
Article

Analyzing and Comparing the Performance of
National Biometric eID Card in Heavy
Cryptographic Applications

Gazmend Krasniqi 1, Petrit Rama 2 and Blerim Rexha 2,*
1 Faculty of Technical Sciences, University Ismail Qemali, 9401 Vlora, Albania; gazmend.krasniqi@ubt-uni.net
2 Faculty of Electrical and Computer Engineering, University of Prishtina, 10000 Prishtina, Kosovo;

petrit.rama@uni-pr.edu
* Correspondence: blerim.rexha@uni-pr.edu

Received: 27 August 2018; Accepted: 21 September 2018; Published: 27 September 2018
����������
�������

Abstract: Today, we are witnessing increased demand for more speed and capacity in the Internet,
and more processing power and storage in every end user device. Demand for greater performance
is present in every system. Electronic devices and their hosted applications need to be fast, but not to
lose their main security features. Authentication and encryption are the main processes in the security
aspect, and are required for a secure communication. These processes can be executed in different
devices, among them PCs, microprocessors, microcontrollers, biometric cards or mobile devices.
Biometric identity cards are becoming increasingly popular, challenging traditional PC devices.
This paper compares two processing systems, the efficiency of encryption and signatures on the data
executed in national identity biometric card versus PC, known also as the match-on-card versus the
match-off-card. It considers how different parameters impact the process and the role they play on
the overall process. The results, executed with a predefined set of test vectors, determine which
processing system to use in a certain situation. Final conclusions and recommendations are given
taking into consideration the efficiency and security of the data.

Keywords: cryptography; digital signature; match-on-card; match-off-card; eID biometric card

1. Introduction

Biometric protocols are being used not only to authenticate an individual to an official authority
but also to encrypt or sign a message. These protocols are based on biometric traits, which are universal
and unique. There are a lot of methods to implement biometric identification, and a biometric card,
usually known as a national electronic identification card (eID), is one of them.

Biometric eID cards can perform authentication, encryption and data signature, because of the
private parameters (keys) stored on the card. The private parameters are stored in a card, as a
biometric template during the enrolment stage. This template is used for comparison between the new
template and corresponding template on the card, using two processing systems: match-off-card and
match-on-card. Match-on-card compares the template of the card with the fresh template, while the
processing of biometric data is done on the card and never leaves the card. On the other hand,
match-off-card processing is not done on the card, but in and outside a device or system. Match-off-card
and match-on-card are presented in Figures 1 and 2.

Each processing system has its own advantages and disadvantages, as described in [1].
Match-off-card is faster, because of the processing power from the system, but because the biometric
template leaves the card, this approach presents a security risk for the sensitive information inside the
card. However, match-on-card has lower computation power, higher security because the biometric

Appl. Syst. Innov. 2018, 1, 37; doi:10.3390/asi1040037 www.mdpi.com/journal/asi

http://www.mdpi.com/journal/asi
http://www.mdpi.com
https://orcid.org/0000-0002-3428-7666
http://www.mdpi.com/2571-5577/1/4/37?type=check_update&version=1
http://dx.doi.org/10.3390/asi1040037
http://www.mdpi.com/journal/asi

Appl. Syst. Innov. 2018, 1, 37 2 of 17

template does not leave the card, and lack of interoperability is a problem in this processing system [1].
A general introduction on the match-on-card can be found on [2], where the main advantages
of this processing system are discussed, like a decentralized biometric database, data mobility,
enhanced privacy and security [3].

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 2 of 17

biometric template does not leave the card, and lack of interoperability is a problem in this
processing system [1]. A general introduction on the match-on-card can be found on [2], where the
main advantages of this processing system are discussed, like a decentralized biometric database,
data mobility, enhanced privacy and security [3].

Figure 1. Match-off-card system. Reprinted with permission from [2]. © 2009 Springer US.

Figure 2. Match-on-card system. Reprinted with permission from [2]. © 2009 Springer US.

Encryption processed with a biometric card was proposed in [4]. The encryption is done using
the biometric key, a unique key generated from the biometric template inside the card. Except for the
encryption process, this key can be used for the matching and authentication process also [4].

As the technology is progressing, a need for a faster data processing system is increasing too,
making the speed the main parameter for analyzing. The National Institute of Standards and
Technology (NIST) has done an evaluation of the accuracy and speed of fingerprint match-on-card
process. Minimum error rate, the speed of execution, and the accuracy were only a few of the
parameters tested in this experiment and discussed in an extended report [5]. Fingerprint
authentication using a match-on-card is also presented in [6], where the authors observed the
performance of successful and unsuccessful authentication. The positive verification time is slower
than the negative verification time, which is also a security issue. In this paper, performance of
enrollment and the false acceptance rate of the verification process are also analyzed.

NIST has done another experiment, a feasibility study, to determine if biometric match-on-card
authentication could be performed in less than 2.5 s. The protocol for this operation consisted of few
steps, presenting the card to the contactless reader from the cardholder, presenting the finger to the
scanner, a secure session establishment process, transmitting the encrypted fingerprint template to
the card, decrypting the template, and in the end returning the matching test result. In the report, the
main parameters measured are average time to establish a secure session, average time for
transmission of encrypted biometric data, and average total time to perform this complete process
[7].

This paper proposes a different approach than the papers mentioned above. The main
parameter is the efficiency of two processing systems, match-on-card versus match-off-card. This

Figure 1. Match-off-card system. Reprinted with permission from [2]. © 2009 Springer US.

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 2 of 17

biometric template does not leave the card, and lack of interoperability is a problem in this
processing system [1]. A general introduction on the match-on-card can be found on [2], where the
main advantages of this processing system are discussed, like a decentralized biometric database,
data mobility, enhanced privacy and security [3].

Figure 1. Match-off-card system. Reprinted with permission from [2]. © 2009 Springer US.

Figure 2. Match-on-card system. Reprinted with permission from [2]. © 2009 Springer US.

Encryption processed with a biometric card was proposed in [4]. The encryption is done using
the biometric key, a unique key generated from the biometric template inside the card. Except for the
encryption process, this key can be used for the matching and authentication process also [4].

