formulated in Equation (1).

g(x) =
∫

f (x)h(x) + n(x), (1)

where in the spatial domain, f , g, h, and n are the ground truth signal (EB distribution) of length
L f , degraded signal (measurement from probe), point spread function (PSF) of length Lh, and noise
respectively. Their frequency domains are represented by uppercase letters F, G, and H. In the case of
electron beam measurements, the ground truth signal is the distribution of EB and the degraded signal
is the measurement acquired from the probe. The electron absorption of a slit or wire probe of size Lh
is modeled with a PSF kernel [6].
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Linear motion blur point spread function has two distinct characteristics of motion direction
and length (L) [7]. The PSF is known for having harmonically spaced vanishing magnitudes in the
frequency domain due to its limited length in the spatial domain [8]. There are several approaches to
estimate Lh such as log power spectrum, cepstrum, bispectrum, and pitch detection algorithms.
In image deblurring jargon, it is assumed that the frequency spectrum of F is smooth and does not
contain vanishing frequencies, hence any vanishing frequencies in G are associated to H [9,10].
However, this assumption usually does not hold for EB measurements, especially where the L f
is in the same order of Lh. This similarity makes it complicated to distinguish between L f and Lh and
therefore compromises the deblurring process by an incorrect detection of null frequencies. Such an
erroneous deblurring process is likely to produce an incorrect but convincing result, notably when
f and h have remarkable cross-correlation. This ambiguity is likely to happen in EB measurements,
because: (a) f and h are usually in the same order of magnitude and they have relatively high
cross-correlation; and (b) the L f can be inconsistent. In Reference [6], a prior knowledge of Lh is used to
estimate the position of null frequency of h from the spectrum analysis of G. Hosseinzadeh limited the
spectrum of G to ±15% of the nominal Lh by applying a window to its log-power spectrum, thereby
ignoring vanishing frequencies outside of this interval. This algorithm is available in Reference [11].
This strategy relies on knowing the Lh. Therefore, it is a good approach when it is known accurately.
There are a few limitations with this method due to the varying nature of L f during the calibration and
measurement process. As a result, the beam’s vanishing frequency (or its harmonics) can be located
within the applied window and cause a false detection. Furthermore, if the inaccuracy of Lh is more
than 15%, the null frequency of h is ignored by the window resulting in an erroneous restoration.
In addition, any inaccuracy of more than ±15% cannot be compensated.

One solution to effectively address this uncertainty is to use fuzzy systems. Fuzzy inference
systems are widely used to address instrumental uncertainties. A comprehensive review and
explanation of fuzzy inference systems are provided in Reference [12].

It is known that a wrong estimation of Lh can lead to drastic noise-like errors in the restorations [13].
Furthermore, utilizing deblurring techniques for industrial purposes requires real-time, reliable,
and unsupervised methods. To satisfy these requirements, this article proposes a Wiener filter that
is monitored by a fuzzy inference system. A Wiener filter is selected due to its simplicity, real-time
execution, and superior performance in the restoration of linear motion blur [6]. The fuzzy inference
system deals with the uncertainty of the deconvolution by monitoring the entire restoration process.
This FIS is comprised of three crisp inputs that included the PSF length or probe size (Lh) deviation,
attenuation of the vanishing frequencies, and deconvolution residue.

However, probe size deviation is an optional input, which is based on a previous rough
knowledge of Lh. If Lh is roughly known, it serves as a reference point from which the PSF length
deviation is calculated. Therefore, unlike Reference [6], prior knowledge of Lh does not limit the
inaccuracy compensation to ±15%. It is demonstrated in Reference [6] that the spatial domain of
h has a sharper transition compared to the EB distribution ( f ). This is due to the semi-Gaussian
distribution of f compared to h. Therefore, vanishing frequencies of h are expected to have higher
attenuation or lower magnitude compared to f . Hence, the normalized magnitude of the detected
null frequencies in G are the second crisp input to the fuzzy inference systems. The last input of the
system is the quantified deblurring artifacts that are introduced during the restoration of f from g.
The restored beam distributions are denoted as ( f̂ ). These residual artifacts are inevitable and they
increase as the h deviates from its mathematical definition. Extraction of residues from f̂ is explained in
section II. The output of the fuzzy system (Ei) is defuzzified to represent the quality of the restorations.
This output is generated based on the definition of the fuzzy rules that are explained in the next section.

