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Abstract: The ongoing Zika virus (ZIKV) in the Americas has been a serious public health emergency
since 2015. Since Zika is a vector-borne disease, the size of the vector population in the affected area
plays a key role in controlling the scale of the outbreak. The primary vectors for Zika, the Aedes Agypti
and Aedes Albopictus species of mosquitoes, are highly sensitive to climatic conditions for survival
and reproduction. Additionally, increased international travel over the years has caused the disease
outbreak to turn into a pandemic affecting five continents. The mosquito population and the human
travel patterns are the two main driving forces affecting the persistence and resurgence of Zika
and other vector-borne diseases. This paper presents an enhanced dynamic model that simulates
the 2013–2014 French Polynesia Zika outbreak incorporating the temperature dependent mosquito
ecology and the local transit network (flights and ferries). The study highlights the importance of
human travel patterns and mosquito population dynamics in a disease outbreak. The results predict
that more than 85% of the population was infected by the end of the outbreak and it lasted for
more than five months across the islands. The basic reproduction number (R0) for the outbreak is
also calculated using the next-generation-matrix for validation purposes. Additionally, this study is
focused on measuring the impact of intervention strategies like reducing the mosquito population,
preventing mosquito bites and imposing travel bans. French Polynesia was chosen as the region
of interest for the study because of available demographic, climate and transit data. Additionally,
results from similar studies for the region are available for validation and comparison. However,
the proposed system can be used to study the transmission dynamics of any vector-borne disease in
any geographic region by altering the climatic and demographic data, and the transit network.

Keywords: agent-based modeling; vector-borne diseases; transit network; Zika virus; intervention
strategies

1. Introduction

The 2015–2016 Zika virus (ZIKV) epidemic in the Americas was one of the largest vector borne
disease outbreaks with over a million reported cases. The causal links between ZIKV infection and
serious neurological disorders, like microcephaly [1] and Guillan-Barré Syndrome (GBS) [1] have
led to a major global concern. The reasons for the virus’ higher infectivity and increased severity
are being researched extensively. Some studies have partially shown that the enhanced viremia of
Zika in humans is a result of a new mutation of the virus acquired after the Micronesia outbreak in
2007 [2,3]. Zika can be transmitted to humans by infected Aedes Agypti or Aedes Albopictus mosquito
bites, sexual contact, or blood transfusions [1]. ZIKV is very similar to the other arboviruses like
Dengue Virus (DNV) and West Nile Virus (WNV) in terms of diagnostics, and additionally Zika is
asymptomatic in about 80% cases [1]. The asymptomatic nature and difficult differential diagnosis
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of the disease lead to inconsistent case reporting. This makes predicting and controlling the scale of
a Zika epidemic challenging, and thus necessitates computational methods to simulate outbreaks,
study the transmission dynamics of the disease, and develop effective intervention strategies.

Since Zika is a vector-borne disease, the size of the vector population in the affected area plays
a key role in governing the scale of the outbreak. The Aedes mosquitoes are highly sensitive to
environmental conditions, and thus temperature and precipitation are critical to mosquito survival
and breeding [4]. Additionally, increased international travel is another major factor that has caused
the disease outbreak to turn into a pandemic affecting five continents. The 2013–2014 Zika outbreak
in French Polynesia was the largest Zika outbreak before the Americas outbreak in 2015 [5]. This
study presents an enhanced dynamic model that simulates the transmission of Zika in 23 islands of
French Polynesia incorporating a temperature dependent mosquito ecology instead of using a static
vector population and the local transit network (flights and ferries) in French Polynesia. Furthermore,
the model is used to study the effectiveness of outbreak control and mitigation methods like prevention
of mosquito bites and imposition of travel bans after a set number of cases have been reported. The
results also highlight the importance of early reporting and effectuation of prevention and control
strategies. Markov Chain Monte Carlo experiments were conducted to estimate the size of the outbreak
for each configuration of the model.