As the technology is progressing, a need for a faster data processing system is increasing too,
making the speed the main parameter for analyzing. The National Institute of Standards and
Technology (NIST) has done an evaluation of the accuracy and speed of fingerprint match-on-card
process. Minimum error rate, the speed of execution, and the accuracy were only a few of the
parameters tested in this experiment and discussed in an extended report [5]. Fingerprint
authentication using a match-on-card is also presented in [6], where the authors observed the
performance of successful and unsuccessful authentication. The positive verification time is slower
than the negative verification time, which is also a security issue. In this paper, performance of
enrollment and the false acceptance rate of the verification process are also analyzed.

NIST has done another experiment, a feasibility study, to determine if biometric match-on-card
authentication could be performed in less than 2.5 s. The protocol for this operation consisted of few
steps, presenting the card to the contactless reader from the cardholder, presenting the finger to the
scanner, a secure session establishment process, transmitting the encrypted fingerprint template to
the card, decrypting the template, and in the end returning the matching test result. In the report, the
main parameters measured are average time to establish a secure session, average time for
transmission of encrypted biometric data, and average total time to perform this complete process
[7].

This paper proposes a different approach than the papers mentioned above. The main
parameter is the efficiency of two processing systems, match-on-card versus match-off-card. This

Figure 2. Match-on-card system. Reprinted with permission from [2]. © 2009 Springer US.

Encryption processed with a biometric card was proposed in [4]. The encryption is done using
the biometric key, a unique key generated from the biometric template inside the card. Except for the
encryption process, this key can be used for the matching and authentication process also [4].

As the technology is progressing, a need for a faster data processing system is increasing
too, making the speed the main parameter for analyzing. The National Institute of Standards and
Technology (NIST) has done an evaluation of the accuracy and speed of fingerprint match-on-card
process. Minimum error rate, the speed of execution, and the accuracy were only a few of
the parameters tested in this experiment and discussed in an extended report [5]. Fingerprint
authentication using a match-on-card is also presented in [6], where the authors observed the
performance of successful and unsuccessful authentication. The positive verification time is slower
than the negative verification time, which is also a security issue. In this paper, performance of
enrollment and the false acceptance rate of the verification process are also analyzed.

NIST has done another experiment, a feasibility study, to determine if biometric match-on-card
authentication could be performed in less than 2.5 s. The protocol for this operation consisted of few
steps, presenting the card to the contactless reader from the cardholder, presenting the finger to the
scanner, a secure session establishment process, transmitting the encrypted fingerprint template to the
card, decrypting the template, and in the end returning the matching test result. In the report, the main
parameters measured are average time to establish a secure session, average time for transmission of
encrypted biometric data, and average total time to perform this complete process [7].

This paper proposes a different approach than the papers mentioned above. The main parameter
is the efficiency of two processing systems, match-on-card versus match-off-card. This paper will not

Appl. Syst. Innov. 2018, 1, 37 3 of 17

consider the enrolment or verification stage of the biometric card, but will just use the template for
encryption and data signatures, and compares this process with the same process, using the personal
computer (PC) as the processing device.

A national eID biometric card stores the private and public key of its holder. Those keys will be
used to encrypt and sign the data, which represent the match-on-card processing system. The speed of
the processing will be compared against the match-off-card.

Moreover, this paper does not address authentication of the user or the speed which the
user authenticates himself. The main experiment compares match-on-card and match-off-card
efficiency. The experiment takes into consideration different parameters, in the form of file size,
processing algorithms for encryption, or signature. Each parameter plays a role, and it has an impact
on the whole process regarding its efficiency.

This paper is organized as follows. Section 2 describes the national biometric identity card and
its security features. In Section 3 we describe the architecture of the application used to perform
the experiments. In Section 4 we show the results of the experiments. We conclude the paper with
Section 5, in which we describe the main results from this paper, recommendations and possible
future work.

2. National Biometric Identity Cards

A biometric identity card (ID) is a credit card size format and contains personal and biometric
information about its holder in printed form as well as in electronic format and is used to authenticate
its bearer in the real as well in the Internet world. Such electronic ID card uses proven smart card
technology to communicate to the outside world, based on recommendations and guidelines issued
by the International Civil Aviation Organization (ICAO), a body run by the United Nations with a
mandate for setting international travel document standards [8]. A user profile stored in the biometric
eID contains a digital X.509 certificate and its corresponding private key, in compliance with ICAO
Public Key Infrastructure (PKI), signed by a country-issuing certification authority (CA).

The Ministry of Internal Affairs of the government of Kosovo issued first biometric national ID
cards in December 2013, thus becoming the first country supporting the new Supplemental Access
Control (SAC) protocol for mutual authentication [9].

The Kosovo national biometric ID card hosts three applications, as presented in Figure 3, and it
uses a SLE 78CLX1280P 16 bit crypto processor from Infineon. It has 128 kByte Electrically Erasable
Programmable Read-Only Memory (EEPROM) and supports Rivest–Shamir–Adleman (RSA) 4096 key
bit length, elliptic-curve cryptography (ECC) up to 521 bit and triple Data Encryption Standard (3DES)
and Advanced Encryption Algorithm (AES) up to 256 bit length and the communication with outside
world is done using the near field communication (NFC) protocol [10].

1

Figure 3. National biometric identity (ID) card and hosted apps.

Appl. Syst. Innov. 2018, 1, 37 4 of 17

The national ID card middleware communicates using the Public Key Cryptographic Standard
(PKCS) #11 and Crypto Service Provider (CSP) with cryptographic interested apps. The web
authentication with biometric ID card is done using X.509 certificates in two forms: (i) identity
certificate or (ii) anonym certificate, whereby the corresponding 2048 bit private key never leaves the
card [11]. Access to the private key is Personal Identification Number (PIN) protected, which is issued
to the citizen in protected paper format. An Internet authentication scenario using a user’s real and
anonym profile stored in the eID card is presented in [12].

3. Preparing Testing Environment

This section offers an insight on the environment of the experiment. From this section,
anybody can replicate the experiment and test the results, using different parameters with predefined
test vectors.

3.1. Developing the Application

BiometricEfficiency_FIEK is an open source application for the Windows 10 operating system,
developed in C# programming language using Microsoft Visual Studio 2015. BiometricEfficiency_FIEK
does not install other libraries and it does not need any other prerequisites to be installed. The source
code can be found in [13].

3.2. Smart Card Middleware

Staring from Windows 2000, Microsoft has integrated the usage of smart cards in Windows
applications, as presented in Figure 4 [14]. BiometricEfficiency_FIEK uses vendor-specific Crypto Service
Provider (CSP) functionality, wrapped as middleware software, to access the full functionality of
biometric card cryptographic functions, such as: encrypt, decrypt, sign and verify.