The rest of this paper is arranged as follows: Section 2 illustrates the details of FIS implementation.
This includes specifying the crisp inputs and fuzzifying them, defining the membership functions,
and formulating the fuzzy sets. The section continues by identifying the fuzzy rules and making
an inference to generate the output. Section 3 presents the practical results of the proposed method
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and the ability of the system to distinguish the correct deblurring results. The values of membership
functions parameters are provided and a comparison is made between implementing the fuzzy system
with and without the knowledge of probe size (Lh).

2. Modeling and Implementation

As mentioned, when there is similarity between L f and Lh it is difficult to discriminate between
their null frequencies just by looking at G. This introduces an uncertainty and makes it hard to decide
which null frequency belongs to the probe (H) because null frequencies can belong to either beam (F)
or probe (H). To address the uncertainty of unsupervised Lh detection, all the null frequencies in G
are identified and only the first two nulls with lowest frequencies are extracted while avoiding the
harmonics. This implies that a maximum of two null frequencies (ωi=1,2) are to be extracted from G.
There are three possibilities based on the extracted number of null frequencies: (a) If no null frequency
is detected due to Lh � L f , then motion blur effect is negligible and deconvolution is not necessary;
(b) if a single null frequency is detected as a result of Lh � L f , then the deconvolution can progress
without involving the fuzzy system as the null frequency belongs to Lh; (c) in case two null frequencies
are extracted (ω1, ω2), two deconvolutions are performed where each of the deconvolutions are
performed by adjusting their corresponding L̂i=1,2 (L̂i=1,2 ∝ 1/ωi=1,2). This is done because both ω1

and ω2 could be belonging to h of different sizes.
The FIS is defined with three merits to grade the deblurrings. Deblurrings are performed by

two individual Weiner filters that use L̂1 and L̂2 resulting in f̂1 and f̂2 respectively. The fuzzy system
produces a single crisp output deconvolution grade (Ei=1,2) for each restoration. The restoration
process that produces a higher Ei is then chosen as the correct process with its corresponding L̂i being
the correct probe size ( Lh ← L̂i ). A single layer (non-hierarchal) fuzzy inference system of three inputs
and a single output is designed to evaluate the overall deblurring process. These inputs are: PSF length
deviation, null frequency magnitude, and residue, and the deconvolution grade is the only output.
These inputs and the output are explained in detail as follows.

2.1. PSF Length Deviation

As mentioned, ω1 and ω2 are extracted to accurately adjust the Lh during the restoration process.
By having rough prior knowledge of the probe size (Lh) and the estimated sizes (L̂i) from G, we can
define PSF length deviation as the distance between the expected and the estimations (|Lh − L̂i|).
This definition converges to zero if the estimation is close to the prior knowledge, whereas it increases
if L̂i is deviated from Lh. Two fuzzy sets (A f ar & Aclose) with membership functions of µ′m and µm are
defined to account for the probe inaccuracy and assign a degree of membership to each L̂i based on its
deviation from Lh. Membership functions are defined by polynomial-Z (zmf) and polynomial-S (smf).
The Aclose fuzzy set definition and its membership function is formulated in Equation (2). A thorough
evaluation of fuzzy membership functions are provided in Reference [14].

Aclose = {(L̂i, µm(L̂i)
)| 0 < L̂i < ∞, m(L̂i) =

2|Lh−L̂i |
Lh
},

µm =



1 m ≤ am

1− 2
(

m−am
cm−am

)2
am < m ≤ am+cm

2

2
(

m−cm
cm−am

)2 am+cm
2 < m ≤ cm

0 m > cm

,
(2)

where am and cm are the membership function parameters that are found heuristically through
analysis of several measurements.
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2.2. Null Frequency Magnitude

The second input of the fuzzy system is the magnitude of the extracted null frequencies.
This is extracted from the normalized log-power spectrum of g and has a dynamic range of 0 to
1 dB, demonstrated in Figure 1.
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�
2
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2
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𝑐𝑐𝑜𝑜−𝑎𝑎𝑜𝑜

�
2
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2
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Figure 1. Normalized power spectrum of G exhibits ω1 and ω2 at 0.12 and 0.165 MHz frequencies with
their harmonics at higher frequencies.

As explained, h is most likely to have rapid spatial transitions compared to f . This implies that
H is likely to have the nulls with higher attenuation in G (nulls with lower magnitude). As a result,
two fuzzy sets (Bhigh & BLow) with membership functions of µ′o and µo are defined to assign a
higher membership value to the nulls with more attenuation (or lower magnitude), whereas a lower
degree of membership is assigned to less attenuated (higher magnitude) nulls. Membership functions
are defined with zmf and sfm. BLow is formulated in Equation (3), where GN is the normalized
frequency spectrum of the degraded signal G and ao and co are the membership function parameters.
AFar membership function definition is similar to BLow as they are both defined by smf.