In order to estimate the size of the mosquito population, it is important to model the mosquito
life cyle which includes four distinct forms: eggs, larvae, pupae and adults. The eggs hatch
into larvae, which develop into pupae, which mature into adults and female adults lay eggs
under suitable conditions. In this study, each stage in the gonotrophic life cycle of mosquitoes
is modeled as compartments governed by a set of differential equations. The progression rates
from one compartment to another and the mortality rate in each compartment may vary with
temperature. Because only female mosquitoes bite, the daily female adult population computed
using this model are used as an input for the Zika transmission model, which is a combination of two
other compartmental models, an SEI (Susceptible-Exposed-Infectious) model for the mosquitoes and
an SEIR (Susceptible-Exposed-Infectious-Recovered/Removed) model for the humans, such that the
infectious mosquitoes infect the susceptible humans and vice versa. The interaction between these three
compartmental models and the associated parameters are shown in Figure 1. The differential equations
governing these models are discretized on a per day basis and an agent based model (both vectors and
humans are agents) is created for the disease transmission. The human travel patterns have not been
taken into account in the existing models for studying the transmission dynamics for Zika in French
Polynesia [6,7]. The transit network for the 23 islands is used to transport people from one island to
another on each day.

Because of the short life span of mosquitoes, they are assumed not to recover from the disease.
Mosquitoes fly over very short distances, therefore migration of mosquitoes from one island to another
is not taken into account. There is no infection induced mortality for humans or mosquitoes. Humans
are long lived compared to the duration of the outbreak and the life span of mosquitoes therefore
human mortality and birth rates are ignored. Humans are assumed to have lifelong immunity after
being infected once [8,9]. All humans are assumed to be susceptible to the disease at the start of the
outbreak because of the non-availability of any vaccine. Despite the possibility of sexual transmission
of Zika, it is ignored in this research because it is difficult to model sexual transmission of any disease
unless the sexual contact network is known for the population and assuming homogeneous random
sexual contacts between individuals is not reflective of real life human behavior. Furthermore, research
conducted by Gao, Lou et al. in [10] has shown that sexual transmission contributes only about 3% to
the basic reproduction number for Zika. Additionally, the possibility of vertical transmission of Zika in
mosquitoes is still being explored [11–13] and is therefore not considered to be a factor in this research.
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Figure 1. Phase 1 and 2: Interaction between the three compartmental models. Red solid arrows indicate
mortality and removal from the system. Red dashed arrows indicate contact between infectious and
susceptible entities. The dotted arrow from Susceptibles to Exposed indicates indirect movement from
S to E, dependent on the infectious mosquitoes/humans. Solid arrows indicate direct movement from
one compartment to another.

Additionally, we explored the effect of implementing intervention measures to control the
mosquito population, or to prevent mosquito bites, or to restrict travel to infected islands. It was seen
that reducing the mosquito population and preventing mosquito bites led to a significant decrease
in the size of the outbreak, but imposing travel bans after the start of the outbreak did not change
the outcome unless islands were totally isolated before the infection reached them. It is seen that
proactive mosquito control measures addressing both reducing the size of the vector population and
preventing contact mosquito-human contact are significantly more effective than controlling human
travel patterns.

In the next section, we discuss research that has been conducted in the area of vector borne
disease modeling. Section 3 describes the system and all the parameters associated with each model in
detail. The computation of the basic reproduction number is also discussed at the end of Section 3.
The experiments and results are explained in Section 4 and we conclude the paper in Section 5.