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 4 of 17

The national ID card middleware communicates using the Public Key Cryptographic Standard
(PKCS) #11 and Crypto Service Provider (CSP) with cryptographic interested apps. The web
authentication with biometric ID card is done using X.509 certificates in two forms: (i) identity
certificate or (ii) anonym certificate, whereby the corresponding 2048 bit private key never leaves the
card [11]. Access to the private key is Personal Identification Number (PIN) protected, which is
issued to the citizen in protected paper format. An Internet authentication scenario using a user’s
real and anonym profile stored in the eID card is presented in [12].

3. Preparing Testing Environment

This section offers an insight on the environment of the experiment. From this section, anybody
can replicate the experiment and test the results, using different parameters with predefined test
vectors.

3.1. Developing the Application

BiometricEfficiency_FIEK is an open source application for the Windows 10 operating system,
developed in C# programming language using Microsoft Visual Studio 2015.
BiometricEfficiency_FIEK does not install other libraries and it does not need any other prerequisites
to be installed. The source code can be found in [13].

3.1. Smart Card Middleware

Staring from Windows 2000, Microsoft has integrated the usage of smart cards in Windows
applications, as presented in Figure 4 [14]. BiometricEfficiency_FIEK uses vendor-specific Crypto
Service Provider (CSP) functionality, wrapped as middleware software, to access the full
functionality of biometric card cryptographic functions, such as: encrypt, decrypt, sign and verify.

Figure 4. Smartcard Windows architecture [14].

3.3. Pseudocode

The source code is organized in helper classes, one for encryption and one helper class for
digital signature.

Figure 4. Smartcard Windows architecture [14].

3.3. Pseudocode

The source code is organized in helper classes, one for encryption and one helper class for
digital signature.

Appl. Syst. Innov. 2018, 1, 37 5 of 17

The encryption helper class contains three methods for implementing match-on-card and
match-off-card encryption using RSA and RSA CSP classes from the Microsoft NET framework.
Each method initially divides the test vector in blocks, to encrypt each block, since we work with block
encryption algorithms. Following methods are developed:

• encryptRSACSP_pc(text) takes one argument text of type string, which will be encrypted using
the PC, using the public key stored locally on the PC.

• encryptRSACSP_card(text, certificate) takes two arguments, text of type string and certificate
of type X509Certificate2. This method encrypts using the RSA CSP class, with the public key from
the certificate on the eID biometric card.

• encryptRSA_card(text, certificate) also encrypts using the biometric card, but using
RSA class.

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 5 of 17

The encryption helper class contains three methods for implementing match-on-card and
match-off-card encryption using RSA and RSA CSP classes from the Microsoft NET framework.
Each method initially divides the test vector in blocks, to encrypt each block, since we work with
block encryption algorithms. Following methods are developed:

• encryptRSACSP_pc(text) takes one argument text of type string, which will be encrypted
using the PC, using the public key stored locally on the PC.

• encryptRSACSP_card(text, certificate) takes two arguments, text of type string and
certificate of type X509Certificate2. This method encrypts using the RSA CSP class, with the
public key from the certificate on the eID biometric card.

• encryptRSA_card(text, certificate) also encrypts using the biometric card, but using
RSA class.

function encryptRSACSP_pc(text)
{
 segmentLength ← 212
 loopLength ← text.Length/segmentLength+1

 RSACryptoServiceProvider rsa
 rsa.setPublicKey ← readPublicKey()

 for i←0 to loopLength do
 if (i=loopLength-1 or text.Length<segmentLength)
 copyLength ← text.Length-(i*segmentLength)
 else
 copyLength ← segmentLength

 segment ← text.Substring(i*segmentLength, copyLength);
 rsa.Encrypt(segment)
}

function encryptRSACSP_card(text, certificate)
{
 segmentLength ← 212;
 loopLength ← text.Length/segmentLength+1;

 RSACryptoServiceProvider rsa ← certificate.PublicKey.Key;
 for i ← 0 to i < loopLength do
 if (i=loopLength-1 or text.Length<segmentLength)
 copyLength ← text.Length-(i*segmentLength);
 else
 copyLength ← segmentLength;

 segment ← text.Substring(i*segmentLength, copyLength);
 rsa.Encrypt(segment);
}

function encryptRSA_card(text, certificate)
{
 segmentLength ← 212
 loopLength ← text.Length/segmentLength+1

 RSA rsa ← certificate.GetRSAPublicKey()

 for i←0 to loopLength do
 if (i=loopLength-1 or text.Length<segmentLength)
 copyLength ← text.Length-(i*segmentLength)
 else
 copyLength ← segmentLength

 segment ← text.Substring(i*segmentLength, copyLength);
 rsa.Encrypt(segment)
}

Appl. Syst. Innov. 2018, 1, 37 6 of 17

The signature helper class contains three methods for implementing match-on-card and
match-off-card digital signature using RSA and RSA CSP classes, as:

• signRSACSP_pc(text) method is used to sign the text data, using the asymmetric algorithm RSA
CSP, using the private key stored on the PC.

• signRSACSP_card(text, certificate) will be used as a method to sign the text data, using the
private key in the certificate.

• signRSA_card(text, certificate) takes two arguments, one the text to sign, and the certificate,
which uses the private key to digitally sign the data, with RSA class.

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 6 of 17

The signature helper class contains three methods for implementing match-on-card and
match-off-card digital signature using RSA and RSA CSP classes, as:

• signRSACSP_pc(text) method is used to sign the text data, using the asymmetric algorithm
RSA CSP, using the private key stored on the PC.

• signRSACSP_card(text, certificate) will be used as a method to sign the text data, using
the private key in the certificate.

• signRSA_card(text, certificate) takes two arguments, one the text to sign, and the
certificate, which uses the private key to digitally sign the data, with RSA class.

function signRSACSP_pc(text)
{
 RSACryptoServiceProvider rsa
 rsa.setPublicKey ← readPublicKey()

 rsa.SignData(text);
}

function signRSACSP_card(text, certificate)
{
 RSACryptoServiceProvider rsacsp ← certificate.PrivateKey
 rsacsp.SignData(text)
}

function signRSA_card(text, certificate)
{
 RSA rsa ← certificate.PrivateKey
 rsa.SignData(text)
}

3.4. Software Functionalities

BiometricEfficiency_FIEK has a simple interface, as presented in Figure 5. The application is used
to encrypt or sign data, using the processing power of the PC or the processing power of a national
biometric card. The main purpose of the application is to measure the efficiency, or the processing
time of both those processing methods: match-off-card and match-on-card systems. This application
is primarily used for experimental purposes, not for encryption or signing data.

