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Abstract: In this research, three approximation methods are used in the new generalized uniform
fuzzy partition to solve the system of differential equations (SODEs) based on fuzzy transform
(FzT). New representations of basic functions are proposed based on the new types of a uniform
fuzzy partition and a subnormal generating function. The main properties of a new uniform fuzzy
partition are examined. Further, the simpler form of the fuzzy transform is given alongside some
of its fundamental results. New theorems and lemmas are proved. In accordance with the three
conventional numerical methods: Trapezoidal rule (one step) and Adams Moulton method (two
and three step modifications), new iterative methods (NIM) based on the fuzzy transform are
proposed. These new fuzzy approximation methods yield more accurate results in comparison with
the above-mentioned conventional methods.

Keywords: fuzzy partition; fuzzy transform; numerical methods; NIM; systems of ordinary
differential equations

1. Introduction

Differential equation is particularly useful for different areas of applied sciences and engineering.
Many differential equations have no closed form solutions. Thus, many researchers are developing
approximation methods for solving differential equations, for example [1–3]. In this paper, we continue
the study of approximation methods based on FzT to solutions of differential equations.

The core idea of FzT is a fuzzy partition of a universe into fuzzy subsets. The first fuzzy partition
of FzT with the Ruspini condition was introduced by [4] and was extensively investigated by [5].
This condition implies normality of the fuzzy partition. In addition, the fuzzy partition with the
generalized Ruspini condition (fuzzy r-partition) was introduced by [6]. This fuzzy partition was
achieved by replacing the partition of unity by fuzzy r-partition. This type of partition was used
by [6,7] for smoothing or filtering data based on the inverse FzT. Further, a generalized fuzzy partition
appeared in connection with the notion of the FzT, where FzT components are polynomials of degree
m [8]. By [9], different types of fuzzy partitions are taken into consideration such as B-splines, Shepard
kernels, Bernstein basis polynomials and Favard-Szasz-Mirakjan operators. Later, the higher degree
FzT based on B-splines was proposed [10] to improve the quality of the function approximation of two
variables.

A generalized fuzzy partition was implicitly introduced by [11] with the purpose of meeting the
requirements of image compression. In addition, a generalized fuzzy partition can also be considered
in connection with radial membership functions [12]. Further, necessary and sufficient conditions
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for modeling the generalized fuzzy partition was provided by [13]. Recently, a new representation
formula for basic functions of FzT and a new fuzzy numerical method based on block pulse functions
for numerical solution of integral equations were presented by [14]. The approximation method based
on the FzT with Shepard-type basic functions for linear Fredholm integral equations was discussed
by [15]. New representations of the generalized uniform fuzzy partitions with the normal case to
obtain better approximation solutions for solving Cauchy problems were presented by [16].

FzT is a soft computing method developed by Perfilieva [5] that has many applications, for
example, in differential and integral equations. FzT for solving ordinary Cauchy problems with one
variable was initiated by [4]. The generalization of the Euler method has been discussed by [17] for
solving ordinary Cauchy problems. The author has applied this technique to reef growth and sea level
variations models. Further, FzT has been generalized from the case of constant components to the
case of polynomial components by [8]. Later, the first and second degree FzT based mid-point rule
for solving the Cauchy problem and the uncertain initial value problem have been proposed by [18].
Furthermore, an algorithm to obtain the approximate solutions of second order initial value problems
was constructed by [19]. From this idea, FzT for numerical solutions of two point boundary value
problems was proposed by [20].

FzT of two variables based on finite differences method was used by [21] for solving a type of
partial differential equations with Dirichlet boundary conditions and initial conditions. In addition,
the first degree FzT of two variables was introduced by [22]. By [23], the partial derivatives using the
first FzT were approximated and modification of the Canny edge detector was proposed. Furthermore,
the uniform stability result for the vibrations of a telegraph equation using FzT of two variables
was proposed by [24]. The composition of inverse and direct discrete FzT method was extended to
numerical solution of Fredholm integral equations and Volterra Fredholm integral equations [25].
The general form of the higher order FzT was constructed by [26] for solving differential and integral
equations using any arbitrary basis functions. The FzT has investigated for solving the Volterra
population growth model using the approximation for the Caputo derivative [27]. A new numerical
method based FzT was demonstrated to solve a class of delay differential equations by means of the
Picard-like numerical scheme [28]. FzT was considered to approximate the solution of boundary value
problems by minimizing the integral squared error in 2-norm [29]. In [30], the dynamical properties of
a two neuron system with respect to FzT and a single delay have been investigated. The conditions
under which quasi-consensus in a multi-agent system with sampled data based on FzT were proposed
by [31].

NIM was proposed to solve nonlinear functional equations and the existence of solution for
nonlinear Volterra integral equations [2]. At the same time, NIM was introduced for solving nonlinear
equations by using a different decomposition technique [32]. From this conception, NIM was
considered in terms up to fourth-order in Taylor series for solving nonlinear equations [33]. Sufficiency
conditions have been presented for convergence of the NIM [34]. A new predictor-corrector approach
was developed based on NIM for fractional differential equations [35]. Classical methods are modified
by [3] to derive numerous formulas for solving the differential equations.