2. Related Work

The conventional SEIR/SIR/SIS mathematical models have been used to model outbreaks and
predict the scale of epidemics in the past. A review of the basic SIR model and its variations for
modeling Dengue outbreaks is presented by Bakach [14]. The basic SIR model for infectious diseases,
and the general setup for mathematical models for vector borne diseases have been described in detail
in this work. The transmission dynamics of Zika in French Polynesia have been studied to predict the
scale of future epidemics in the island populations in [6]. In this study, the authors use a mathematical
model to estimate the basic reproduction number for the ZIKV virus in six archipelagos in French
Polynesia. However, the mosquito population is scaled relative to the size of the human population,
and human travel patterns are not considered for the model, making the human population on each
island static. Additionally, the variation in the outbreak outcomes with change in mosquito population
due to climatic changes or intervention strategies has not been studied in [6]. The importance of
human travel in a disease outbreak for H1N1 and influenza is highlighted in [15,16], respectively.
The authors in [16] show that frequent travelers affect the spread of disease only if they are infected
early in the outbreak and the spread of the disease is not rapid. This result is important with respect to
Zika because of the low ranging basic reproduction number for Zika, which highlights the importance
of international travelers in Zika outbreaks. The effect of climate on the mosquito breeding cycle
is discussed in [17,18]. They present mathematical and compartmental models to include seasonal
variations in predicting the population dynamics of mosquitoes.
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In this paper, human travel patterns and temperature dependent mosquito ecology have been
integrated with the conventional human and vector compartmental models to improve the system’s
realism and to study the change in the outbreak outcomes as these two parameters are varied.
Furthermore, the measure of effectiveness of mosquito control and bite prevention methods, and travel
advisories to control or prevent the outbreak is a novel contribution of this study. This model can be
extended to control the mosquito population in areas with large mosquito populations that are also
visited by a high number of humans if the commute data is available as highlighted by Adams and
Kapan in [19]. They have investigated the role of highly structured human commuting patterns in
metropolitan cities in the epidemiology of Dengue. The impact of spatial heterogeneity of resources like
hosts and breeding sites on the size of mosquito population in an area is modeled in [20]. The mosquito
population is assumed to be uniformly distributed across the islands in our system which can be
extended to take into account breeding sites and number of humans given land use data.

3. Methodology

The system is divided into three phases: (1) the mosquito gonotrophic cycle, to determine the
number of human biting female mosquitoes (only these mosquitoes play a part in the spread of the
disease) (2) the Zika transmission phase, to study the outbreak dynamics and (3) the local transit
network to simulate the human movement from one island to another. Phases 1 and 2 are a combination
of three compartmental models governed by three sets of differential equations. The three models and
their interaction with each other is shown in Figure 1. The phases are explained in detail below.

3.1. Mosquito Ecology

The mosquito life cycle can be modeled using differential equations that define the rates of
change in each stage with respect to time. This continuous system governs the transition from eggs
to larvae, larvae to pupae, and pupae to adults and their respective mortality rates [18,20,21]. In this
study, the differential equations are discretized and the number of mosquitoes in each compartment,
Eggs (E)), Larvae (L), Pupae (P) and Adults (A) are computed on a daily basis. Because only female
mosquitoes bite, and contribute to the transmission of Zika, the adult compartment represents just
the female population; the gender ratio for the mosquitoes is assumed to be 1:1 [22]. The adult
compartment is further divided into three stages, the female mosquitoes searching for hosts for a blood
meal (Ah), female mosquitoes in the resting stage waiting for eggs to develop (Ar), and the females in
the oviposition stage (Ao) who lay eggs and return to the Ah stage. This model was introduced and is
described in detail in [20]. The maturation of mosquitoes in stage j into the next stage is governed by
the maturation rate ρj (mosquitoes per day) and each stage j has its own mortality rate µj (mosquitoes
per day) where j = {E, L, P, Ah, Ar, Ao}. ρAo is the oviposition rate instead of the maturation rate
for mosquitoes in the oviposition stage. Furthermore, the larval stage has a density independent
mortality rate (µL1) and a density dependent mortality rate (µL2) because competition for food and
other resources is a considerable factor in this stage [20].

3.1.1. Variation with Temperature

The dependence of the population dynamics of Aedes Agypti mosquitoes on temperature is taken
into account by varying the maturation and mortality rates with temperature [18]. The rates are
computed by regressing values of rates at different temperatures, available in [23–25]. The historical
temperature data for 2013–2014 in Tahiti were collected from [26]. All of the 23 islands are assumed to
have the same daily temperatures during the outbreak period due to lack of available data and similar
weather conditions across the islands [27]. After regressing the available data, it was observed that
the maturation rates for Pupae, Eggs, and Larvae, and the mortality rate for Eggs showed the most
variation with temperature. The oviposition rate and the number of eggs laid per oviposition were not
regressed because of lack of data. The other rates did not vary significantly with temperature so were
assumed to be independent of temperature. The regression functions and the ranges for temperature
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independent rates are shown in Table 1. The rates were regressed with temperature to find the best fit
curve, and the curve that had the minimum sum squared of residuals and hence an adjusted R-squared
value closer to one was selected for calculating the rates at varying temperature. The data points and
the corresponding graphs are shown in Figure 2.