Figure 5. The interface of BiometricEfficiency_FIEK app.

3.4. Software Functionalities

BiometricEfficiency_FIEK has a simple interface, as presented in Figure 5. The application is used
to encrypt or sign data, using the processing power of the PC or the processing power of a national
biometric card. The main purpose of the application is to measure the efficiency, or the processing
time of both those processing methods: match-off-card and match-on-card systems. This application is
primarily used for experimental purposes, not for encryption or signing data.

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 6 of 17

The signature helper class contains three methods for implementing match-on-card and
match-off-card digital signature using RSA and RSA CSP classes, as:

• signRSACSP_pc(text) method is used to sign the text data, using the asymmetric algorithm
RSA CSP, using the private key stored on the PC.

• signRSACSP_card(text, certificate) will be used as a method to sign the text data, using
the private key in the certificate.

• signRSA_card(text, certificate) takes two arguments, one the text to sign, and the
certificate, which uses the private key to digitally sign the data, with RSA class.

function signRSACSP_pc(text)
{
 RSACryptoServiceProvider rsa
 rsa.setPublicKey ← readPublicKey()

 rsa.SignData(text);
}

function signRSACSP_card(text, certificate)
{
 RSACryptoServiceProvider rsacsp ← certificate.PrivateKey
 rsacsp.SignData(text)
}

function signRSA_card(text, certificate)
{
 RSA rsa ← certificate.PrivateKey
 rsa.SignData(text)
}

3.4. Software Functionalities

BiometricEfficiency_FIEK has a simple interface, as presented in Figure 5. The application is used
to encrypt or sign data, using the processing power of the PC or the processing power of a national
biometric card. The main purpose of the application is to measure the efficiency, or the processing
time of both those processing methods: match-off-card and match-on-card systems. This application
is primarily used for experimental purposes, not for encryption or signing data.

Figure 5. The interface of BiometricEfficiency_FIEK app. Figure 5. The interface of BiometricEfficiency_FIEK app.

Appl. Syst. Innov. 2018, 1, 37 7 of 17

The test data used here are random text files of different lengths, which offers the opportunity to
study the impact of length or size of the file on the processing time.

The basic steps for encrypting or signing data, with one of the processing systems are:

1. The first step is to choose the size of the text file which will be encrypted or signed. The test vector
consists of eight text files with a random text of different size, 1 KB, 10 KB, 50 KB, 100 KB, 1 MB,
2 MB, 5 MB, 10 MB. Each file will have the different impact on the processing time, which will be
discussed later. The text is random text, as presented in Figure 6.

2. The second step is to choose the processing system and the algorithm for processing the data.
The app offers both processing systems: match-off-card using a PC as outside processing system
and match-on-card using a national eID biometric card as a processing system. The PC interface
implements only the RSA CSP [15] from the NET framework as the only processing algorithm.
Whereas the national eID biometric card offers two processing algorithms: RSA [16] and RSA
CSP. This comparison is the main experiment conducted in this paper, it measures the processing
time of the two processing systems.

3. The third and last step is to choose if the user wants to encrypt or sign the selected data, with the
selected algorithm and selected processing system. Each experiment is run 10 times and the
results are written in a text file. This text file shows the execution time for each of 10 runs and the
best time, worst time and the average time from the experiment.

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 7 of 17

The test data used here are random text files of different lengths, which offers the opportunity
to study the impact of length or size of the file on the processing time.

The basic steps for encrypting or signing data, with one of the processing systems are:

1. The first step is to choose the size of the text file which will be encrypted or signed. The test
vector consists of eight text files with a random text of different size, 1 KB, 10 KB, 50 KB, 100 KB,
1 MB, 2 MB, 5 MB, 10 MB. Each file will have the different impact on the processing time, which
will be discussed later. The text is random text, as presented in Figure 6.

2. The second step is to choose the processing system and the algorithm for processing the data.
The app offers both processing systems: match-off-card using a PC as outside processing
system and match-on-card using a national eID biometric card as a processing system. The PC
interface implements only the RSA CSP [15] from the NET framework as the only processing
algorithm. Whereas the national eID biometric card offers two processing algorithms: RSA [16]
and RSA CSP. This comparison is the main experiment conducted in this paper, it measures the
processing time of the two processing systems.

3. The third and last step is to choose if the user wants to encrypt or sign the selected data, with
the selected algorithm and selected processing system. Each experiment is run 10 times and the
results are written in a text file. This text file shows the execution time for each of 10 runs and
the best time, worst time and the average time from the experiment.

Figure 6. The 1 KB text file.

4. Experimental Results

All the experiments conducted in this paper are done using biometricefficiency_FIEK, as
described in Section 3, and its source code is freely available on GitHub.

The first step is to select the size of the text file for the experiment. The user can select between 1
KB, 10 KB, 50 KB, 100 KB, 1 MB, 2 MB, 5 MB and 10 MB. Those files, each will have impact on both
processes in different ways, which affect the efficiency or time needed for processing.

The second step, which is the main step is to select the algorithm. By selecting the algorithm, we
select also the processing system. The match-off-card implements only RSA CryptoServiceProvider,
and the processing is done on a PC. On the other hand, the match-on-card implements two
algorithms RSA and RSA CryptoServiceProvider, and the national eID biometric card will be used as
the processing system. The main test case in this paper will compare the efficiency of the
match-off-card and match-on-card, for different data size, algorithms and processes.

The final step is to choose the process, encryption or signing. Both can be processed on a PC or
card and will influence differently the processing time.

As explained above, different parameters will have an impact on the efficiency. All these
parameters will be grouped in three test cases. The first test case will compare two NET framework
classes RSA and RSA CSP, in the encryption process using match-on-card technology. The second

Figure 6. The 1 KB text file.

4. Experimental Results

All the experiments conducted in this paper are done using biometricefficiency_FIEK, as described
in Section 3, and its source code is freely available on GitHub.

The first step is to select the size of the text file for the experiment. The user can select between
1 KB, 10 KB, 50 KB, 100 KB, 1 MB, 2 MB, 5 MB and 10 MB. Those files, each will have impact on both
processes in different ways, which affect the efficiency or time needed for processing.