BLow = {(L̂i, µ′
o(L̂i)

)| 0 < L̂i < ∞, o(L̂i) = log (|GN(L̂i) + 1|)},

µ′o =



0 o ≤ ao

2
(

o−ao
co−ao

)2
ao < o ≤ ao+co

2

1− 2
(

o−co
co−ao

)2 ao+co
2 < o ≤ co

1 o > co

,
(3)

2.3. Deconvolution Artifact Residues

Deconvolutions are performed using the Wiener inverse filtering process in Equation (4).

F̂i =
1

H(ωi)

 |H(ωi)|2

|H(ωi)|2 + 1
SNR(ω)

G(ω), (4)

where in the frequency domain, F̂i is the restored ground truth signal and SNR is the signal-to-noise
ratio. After the deconvolutions, f̂i=1,2 has shorter lengths in spatial domain compared to g. We first
normalized g and both of the restorations ( f̂i=1,2) between [0,−1], gN is then shifted so its minimum is
matched with the minimums of each f̂i in the spatial domain to obtain ĝN . Finally, every restoration
residue (ri) is quantified as in Equation (5).

ri =
4∫

g(x)dx
·
∫

f̂i(τ)dτ {τ ∈ x|ĝN(τ) > −0.05}, (5)
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The deconvolution process using both of the extracted PSFs and their corresponding residues
are showed in Figure 2. The deconvolution was performed with a Wiener inverse filter, where h is
formulated in Equation (6).

hL̂i
(x) =

{
0 o.w

1 |x| < L̂i
2

, (6)
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(PSF) lengths and demonstration of their deconvolution residues.

Two fuzzy sets (Clow and Chigh) are defined with membership functions of µr and µ′r using zmf and
smf respectively, where the overall shape of the functions is determined by ar and cr. These functions
are designed to assign a higher degree of membership to the L̂i that produces a smaller number of
residues after restoration.

2.4. Deconvolution Grade

All the combinations of the aforementioned inputs are used to form eight if–then rule statements
with different weights. These statements, with their corresponding weights, are provided in Table 1.
Fuzzy AND operator is then used for the implication of the fuzzy consequences.

Table 1. Rule base formation criteria.

Antecedent Consequence
Rule Weight

PSF Dev Attenuation Residue Restoration Quality
µm µo µr µg 1
µm µo µ′r µg 0.66
µm µ′o µr µg 0.66
µm µ′o µ′r µb 0.66
µ′m µo µr µg 0.66
µ′m µo µ′r µb 0.66
µ′m µ′o µr µb 0.66
µ′m µ′o µ′r µb 1
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Rule weight is added to scale the consequences and account for the certainty of the rules.
The consequence is the restoration quality with two fuzzy sets (Dgood & Dbad) and membership
functions of µq and µ′q respectively defined by smf and zmf. Aggregations of the rules are performed
by using a Zadeh T-norm and defuzzifications are carried out by mean of maximum (MoM) method [15].
The resulting crisp values are the deconvolution grades (Ei=1,2). Therefore, there is a grade (Ei=1,2) for
each deconvolution. In other words, for each f̂i=1,2 that is deblurred by its corresponding hL̂i=1,2

, there is
an overall grade of restoration (Ei=1,2). According to the definition of the consequence membership
functions, a greater value of Ei represents a better restoration and, on the contrary, a lower value of Ei
represents a possible erroneous process, (Ei is ranging from 0 to 1). With this proposed system, if by
mistake L f is used instead of Lh in the formation of the h (Equation (6)), then the resulting Ei will be
lower. Overall, E1 and E2 are used comparatively to determine and select the best restoration between
f̂1 and f̂2 that are emerged from restoring a degraded sample (g). This proposed system and its overall
restoration processes are demonstrated in Figure 3.
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Figure 3. Process diagram, L̂i connections to the fuzzy inference system (FIS) are optional.