Table 1. Mosquito ecology parameters, all rates are counts per day and T is the daily temperature
in ◦Celsius.

Parameter Symbol Type Value

Number of eggs laid per oviposition b Ranged random (50–300) [20]
Oviposition Rate ρAo Ranged random (3.0–4.0) [20]
Egg Mortality Rate µE Regression −0.0008096T3 + 0.06967T2 − 1.963T + 18.37
Egg Maturation Rate ρE Regression −0.0003574T2 + 0.03335t− 0.3827
Density Independent Larvae Mortality Rate µL1 Ranged random (0.32–0.80) [20]
Density Dependent Larvae Mortality Rate µL2 Constant 0.05 [20]
Larva Maturation Rate ρL Regression −0.0001032T3 + 0.007617T2 − 0.1744T + 1.326
Pupa Mortality Rate µP Ranged random (0.33–1.0) [20]
Pupa Maturation Rate ρP Regression −0.0001083T4 + 0.01104T3 − 0.4147T2 + 6.834T − 41.54
Adult Mortality Rate (Hosting stage) µAh Ranged random (0.322–0.598) [20]
Adult Maturation Rate (Hosting stage) ρAh Ranged random (0.322–0.598) [20]
Adult Maturation Rate (Resting stage) ρAr Ranged random (0.30–0.56) [20]
Adult Mortality Rate (Resting stage) µAr Ranged random (0.0034–0.01) citemosquitomodel
Adult Mortality Rate (Oviposition stage) µAo Ranged random (0.41–0.56) [20]

Figure 2. The variation of maturation and mortality rates with temperature. The dotted line represents
the best curve that fit the data points. The purple dots represent the data points.
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3.1.2. Synthetic Mosquito Population

The number of mosquitoes in each of the six stages were estimated by discretizing the system
defined by Equation (1):

∂E
∂t = bρAo − (µE + ρE)E,

∂L
∂t = ρEE− (µL1 + µL2 L + ρL)L,

∂P
∂t = ρLL− (µP + ρP)P,

∂Ah
∂t = ρP

2 P + ρAo Ao − (µAh + ρAh)Ah,

∂Ar
∂t = ρAh Ah − (µAr + ρAr )Ar,

∂Ao
∂t = ρAr Ar − (µAo + ρAo )Ao.

(1)

Since data for the density of mosquitoes in French Polynesia are not available, the initial adult
population was estimated as a proportion of the human population on each island. The average values
for all the parameters, as shown in Table 1, were used to solve for the equilibrium state for the system
defined by Equation (1). The ratio of the adult population in the three stages, oviposition, resting,
and hosting at the equilibrium state were used to divide the initial adult population, and the ratio
between the adult population and eggs, larvae and pupae were used to initialize those populations. A
control factor was added to prevent the adult population from growing or declining exponentially.
The control parameters account for the additional factors like competition for resources, availability of
breeding sites, predators, etc., which were not considered in the model.

3.2. Mosquito Human Interaction (SEI-SEIR Model)

The outbreak was simulated using agent-based models, where the human and adult mosquito
population in the hosting stage are the agents that participate in the transmission of the disease.
The total number of adult mosquitoes at the start of the experiment were assumed to be proportional
to the size of the human population. The number of mosquitoes per human (m) has been shown to
vary between two and four in previous studies [28,29]. The base value for this parameter was set to
three and reduced to study the impact of intervention strategies. This count includes both male and
female adult populations. Since only female mosquitoes in the hosting stage are vectors of the disease,
only these mosquitoes are treated as agents for this phase.