The second step, which is the main step is to select the algorithm. By selecting the algorithm,
we select also the processing system. The match-off-card implements only RSA CryptoServiceProvider,
and the processing is done on a PC. On the other hand, the match-on-card implements two algorithms
RSA and RSA CryptoServiceProvider, and the national eID biometric card will be used as the processing
system. The main test case in this paper will compare the efficiency of the match-off-card and
match-on-card, for different data size, algorithms and processes.

The final step is to choose the process, encryption or signing. Both can be processed on a PC or
card and will influence differently the processing time.

Appl. Syst. Innov. 2018, 1, 37 8 of 17

As explained above, different parameters will have an impact on the efficiency. All these
parameters will be grouped in three test cases. The first test case will compare two NET framework
classes RSA and RSA CSP, in the encryption process using match-on-card technology. The second
test case will compare the efficiency of the match-off-card and match-on-card processing system in
the encryption, using RSA CSP class. The third test case will compare again match-off-card and
match-on-card processing system, but now in the signing process, again using the RSA CSP class.

4.1. RSA vs. RSA Crypto Service Provider (CSP)—Encryption with National eID Biometric card

The first experiment will compare the RSA class and RSA Crypto Service Provider class from the
NET framework, in the encryption process, using the match-on-card processing system on national
eID biometric card.

The experiment will include all test vectors, and for each text file, the experiment will be executed
10 times. This will serve the accuracy of the experiment and will help to generate the average time,
best time and worst time of execution.

The experimental results, for all test vectors are shown in Table 1 and graphically in Figure 7.

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 8 of 17

test case will compare the efficiency of the match-off-card and match-on-card processing system in
the encryption, using RSA CSP class. The third test case will compare again match-off-card and
match-on-card processing system, but now in the signing process, again using the RSA CSP class.

4.1. RSA vs. RSA Crypto Service Provider (CSP)—Encryption with National eID Biometric card

The first experiment will compare the RSA class and RSA Crypto Service Provider class from
the NET framework, in the encryption process, using the match-on-card processing system on
national eID biometric card.

The experiment will include all test vectors, and for each text file, the experiment will be
executed 10 times. This will serve the accuracy of the experiment and will help to generate the
average time, best time and worst time of execution.

The experimental results, for all test vectors are shown in Table 1 and graphically in Figure 7.

Figure 7. Graphical results of the experiment. Figure 7. Graphical results of the experiment.

Appl. Syst. Innov. 2018, 1, 37 9 of 17

Table 1. Results RSA vs. RSA Crypto Service Provider (CSP).

Size 1 KB 10 KB 50 KB 100 KB 1 MB 2 MB 5 MB 10 MB

#. RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP

1 3.22 2.53 13.65 18.26 49.58 66.03 90.85 127.79 868.2 1235.4 1622.7 2466.8 4050.0 6553.7 8100.2 12,446.0
2 0.87 1.81 11.41 12.56 41.28 62.38 84.34 123.08 851.6 1224.2 1625.2 2449.4 4062.8 6779.2 8071.2 12,856.5
3 0.87 1.33 7.86 12.91 41.07 60.54 81.37 119.40 812.7 1295.1 1626.7 2467.2 4056.1 6801.4 8304.1 12,174.1
4 0.90 1.33 9.21 12.31 40.49 60.33 78.67 119.22 827.2 1387.7 1627.0 2449.3 4029.9 6348.8 8100.7 12,187.8
5 0.82 2.00 7.86 12.39 42.08 60.52 79.90 118.92 804.6 1312.5 1620.0 2446.6 4103.8 6091.3 8041.1 12,173.6
6 0.81 1.33 8.46 12.22 47.41 59.45 78.41 118.89 804.6 1603.8 1608.9 2445.5 4214.8 6096.6 8617.1 12,258.2
7 1.10 1.30 8.01 12.29 40.30 59.69 78.44 118.77 811.6 1299.4 1615.8 2459.8 4444.2 6082.7 8258.5 13,051.2
8 0.82 1.23 8.44 12.20 39.21 59.52 79.38 118.88 818.6 1285.9 1607.6 2448.7 4407.9 6076.6 8031.8 12,241.2
9 0.83 1.57 7.98 12.33 39.27 59.77 105.83 118.90 804.7 1254.9 1631.4 2448.4 4048.4 6131.0 8126.5 12,189.7

10 0.80 1.23 8.28 12.39 39.36 59.80 105.19 118.83 800.8 1218.1 1606.3 2446.7 4030.3 6095.1 8112.3 12,173.3

Appl. Syst. Innov. 2018, 1, 37 10 of 17

Two things characterize this experiment. Firstly, as depicted in Figure 7, one can see from the first
experiment that more time (expressed in milliseconds) will be spent at the beginning of an experimental
cycle. This can be seen especially in the 1 KB and 10 KB experiment, where the processing time is
greater in the first cycle. This because the time needed to load the data on the memory, as basic
concepts from the memory organization of smart card memory [16]. After that, the time needed for
processing is shorter.

The second thing to notice is the change in processing time, when we increase the size of data.
The processing time will be increased when we process a larger amount of data, but the class RSA
performs better than the class RSA CSP. The difference in processing time increases with each larger
data set, as shown in Table 2 and Figure 8.

In this case, we can conclude that the class RSA is more efficient than RSA CSP, especially when
we have a large amount of data.

Table 2. Average time of RSA vs. RSA CSP.

Average Time (ms)

Size RSA RSA CSP Diff

1 KB 1.10 1.56 41.72%
10 KB 9.12 12.99 42.45%
50 KB 42.00 60.80 44.76%

100 KB 86.24 120.27 39.46%
1 MB 820.46 1311.71 59.88%
2 MB 1619.16 2452.83 51.49%
5 MB 4144.82 6305.64 52.13%
10 MB 8176.34 12,375.17 51.35%

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 10 of 17

Two things characterize this experiment. Firstly, as depicted in Figure 7, one can see from the
first experiment that more time (expressed in milliseconds) will be spent at the beginning of an
experimental cycle. This can be seen especially in the 1 KB and 10 KB experiment, where the
processing time is greater in the first cycle. This because the time needed to load the data on the
memory, as basic concepts from the memory organization of smart card memory [16]. After that, the
time needed for processing is shorter.

The second thing to notice is the change in processing time, when we increase the size of data.
The processing time will be increased when we process a larger amount of data, but the class RSA
performs better than the class RSA CSP. The difference in processing time increases with each larger
data set, as shown in Table 2 and Figure 8.