3. Practical Result

Membership Function Parameters

Membership function parameters were investigated pragmatically by testing the explained
algorithm for various degraded EB measurement samples. In all degraded measurements, h and f had
approximately similar sizes as a result of which L̂1

∼= L̂2. The membership functions were designed
with smooth transitions to provide a general solution and more flexibility, except for the attenuation.
To further discriminate between E1 and E2, the attenuation membership function parameters were
adjusted to have more emphasis between the interval of 0 to 0.3 dB. This intuitive definition was done
by observing the magnitude of null frequencies in several degraded signals where the attenuation of
the null frequencies was always under 0.3 dB. The membership function parameters are presented in
Table 2.

Table 2. Membership function definition details.

PSF Deviation Attenuation Residue Restoration Quality
µm µ′m µo µ′o µr µ′r µq µ′q

am cm am cm ao co ao co ar cr ar cr aq cq aq cq
0.02 1 0.04 1 0.02 0.3 0.05 0.3 0 1 0 1 0 1 0 1

The membership functions of attenuation (Bhigh & BLow) and residue (Clow & Chigh) fuzzy sets
are depicted in Figure 4, according to their values in Table 2. The fuzzy sets of PSF deviation and
restoration quality were also defined with the similar membership functions to that of residues.
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Figure 4. Attenuation and deconvolution residue membership functions.

The analysis of a few of the samples are shown in Figures 5 and 6. For a few of the EB
measurements, the Lh (probe sizes) were known to be 1.00, 0.20, and 0.40 mm respectively. The crisp
fuzzy inputs and deconvolution grades Ei were also provided for every sample. The restoration that
resulted in the higher Ei was selected by the system as the correct solution and its corresponding
L̂i therefore represents the probe size ( L̂h ← L̂i) . To validate the proposed system with the ground
truth signal ( f ) [6], both restorations ( f̂1,2) were compared against their ground truth signal using
cross-correlation. For the f̂i with the higher Ei, the cross-correlation of f̂i and f also produced greater
coefficients, supporting the accuracy and reliability of the system. As another benchmark, full width
at half maximum (FWHM) analysis was used, as it is a popular measure in the EB calibration jargon.
The FWHM of f and the f̂i that had the higher Ei produced a similar result, further confirming that the
FIS had successfully identified the correct restoration process.
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4. Conclusions and Discussion 

The algorithm showed superior performance when a rough prior knowledge of 𝐿𝐿ℎ  was 
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deviation of 0.51 was not, yet the PSF deviation outweighed its low magnitude and the correct 
restoration was successfully distinguished with 14% separation in the deconvolution grades (|𝐸𝐸1 −
𝐸𝐸2| = 0.14). This high attenuation of 𝜔𝜔𝑓𝑓 was most likely due to it being closer to the second harmonic 
of 𝜔𝜔ℎ  and, therefore, it experienced further attenuation. Nevertheless, owing to the FIS 
implementation, the correct restoration process was identified. All the possible rules were considered 
for the implementation of this FIS and its tuning was performed heuristically by an expert. However, 
clustering algorithms could be used for FIS with multiple inputs and membership functions to 
determine the optimum number of rules. Furthermore, adaptive FISs can be used to automate the 
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Figure 6. Null frequencies in the spectrum of the degraded pulse. Result of restoration with detected
null frequencies, expected PSF length of 0.4 mm.

4. Conclusions and Discussion

The algorithm showed superior performance when a rough prior knowledge of Lh was provided
for the fuzzy inference system. The ∆Ei = (|E1 − E2|) was greater than 0.5 thereby clearly identifying
and segregating the correct deconvolution process. The algorithm was also tested without including
the PSF knowledge, in which case ∆Ei was in the interval of 0.1 to 0.5, which was enough to confidently
separate the correct deconvolution process.

Figure 6 depicted a special case where H had a null frequency at ωh = 120 kHz with a normalized
magnitude of 0.09 dB, whereas, F null was at ω f = 170 kHz with a magnitude of 0.02 dB and had four
times higher attenuation. Although ω f had a magnitude that was in its favor, the PSF deviation of
0.51 was not, yet the PSF deviation outweighed its low magnitude and the correct restoration
was successfully distinguished with 14% separation in the deconvolution grades (|E1 − E2| = 0.14).
This high attenuation of ω f was most likely due to it being closer to the second harmonic of ωh and,
therefore, it experienced further attenuation. Nevertheless, owing to the FIS implementation, the correct
restoration process was identified. All the possible rules were considered for the implementation of
this FIS and its tuning was performed heuristically by an expert. However, clustering algorithms could
be used for FIS with multiple inputs and membership functions to determine the optimum number of
rules. Furthermore, adaptive FISs can be used to automate the tuning and learning process of the FIS
in a more complicated and complex scenario.
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