As stated earlier, the transmission is controlled by two compartmental systems interacting with
each other (Figure 1). The transition from one compartment to another is governed by the system of
differential equations in Equations (2) and (3):

∂SH
∂t = −βVH IV

SH
NH

,

∂EH
∂t = βVH IV

SH
NH
− αHEH ,

∂IH
∂t = αHEH − γIH ,

∂RH
∂t = γIH ,

(2)
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∂SV
∂t = ρP

2 P + ρAo Ao − βHVSV
IH
NH
− (µAh + ρAh)SV ,

∂EV
∂t = βHVSV

IH
NH
− (µAh + ρAh)Ev − αV EV ,

∂IV
∂t = αV EV − (µAh + ρAh)IV ,

(3)

The total human population on each island, NH , is divided into four compartments, Susceptibles
(SH), Exposed (EH), Infectious (IH) and Recovered (RH), such that NH = SH + IH + EH + RH , and the
vector population is divided into three compartments, Susceptibles (SV), Exposed (EV) and Infectious
(IV). The total vector population is dynamic as described in Section 3.1. Infectious vectors that
bite susceptible humans transmit the disease with a probability of pvh (probability of transmission
from vectors to humans) and susceptible vectors that bite infected humans contract the disease
with a probability of phv (probability of transmission from humans to vectors). The transmission
coefficient for transmission from vector to human (βVH) is defined as the product of the corresponding
transmission probability and the bite rate (bi, number of bites per day) for infectious mosquitoes,
similarly the transmission coefficient for transmission from human to vector (βHV) is the product
of the corresponding transmission probability and the bite rate (bs, number of bites per day) for
susceptible mosquitoes. The transmission probabilities and the bite rates vary with temperature and
the expressions derived for Dengue in [17] were used to calculate these parameters (Equation (4)).
The bite rate for infectious mosquitoes is assumed to be higher (double) than the bite rate for susceptible
mosquitoes in case of Dengue [30]. The same was assumed for Zika, bi = 2bs. An infected vector bites
bi humans every day, the bites corresponding to susceptible humans out of these bi bites is equal to
bi

SH
NH

and the bites that successfully transmit the disease are pvhbi
SH
NH

, therefore the number of humans

that are infected each day is equal to βVH IV
SH
NH

. The number of infected mosquitoes is calculated

as βHV IH
SV
NH

similarly. The exposed individuals become infectious after 1
αH

days and the infectious
individuals recover after 1

γ days. Similarly the exposed mosquitoes become infectious in 1
αV

days.
The values of all the parameters and their sources are listed in Table 2.

phv =

{
0.0729T − 0.9037 (12.4 ◦C ≤ T ≤ 26.1 ◦C),

1, (26.1 ◦C ≤ T ≤ 32.5 ◦C),

pvh = 0.001044t(T − 12.286)
√
(32.461− T)(12.286 ◦C ≤ T ≤ 32.461 ◦C),

bs = 0.0043T + 0.0943 (21 ◦C ≤ T ≤ 32 ◦C).

(4)

Table 2. Disease Parameters for Zika.

Parameter Value

Transmission Probability (human to vector), phv Temperature dependent [17]
Transmission Probability (vector to human), pvh Temperature dependent [17]

Bite Rate of susceptible mosquitoes(in bites per day), bs Temperature dependent [17]
Bite Rate of infectious mosquitoes(in bites per day), bi 2bs [30]

Latent Period for humans(in days), 1
αH

random (3–15) [1]
Recovery Period for humans(in days), 1

γ 7 [1]

Latent Period for mosquitoes(in days), 1
αV

15 [31]
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3.3. Transit Network

French Polynesia is divided into five administrative divisions. Transmission of Zika in all islands
with population greater than 500 people was studied to make the simulation as complete as possible.
Table 3 shows the population and administrative divisions for all the islands that were part of the
simulation. The census 2012 data was used to get the population count for the islands [32].

Table 3. Population and administrative divisions of the islands (the capital islands are asterisk
marked *). Source: Census 2012 [32].