In this case, we can conclude that the class RSA is more efficient than RSA CSP, especially when
we have a large amount of data.

Table 2. Average time of RSA vs. RSA CSP.

Average Time (ms)
Size RSA RSA CSP Diff
1 KB 1.10 1.56 41.72%
10 KB 9.12 12.99 42.45%
50 KB 42.00 60.80 44.76%

100 KB 86.24 120.27 39.46%
1 MB 820.46 1311.71 59.88%
2 MB 1619.16 2452.83 51.49%
5 MB 4144.82 6305.64 52.13%

10 MB 8176.34 12,375.17 51.35%

Figure 8. Graphical results of RSA vs. RSA CSP.

4.2. Personal Compuer (PC) vs. Card—Encryption Using RSA CSP Class

In the second experiment we will compare the two processing systems, match-off-card vs.
match-on-card. As stated above, match-off-card processing will be done using a PC, Intel Core i5
5200U CPU 2.20 GHz, 8 GB of RAM, Windows 10 64-bit operating system and using the RSA CSP
class from NET framework. However, the match-on-card uses the smart card reader to transfer the
information between the national eID biometric smart-card and the PC.

As in the first experiment, this experiment will include all eight text files and the experiment
will be executed 10 times for each file. The experimental results for all test vectors are shown in Table
3 and Figure 9.

Figure 8. Graphical results of RSA vs. RSA CSP.

4.2. Personal Compuer (PC) vs. Card—Encryption Using RSA CSP Class

In the second experiment we will compare the two processing systems, match-off-card vs.
match-on-card. As stated above, match-off-card processing will be done using a PC, Intel Core
i5 5200U CPU 2.20 GHz, 8 GB of RAM, Windows 10 64-bit operating system and using the RSA CSP
class from NET framework. However, the match-on-card uses the smart card reader to transfer the
information between the national eID biometric smart-card and the PC.

As in the first experiment, this experiment will include all eight text files and the experiment will
be executed 10 times for each file. The experimental results for all test vectors are shown in Table 3 and
Figure 9.

Appl. Syst. Innov. 2018, 1, 37 11 of 17

Table 3. Results of personal computer (PC) vs. card.

Size 1 KB 10 KB 50 KB 100 KB 1 MB 2 MB 5 MB 10 MB

RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP

1 3.16 2.53 12.55 18.26 60.67 66.03 120.60 127.79 1217.8 1235.4 2479.8 2466.8 6603.3 6553.7 13,160.6 12,446.0
2 1.48 1.81 20.58 12.56 59.56 62.38 119.04 123.08 1214.6 1224.2 2438.2 2449.4 6419.6 6779.2 12,201.2 12,856.5
3 1.33 1.33 12.12 12.91 59.65 60.54 118.85 119.40 1216.3 1295.1 2434.1 2467.2 6257.3 6801.4 12,180.8 12,174.1
4 1.29 1.33 12.07 12.31 68.15 60.33 119.35 119.22 1216.6 1387.7 2440.3 2449.3 6359.9 6348.8 12,173.6 12,187.8
5 1.28 2.00 12.05 12.39 59.38 60.52 118.84 118.92 1223.2 1312.5 2431.2 2446.6 6083.2 6091.3 12,155.7 12,173.6
6 1.24 1.33 12.54 12.22 59.50 59.45 118.75 118.89 1219.8 1603.8 2434.7 2445.5 6084.8 6096.6 12,931.1 12,258.2
7 1.25 1.30 12.57 12.29 59.45 59.69 118.80 118.77 1220.2 1299.4 2434.5 2459.8 6126.9 6082.7 12,235.5 13,051.2
8 1.24 1.23 12.11 12.20 60.55 59.52 119.10 118.88 1217.1 1285.9 2432.5 2448.7 6106.4 6076.6 12,215.9 12,241.2
9 1.23 1.57 12.06 12.33 60.70 59.77 119.27 118.90 1217.0 1254.9 2429.7 2448.4 6079.7 6131.0 12,179.4 12,189.7

10 1.23 1.23 11.99 12.39 59.44 59.80 118.84 118.83 1217.6 1218.1 2517.4 2446.7 6076.0 6095.1 12,272.7 12,173.3

Appl. Syst. Innov. 2018, 1, 37 12 of 17

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 12 of 17

Figure 9. Graphical results of the experiment.

As with the previous experiment, more time will be needed at the beginning of each
experiment, for the same reason as before. PCs also have internal memory, and more time will be
needed for data to load and stored there [17].

The main conclusion from this experiment that we can draw is that the processing time
increases exponentially with the size of a file, as shown in Table 4 and Figure 10. But, we cannot
draw a conclusion as to which processing time is more efficient, since both systems perform roughly
the same. So, neither of the match-on-card or match-off-card processing systems performs better and
both can be used for encryption of information.

Table 4. Average time of PC vs. card.

Average Time (ms)
Size PC Card Diff
1 KB 1.47 1.56 6.20%
10 KB 13.06 12.99 −0.59%
50 KB 60.70 60.80 0.16%

100 KB 119.14 120.27 0.95%
1 MB 1218.03 1311.71 7.69%
2 MB 2447.24 2452.83 0.23%
5 MB 6219.72 6305.64 1.38%

10 MB 12,370.65 12,375.17 0.04%

Figure 9. Graphical results of the experiment.

As with the previous experiment, more time will be needed at the beginning of each experiment,
for the same reason as before. PCs also have internal memory, and more time will be needed for data
to load and stored there [17].

The main conclusion from this experiment that we can draw is that the processing time increases
exponentially with the size of a file, as shown in Table 4 and Figure 10. But, we cannot draw a
conclusion as to which processing time is more efficient, since both systems perform roughly the same.
So, neither of the match-on-card or match-off-card processing systems performs better and both can be
used for encryption of information.

Table 4. Average time of PC vs. card.

Average Time (ms)

Size PC Card Diff

1 KB 1.47 1.56 6.20%
10 KB 13.06 12.99 −0.59%
50 KB 60.70 60.80 0.16%
100 KB 119.14 120.27 0.95%
1 MB 1218.03 1311.71 7.69%
2 MB 2447.24 2452.83 0.23%
5 MB 6219.72 6305.64 1.38%

10 MB 12,370.65 12,375.17 0.04%

Appl. Syst. Innov. 2018, 1, 37 13 of 17

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 13 of 17

Figure 10. Average time of PC vs. card.