The motivation of the proposed study comes from [16,36,37]. In [16], new fuzzy numerical
methods to solve the Cauchy problem was considered and the authors showed that the error can be
reduced by FzT and NIM with respect to new generalized uniform fuzzy partitions, namely power of
the triangular and raised cosine generalized uniform fuzzy partitions, where generating functions are
normal (see also [37] for another approach). In addition, two basic approximation methods, modified
Euler method and Trapezoidal rule, with help from FzT for solving SODEs are analyzed in detail by
[36]. For this purpose, more generally, new generalized uniform fuzzy partitions are proposed in this
study, where a generating function is not normal.

The membership functions in underlying fuzzy partitions are often called basic functions.
There has been a growing interest in investigating the properties of fuzzy partitions.
However, the problem arises on how one can effectively construct the basic function of fuzzy partitions.
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In this paper, new representations of basic functions are proposed. This is achieved by introducing
new generalized uniform fuzzy partitions, where a generating function is not normal. Further, new
fuzzy numerical methods based on NIM and FzT for solving SODEs are introduced and discussed.
In particular, we consider functions of two variables with initial conditions. In accordance with
the existing methods, Trapezoidal rule and Adams Moulton are improved using FzT and NIM.
The methods are combined with one-step, two-step and three-step. As an application, all these
methods are used to solve a general model of the dynamical system, i.e., Lotka–Volterra equation
with derivatives and with variable coefficients. Furthermore, numerical examples are presented. It is
observed that the new fuzzy numerical methods yield more accurate results than classical Trapezoidal
rule and classical Adams Moulton methods (2 and 3-step).

The paper is organized as follows. The main part of the paper is Sections 3 and 4, which provides
new representations for basic functions of FzT, followed by the modified one step, 2-step and 3-step
based on NIM and FzT method with respect to new representations formulas for generalized uniform
fuzzy partition of FzT. In Section 5, numerical examples are discussed. Finally, conclusions are given
in Section 6.

2. Basic Concepts

In this section, we give some definitions and introduce the necessary notation following [38],
which will be used throughout the paper. Throughout this section, we deal with an interval [a, b] ⊂ R
of real numbers.

Definition 1. (generalized uniform fuzzy partition) Let ti ∈ [a, b] , i = 1, . . . , n, be fixed nodes such that
a = t1 < . . . < tn = b, t0 = t1, tn = tn+1, n ≥ 2 and [ti − h, ti + h] ⊆ [a, b]. We say that the fuzzy sets
Ai : [a, b]→ [0, 1] constitute a generalized fuzzy partition of [a, b] if the following conditions are fulfilled:

1. (positivity and locality)—Ai (t) > 0 if t ∈ (ti−1, ti+1) and Ai (t) = 0 if t ∈ [a, b] \ (ti−1, ti+1);
2. (continuity)—Ai is continuous on [ti−1, ti+1];
3. (covering)—for t ∈ [a, b] , ∑n

i=1 Ai(t) > 0.

Fuzzy sets A1, . . . , An are called basic functions. It is important to remark that by conditions of locality
and continuity,

∫ b
a Ai(t)dt > 0. A generalized uniform fuzzy partition of [a, b] is defined for equidistant

nodes, i.e., for all i = 1, . . . , n− 1, ti = ti+1 + h, where h = (b− a) / (n− 1) and two additional properties
are satisfied,

4. Ai (ti − t) = Ai (ti + t) for all t ∈ [0, h] , i = 2, . . . , n− 1;
5. Ai (t) = Ai−1 (t− h) and Ai+1 (t) = Ai (t− h) for all t ∈ [ti, ti+1] , i = 2, . . . , n− 1;

then the fuzzy partition is called h-uniform generalized fuzzy partition.

Definition 2. (generating function) A function K : [−1, 1] → [0, 1] is called a generating function if it is
assumed to be even, continuous and K (t) > 0 if t ∈ (−1, 1). The function K : [−1, 1]→ R is even if for all
t ∈ [0, 1] , K (−t) = K (t).

The following definition recalls the concept of the generalized fuzzy partition which can be
easily extended to the interval [a, b]. We assume that [a, b] is partitioned by A1, . . . , An, according to
Definition 1.

Definition 3. A h-uniform generalized fuzzy partition of interval [a, b], determined by the triplet (K, h, a),
can be defined using generating function K (Definition 2). Then, basic functions of a h-uniform generalized
fuzzy partition are shifted copies of K defined by

Ai (t) = K
(

t− ti
h

)
, t ∈ [ti − h, ti + h] ,
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for all i = 1, . . . , n. The parameter h is called the bandwidth or the shift of the fuzzy partition and the nodes
ti = a + ih are called the central point of the fuzzy sets A1, . . . , An.