Island Admin Division Population

Tahiti* Windward Islands 183,480

Moorea Windward Islands 16,899

Bora Bora Leeward Islands 9596

Raitea* Leeward Islands 12,237

Tahaa Leeward Islands 5220

Huahine Leeward Islands 6303

Maupiti Leeward Islands 1194

Nuku Hiva* Marquesas Islands 2967

Ua Huka Marquesas Islands 621

Ua Pou Marquesas Islands 2175

Hiva Oa Marquesas Islands 2184

Arutua Tuamotu Gambier Islands 680

Rangiroa* Tuamotu Gambier Islands 2567

Manihi Tuamotu Gambier Islands 685

Fakarava Tuamotu Gambier Islands 806

Hao Tuamotu Gambier Islands 1066

Makemo Tuamotu Gambier Islands 832

Takaroa-Takapoto Tuamotu Gambier Islands 1262

Gambier Tuamotu Gambier Islands 1239

Tupuai* Austral Islands 2170

Rimatara Austral Islands 873

Rurutu Austral Islands 2322

Raivavae Austral Islands 940

The transit between the islands is taken into account in the simulation of the outbreak. The data
on maximum passengers traveling from one island to another via flights and ferries per week were
collected from [33]. A symmetric graph (Figure 3) with islands as nodes and number of passengers
traveling from one node to another each day was constructed using these data. In the simulation,
human agents were transported from one island to another as per the graph at the start of each day.
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Figure 3. The flight and ferry transit network: the weights on the edges denote the number of
passengers traveling from one island to another [33]. Tahiti, Raitea, Nuku Hiva, Tupuai and Rangiroa
are the capitals of their respective admistrative divisions

3.4. Basic Reproduction Number

The basic reproduction number (R0) for a disease is defined as the average number of new cases of
an infection caused by one infected individual during their infectious period in a completely susceptible
population [34]. The basic reproduction number for multi-category compartmental models can be
calculated using the next-generation matrix (NGM) [35]. The next-generation matrix, K, introduced
in [36] relates the numbers of newly infected individuals in the various categories in consecutive
generations [37]. The element Kij of the matrix K represents the number of new cases in state i caused
by a new born individual in state j. A generation is defined by the number of individuals infected by
the previous generation.

Construction of NGM

The process of constructing the NGM for a heterogeneous epidemiological system is described in
detail in [35]. The steps are:

1. Linearize the infected subsystem to get the Jacobian matrix, J.
2. Decompose the Jacobian matrix into T and Σ, where T is the transmission part and Σ is the

transition part, such that J = T + Σ. T represents the birth of new infections and Σ represents all
other transitions (recovery, mortality, etc.). Tij is the rate at which individuals in state i give rise
to individuals in state j and −Σ−1

ij represents the time an individual in state j will spend in state i
in their future life.

3. Compute K as −TΣ−1.

The basic reproduction number R0 for the infection is defined as 1
nth power of the growth of K

in n generations (geometric mean across n generations) as n grows to infinity, R0 = limn→∞(||Kn||) 1
n ,

which is also equal to its spectral radius or its largest eigenvalue [37].
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R0 is calculated as the largest eigenvalue of the matrix K = −TΣ−1. Estimates for the basic
reproduction number R0 ranged from 1.56–2.95 (95% CI: 2.0767–2.2026), which is comparable to the
values estimated in [6].

4. Experiments and Results

The outbreak was set to begin on 1 October 2013 and it was simulated until 30 April 2014 for a
total of 212 days, keeping in mind the timeline of the actual outbreak. This 7-month period provided
sufficient time for the outbreak to subside.

The infectious humans and mosquitoes were introduced in Tahiti in the simulation. The system
has two input parameters which were varied to test the intervention strategies:

1. Ratio of mosquito-human population (m): The ratio of mosquito-human population was used
to estimate the initial vector population, such that total mosquito population is m times the total
human population on each island. The base ratio was chosen as 3.

2. Transit network load (load): The network shown in Figure 3 represents the daily average of the
maximum passengers that travel from one island to another. Since all the flights or ferries may
not be full everyday, the simulation was executed by changing the load from 1 (maximum) to
{0.75, 0.50, 0.25, 0.10}.