4.3. PC vs. Card—Signing Using RSA CSP Class

The third and last experiment compares again two processing systems, match-off-card vs.
match-on-card, using the signing process. We use the same devices, PC for the match-off-card and
national eID bio-metric card for match-on-card.

The results of the experiment, for all eight text files and 10 cycles for each file, are shown in
Table 5 and Figure 11.

Figure 11. Graphical results of the experiment for signing RSA vs. card.

Figure 10. Average time of PC vs. card.

4.3. PC vs. Card—Signing Using RSA CSP Class

The third and last experiment compares again two processing systems, match-off-card vs.
match-on-card, using the signing process. We use the same devices, PC for the match-off-card and
national eID bio-metric card for match-on-card.

The results of the experiment, for all eight text files and 10 cycles for each file, are shown in Table 5
and Figure 11.

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 13 of 17

Figure 10. Average time of PC vs. card.

4.3. PC vs. Card—Signing Using RSA CSP Class

The third and last experiment compares again two processing systems, match-off-card vs.
match-on-card, using the signing process. We use the same devices, PC for the match-off-card and
national eID bio-metric card for match-on-card.

The results of the experiment, for all eight text files and 10 cycles for each file, are shown in
Table 5 and Figure 11.

Figure 11. Graphical results of the experiment for signing RSA vs. card. Figure 11. Graphical results of the experiment for signing RSA vs. card.

Appl. Syst. Innov. 2018, 1, 37 14 of 17

Table 5. Signing RSA vs. card.

Size 1 KB 10 KB 50 KB 100 KB 1 MB 2 MB 5 MB 10 MB

RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP RSA CSP

1 10.33 2.38 7.24 17.28 7.41 66.17 7.88 134.81 16.3 1258.8 21.1 2448.2 52.5 6187.9 73.6 12,189.5
2 7.09 2.19 7.29 12.74 7.41 62.28 7.81 123.81 13.8 1236.4 20.6 2488.6 48.7 6125.3 73.1 12,153.6
3 7.10 2.60 7.15 12.37 7.82 62.15 7.81 120.42 13.9 1249.5 20.3 2441.4 40.1 6123.7 73.6 12,157.3
4 7.18 2.67 7.22 11.99 7.41 61.33 7.74 118.84 13.8 1271.7 20.3 2429.1 40.3 6117.0 95.6 12,669.9
5 7.09 2.43 7.23 12.49 7.49 62.36 7.78 118.83 13.8 1248.7 20.3 2496.6 40.4 6119.1 100.9 12,627.0
6 7.12 2.22 7.15 12.66 7.48 59.72 7.81 118.83 13.8 1231.7 21.2 2679.9 41.3 6128.2 74.8 12,154.5
7 7.18 1.96 7.22 13.40 7.40 59.97 7.78 119.57 13.7 1231.9 20.4 2608.8 41.0 6117.7 73.0 12,160.6
8 7.63 1.33 7.23 12.08 7.93 59.54 7.74 118.99 13.7 1233.5 20.5 2658.4 40.6 6303.1 73.0 12,162.9
9 7.16 1.33 7.15 12.30 7.50 59.59 7.86 119.16 13.7 1236.4 20.5 2549.1 40.4 6683.6 73.1 12,300.0

10 7.19 1.33 7.18 12.72 7.46 59.61 7.91 118.72 13.7 1236.0 20.4 2428.7 40.4 6241.6 96.1 13,158.7

Appl. Syst. Innov. 2018, 1, 37 15 of 17

This experiment is very interesting and one can draw few conclusions. Only in the 1 KB test
case has the national biometric card performed better than PC. In the other seven text files, the PC
has performed better. From Table 6 and Figure 12, we notice that match-off-card processing time
increases very little when we increase the size of the test files. This is not the case in the match-on-card
processing system, where the processing time increases exponentially when we increase the file size.

Table 6. Average time for signing PC vs. card.

Average Time (ms)

Size PC Card Diff

1 KB 7.51 2.04 −72.77%
10 KB 7.21 13.00 80.45%
50 KB 7.53 61.27 713.49%

100 KB 7.81 121.20 1451.75%
1 MB 14.01 1243.48 8772.78%
2 MB 20.57 2522.90 12,165.59%
5 MB 42.56 6214.72 14,500.78%

10 MB 80.68 12,373.40 15,237.16%

Appl. Syst. Innov. 2018, 2, x FOR PEER REVIEW 15 of 17

This experiment is very interesting and one can draw few conclusions. Only in the 1 KB test
case has the national biometric card performed better than PC. In the other seven text files, the PC
has performed better. From Table 6 and Figure 12, we notice that match-off-card processing time
increases very little when we increase the size of the test files. This is not the case in the
match-on-card processing system, where the processing time increases exponentially when we
increase the file size.

So, from this experiment we can conclude that, in the signing process, overall match-on-card is
more efficient than a match-off-card, especially for larger files. Match-on-card can still be used, in
cases when we have small files to process.

Table 6. Average time for signing PC vs. card.

Average Time (ms)
Size PC Card Diff
1 KB 7.51 2.04 −72.77%
10 KB 7.21 13.00 80.45%
50 KB 7.53 61.27 713.49%

100 KB 7.81 121.20 1451.75%
1 MB 14.01 1243.48 8772.78%
2 MB 20.57 2522.90 12,165.59%
5 MB 42.56 6214.72 14,500.78%

10 MB 80.68 12,373.40 15,237.16%

Figure 12. Average time for signing RSA vs. card.

Another form of data representation could be used, especially for representing Figures 8, 10 and
12 using the Weierstrass–Mandelbrot function as in [18] and [19], which will be future work.

5. Conclusions

Match-on-card and match-off-card are two processing systems used today for security
processing. In this paper, match-on-card uses a national biometric card, with very advanced
hardware architecture, to process the data, whereas a PC is used as a device in the match-off-card.
Between them are many advantages and disadvantages, each playing a significant role when
choosing them as the processing device.

As shown within experimental results, there are few cases where, usually when handling a
small amount of data, a biometric card has a better performance; even for a very small amount of
data, less than 1 kB, the biometric card outperforms the PC, as presented in Figure 12. With an
increased amount of data, the performance of the biometric card decreases, as was expected, due to
limited hardware resources of the biometric card, as described in Section 2.

Figure 12. Average time for signing RSA vs. card.