4.1. Base Case and Validation

One-hundred Markov Chain Monte Carlo experiments were conducted for each set of values of
these parameters, and the average of the duration and size across these experiments were calculated.
The outbreak results were compared with the number of reported cases estimated in [7] using the base
case for the above two parameters, m = 3 and load = 1. The comparison for the count of reported cases
calculated using our model and as estimated is shown in Table 4. It is estimated that around 30,000
cases attended health facilities with Zika like symptoms [38], the lower count of reported cases as per
this model (≈26,000) could be because of the concurrent Dengure outbreak. Additionally, the reporting
rates used to calculate the reported cases are based on the models in [6,7] which use the base value of
30,000 to calculate the estimates of rates hence a direct comparison is not reasonable. The size of the
outbreak across all islands was calculated as 86.27% (85.2799–87.27%, CI: 95%) of the total population
which is comparable to the results obtained in [6].

Table 4. Reported Cases Comparison, reporting rates are percent of infected cases that were reported

Place Reporting Rate [7] Calculated Cases Reported Cases in [7]
(Reported, CI-95%)

Tahiti 12% 19,098 (19,022–19,175) 21,406
Moorea 8% 1156 (1150–1161) 1235
Austral Islands 17% 933 (920–946) 1208
Leeward Islands 12% 3517 (3473–3562) 3912
Marquesas Islands 11% 750 (738–762) 994
Tuamotu Gambier Islands 8% 641 (630–653) 1211
Total 26,095 (25,933–26,259) 29,966

4.2. Intervention Strategies

Experiments were conducted to study the impact of intervention strategies on the size of
the outbreak.

4.2.1. Travel Bans/Advisories

The effect of implementing travel bans in areas where sufficient cases were reported was measured.
The travel bans were effectuated by reducing the transit load parameter to (75%, 50%, 25%, 10%) from
100 % after τ number of cases were reported. τ was varied from {1, 10, 50, 100}. It was seen that
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travel bans had no effect on the size of the outbreak even if they were imposed after the first case was
reported. The first reported case was recorded using the reporting rate data available for the major
archipelagos for Zika (Table 4).

The results for the size obtained from the four reduction rates and no reduction were compared
using ANOVA. Even the most radical reduction of 10 % did not change the size of the outbreak
significantly in all islands. It is shown in Figure 4 that the size of the outbreak in Tahiti doesn’t change
in relation to reducing the transit load. However, reduction in the transit load from 100% to 25%
at the start of the simulation delayed the start of the outbreak in all other islands except for Tahiti
(the infection was introduced in Tahiti). This can be seen in Figure 5.

Figure 4. The effect of introducing travel bans (reduced transit load) on the size of the outbreak in
Tahiti (distribution of epidemic size).

Figure 5. The effect of load of transit network (load) on the start of the outbreak on each island (m = 3).
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4.2.2. Mosquito Control

Mosquito control methods like aerial spraying, removal of breeding places and stagnant water,
or use of adulticides in places with large mosquito populations is recommended by the Centers for
Disease Control and Prevention (CDC) before the spread of diseases like Zika or Chikungunya [1].
The ratio of the human–mosquito population was reduced to 2, 1.5 and 1 to see the effect of a reduced
mosquito population on the outbreak size. The effect of reducing the vector population was tested
using a left tailed 2 sample t-test with a significance value of 0.05. It can be seen in Figure 6 that
the average size of the epidemic in all islands is directly proportional to the initial size of the vector
population. Figure 7 shows that reducing the vector population reduces the number of infected
individuals significantly, and reducing the vector population by half reduces the number of infectious
individuals by around 30%.

Figure 6. The effect of reducing the initial vector population on the average size of the epidemic in all
islands (average epidemic size).

Figure 7. The effect of reducing the initial vector population on the size of the outbreak in French
Polynesia (distribution of epidemic size).
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4.2.3. Bite Prevention

Protection from mosquito bites by using mosquito repellents and wearing long sleeved shirts and
long pants is another way to prevent Zika transmission. The effect of bite reduction was measured by
reducing the bite rate to (90%, 75%, 50%, 25%) (reduction factor) of the original bite rate after τ number
of cases were reported. τ was varied from (1, 10, 50, 100). Figure 8 shows the the variation in average
size of the epidemic in all islands with respect to the reduction factor. Figure 9 shows the effect of
reducing the bite rate after 50 reported cases on the size of the epidemic in all 23 islands. It can be seen
that reducing the bite rate to 90% and 75% from the normal bite rate reduces the size only by around
5%, while reducing it further has a much more significant effect. The effect of reducing the bite rate
was tested using a left tailed 2-sample t-test with a significance value of 0.05. It can be seen in Figure
10 that early action to prevent mosquito bites is more effective than late action in reducing the size of
the epidemic. Reducing the bite rate after 50 or less cases are reported works considerably better than
reducing the bite rate later.

Figure 8. The effect of reducing the daily bite rate after 50 reported cases on the average size of the
outbreak in all islands (average epidemic size).

Figure 9. The effect of reducing the daily bite rate after 50 reported cases on the size of the outbreak in
French Polynesia (distribution of epidemic size).
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Figure 10. The variation in the size of the outbreak with change in the threshold cases (τ) when the
bite rate is reduced to 50% (distribution of epidemic size).

5. Discussion

The scale of the 2015–2016 Zika epidemic in Americas has raised public health concerns worldwide.
Understanding the dynamics of the disease requires the investigation of the major drivers of a
vector-borne disease outbreak: the mosquito population and human travel patterns. A dynamic
model that simulates the transmission of Zika in 23 islands of French Polynesia incorporating a
temperature dependent mosquito ecology and the local transit network was presented in the study.
If base case values for the mosquito population (initial vector population is three times the human
population) and transit network (100% load on the network ) are used, then 86% of the total population
in the affected islands were infected by the end of the outbreak, which lasted for about 160 days.
Additionally, the model can be used to test the effectiveness of intervention strategies like mosquito
and bite control, and travel bans. Mosquito control measures like biocontrol and mosquito bite
prevention help in containing the outbreak by reducing the probability of transmission. Implementing
travel bans or advisories even after the first reported case was shown to be ineffective on this network
because of the combination of high connectivity of the nodes and under reporting. Even though the
disease reached all the islands eventually, reduction in the load introduces a delay in the start of the
outbreak which can be used to prepare for the outbreak.

The basic reproduction number (R0) for the entire population was calculated to be 2.135 (CI 95%:
2.07–2.20) using the Next Generation Matrix. These results are in line with the calculated reproduction
numbers for the French Polynesia outbreak by other studies [6]. Although R0 is used to predict the
scale of future outbreaks, it is sensitive to demographic and geographical circumstances. Therefore,
R0 calculated for a disease in one region should not be used to predict the disease outcomes for a
different geographic and demographic location [39]. This is emphasized further by the wide range
of R0 values published for Zika in the literature which vary significantly from one region to another
[6,40–42]. The process described to calculate R0 using the next-generation matrix can be applied to
other heterogeneous epidemiological systems like Lyme disease, plague, malaria, dengue, etc. by
changing the differential equations and the parameters associated with them.

The availability of demographic, climatic, and transit data was critical in developing the model
discussed in the paper. The proposed model can be used to study and control the outbreak of other
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vector-borne diseases in other regions globally if the aforementioned data are available. This highlights
the importance of data collection, particularly on the size of the mosquito population and high
risk areas, so that contact rates can be altered accordingly and vulnerable populations/areas can be
identified. For example, the number of mosquito breeding sites or control measures may vary across
islands, and therefore using a uniform mosquito to human ratio is not the most accurate. Collecting the
data for these variables can improve the accuracy of the results and facilitate region specific predictions
and planning.

The results from this study show that public-health planners need to be proactive with mitigation
strategies when cases are being reported in neighboring regions. This is particularly critical for
neighboring regions with high volumes of commuter traffic. Activating any strategy only after a case
has been detected in the affected jurisdiction is often too late to make a meaningful impact on the
severity of an outbreak. Thus, if a case is detected in a region, enacting preventative measures i.e.,
mosquito net distribution and fumigation, in neighboring regions will aid in reducing the size of the
outbreak significantly.

Supplementary Materials: The supplementary materials are available online at www.mdpi.com/2571-5577/1/
3/31/s1.
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