So, from this experiment we can conclude that, in the signing process, overall match-on-card is
more efficient than a match-off-card, especially for larger files. Match-on-card can still be used, in cases
when we have small files to process.

Another form of data representation could be used, especially for representing Figures 8, 10
and 12 using the Weierstrass–Mandelbrot function as in [18,19], which will be future work.

5. Conclusions

Match-on-card and match-off-card are two processing systems used today for security processing.
In this paper, match-on-card uses a national biometric card, with very advanced hardware architecture,
to process the data, whereas a PC is used as a device in the match-off-card. Between them are
many advantages and disadvantages, each playing a significant role when choosing them as the
processing device.

As shown within experimental results, there are few cases where, usually when handling a small
amount of data, a biometric card has a better performance; even for a very small amount of data,
less than 1 kB, the biometric card outperforms the PC, as presented in Figure 12. With an increased
amount of data, the performance of the biometric card decreases, as was expected, due to limited
hardware resources of the biometric card, as described in Section 2.

Appl. Syst. Innov. 2018, 1, 37 16 of 17

Future work will add more functionality to biometricefficiency_FIEK app, such as using elliptic
curve algorithms, verifying the digital signature, and adding more encryption algorithms such as
the AES.

Author Contributions: G.K., P.R. and B.R. designed the application. P.R. developed the application. G.K. and P.R.
conceived and designed the experiments. G.K. performed the experiments; B.R. and P.R. analyzed the data. G.K.,
P.R. and B.R. wrote the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Biometrics for Payment Applications the SPA Vision on Financial Match-on-Card; Smart Payment Association
(SPA): Munich, Germany, November 2013.

2. Pang, C.T.; Yun, Y.W.; Xudong, J. On-Card Matching. In Encyclopedia of Biometrics; Springer: New York, NY,
USA, 2009.

3. Smart Cards and Biometrics. In A Smart Card Alliance Physical Access Council White Paper; Smart Card Alliance:
Princeton, NJ, USA, March 2011.

4. Bringer, J.; Chabanne, H.; Pointcheval, D.; Zimmer, S. An Application of the Boneh and Shacham Group
Signature Scheme to Biometric Authentication. In Proceedings of the 3rd International Workshop on Security
(IWSEC ‘08), Kagawa, Japan, 25–27 November 2008.

5. Grother, P.; Salamon, W.; Watson, C.; Indovina, M.; Flanagan, P. MINEX II Performance of Fingerprint
Match-on-Card Algorithms Phase II/III Report—NIST Interagency Report 7477; Information Access
Division—National Institute of Standards and Technology: Gaithersburg, MD, USA, 2009.

6. Security and Performance Evaluation Platform of Biometric Match on Card. In Proceedings of the
International Conference on Mobile Applications and Security Management (ICMASM), Sousse, Tunisia,
22–24 June 2013.

7. Cooper, D.; Dang, H.; Lee, P.; MacGregor, W.; Mehta, K. Secure Biometric Match-on-Card Feasibility Report;
NIST Interagency Report 7452; National Institute of Standards and Technology: Gaithersburg, MD, USA,
November 2007. Available online: https://csrc.nist.gov/publications/detail/nistir/7452/final (accessed on
22 August 2018).

8. ICAO Doc9303, Machine Readable Travel Documents, 7th ed.; Available online: https://www.icao.int/
publications/Documents/9303_p3_cons_en.pdf (accessed on 22 August 2018).

9. Rexha, B.; Imeraj, D.; Shabani, I. Using efficient TRNGs for PSEUDO profile in national eID card. Int. J.
Recent Contrib. Eng. Sci. 2018, 6, 57–73. [CrossRef]

10. I. AG, Technical Details for SLE 78CLX1280P. Available online: http://www.infineon.com/ (accessed on
22 August 2018).

11. Giesecke & Devrient GmbH. Help files and technical notes for HIGHSEC eID App. Available online:
https://mpb.rks-gov.net/eID.html (accessed on 22 August 2018).

12. Rexha, B.; Qerimi, E.; Neziri, V.; Dervishi, R. Using eID Pseudonymity and Anonmity for Strengthing User
Freedom in Internet; Time for a European Internet; Central and Eastern European e|Dem and e|Gov Days
2015 Independence Day: Budapest, Hungary, 2015.

13. Krasniqi, G.; Rama, P.; Rexha, B. Source code of application developed and hosted by GitHub. Available
online: https://github.com/petritrama-unipr/BiometricEfficiency_FIEK (accessed on 20 July 2018).

14. Microsoft. Smart Card Authentication. Available online: https://docs.microsoft.com/en-us/windows/
desktop/secauthn/smart-card-authentication (accessed on 22 August 2018).

15. Microsoft. RSACryptoServiceProvider Class. NET Framework 4.7.2. Available online: https://msdn.
microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider(v=vs.110).aspx
(accessed on 20 July 2018).

16. Rankl, W.; Effing, W. Smart Card Handbook; John Wiley & Sons Ltd.: London, UK, 2003.

https://csrc.nist.gov/publications/detail/nistir/7452/final
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
http://dx.doi.org/10.3991/ijes.v6i1.8357
http://www.infineon.com/
https://mpb.rks-gov.net/eID.html
https://github.com/petritrama-unipr/BiometricEfficiency_FIEK
https://docs.microsoft.com/en-us/windows/desktop/secauthn/smart-card-authentication
https://docs.microsoft.com/en-us/windows/desktop/secauthn/smart-card-authentication
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider(v=vs.110).aspx

Appl. Syst. Innov. 2018, 1, 37 17 of 17

17. Stallings, W. Operating Systems: Internals and Design Principles; Pearson Prentice Hall: Upper Saddle River,
NJ, USA, 2012.

18. Guariglia, E. Entropy and Fractal Antennas. Entropy 2016, 18, 1–17. [CrossRef]
19. Guariglia, E. Spectral Analysis of the Weierstrass-Mandelbrot Function. In Proceedings of the 2nd

International Multidisciplinary Conference on Computer and Energy Science, Split, Croatia, 12–14 July 2017.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e18030084
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	National Biometric Identity Cards
	Preparing Testing Environment
	Developing the Application
	Smart Card Middleware
	Pseudocode
	Software Functionalities

	Experimental Results
	RSA vs. RSA Crypto Service Provider (CSP)—Encryption with National eID Biometric card
	Personal Compuer (PC) vs. Card—Encryption Using RSA CSP Class
	PC vs. Card—Signing Using RSA CSP Class

	Conclusions
	References