Remark 1. A h-uniform fuzzy partition is called Ruspini if the following condition

Ai (t) + Ai+1 (t) = 1, i = 1, . . . , n− 1, (1)

holds for any t ∈ [ti, ti+1]. This condition is often called Ruspini condition.

New Iterative Method

NIM have proposed by [2] for solving linear and nonlinear functional equations of the form

u = f1 + N (u) , (2)

where f1 is a known function and N a non linear operator. Solutions obtained by this method are in
the form of rapidly converging infinite series which can be effectively approximated by calculating
only the first few terms. In this method non linear operator N is decomposed as N(u) = N(u0) +

∑∞
i=1

{
N
(

∑i
n=0 un

)
− N

(
∑i−1

n=0 un

)}
. In [2], the authors were defined the recurrence relation:


u0 = f1,

u1 = N (u0) ,

um+1 = N (u0 + · · ·+ um)− N (u0 + · · ·+ um−1) , m = 1, 2, . . .

(3)

Then(u1 + · · ·+ um+1) = N (u0 + · · ·+ um) , m = 1, 2, 3, . . . , and u = f1 + ∑∞
i=1 ui = f1 +

N(u0) + [N(u0 + u1)− N(u0)] + · · · = f1 + N(u). Hence u satisfies the functional (2).

3. New Representations for Basic Functions of FzT

Let us recall the basic facts of an FzT of a continuous real function f as presented by [5,17].
The first step in the definition of the FzT of f involves the selection of a fuzzy partition of the
domain [a, b] by a finite number n ≥ 2 of fuzzy sets Bk(t), k = 1, . . . , n. In those papers, five
axioms specified Bk(t), k = 1, . . . , n, in the fuzzy partition: normality, locality, continuity, unimodality
(monotonicity) and orthogonality (Ruspini condition). A fuzzy partition is called uniform if the fuzzy
sets Bk(t), k = 2, . . . , n− 1, are shifted copies of symmetrized B1 (more details can be found in [17]).
The membership functions Bk(t), k = 1, . . . , n, in a fuzzy partition are called basic functions. Later,
a generalized fuzzy partition appeared in connection with the notion of a higher-degree FzT [8].
Furthermore, summarize both these notions in [38]. Three axioms specify Bk(t), k = 1, . . . , n, in the
fuzzy partition: positivity and locality, continuity and covering. Recently, the different conditions for
generalized uniform fuzzy partitions was proposed [13,38] while another approach was demonstrated
by [37] where a function can be reconstructed from its F-transform components. In the following,
we modify the definition h-uniform generalized fuzzy partition.

3.1. Generalized Uniform Fuzzy Partitions with the Generalized Normal Case

Let us recall the h-uniform generalized fuzzy partition of real line can be defined using generating
function K. Then, basic functions of the h-uniform generalized fuzzy partition are shifted copies of K.
On the basis of Definition 1 can be also defined using a generating function λβK(t) where β = 1/K(0),
K(0) 6= 0, β > 0 and λ > 0 (in general, not necessarily satisfying normal and Ruspini condition) which
is that K(t) assumed to be even, continuous and K (t) > 0 if t ∈ (−1, 1). Therefore, we will modify
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the basic functions of the h-uniform generalized fuzzy partition so that they are shifted copies of λβK
defined by

Ak (t, t0) = λβK
(

t− t0

h
− k
)

, t ∈ [tk − h, tk + h] , k ∈ Z. (4)

The parameter h is bandwidth of the fuzzy partition and t0 + kh = tk. The concept of the
h-uniform generalized fuzzy partition can be easily extended to the interval [a, b] as follows.

Definition 4. Let t1 < . . . < tn be fixed nodes within [a, b] ⊂ R, such that t1 = a, tn = b and n ≥ 2.
We consider nodes t1, . . . , tn are equidistant, with distance (shift) h = (b− a) / (n− 1). A system of fuzzy
sets B1, . . . , Bn [a, b]→ [0, 1] be a generalized uniform fuzzy partitions of [a, b] if it is defined by

Bk (t) =

{
Ak(t, a), t ∈ [a, b] ,

0, otherwise.
=

λβK
(

t−tk
h

)
, t ∈ [a, b] ,

0, otherwise.
(5)

where tk = a + (k− 1)h, β = 1/K(0), K(0) 6= 0, β > 0 and λ > 0. In the sequel, a generating function
denote by K and basic functions of FzT denote by Bk, k = 1, . . . , n.

Lemma 1. If basic functions Bk, k = 1, . . . , n, of a h-uniform generalized fuzzy partition are shifted copies of
λβK defined by (5). Then, for each k = 1, . . . , n, Bk(tk) = λ, tk ∈ [tk − h, tk + h].

Proof. By (5), we get Bk (tk) = λβK
(

tk−tk
h

)
= λ.

3.2. Simpler Form of F-Transform Components Based on Generalized Uniform Fuzzy Partitions with the
Generalized Normal Case

In this subsection, we present the main principles of FzT with respect to new representations of
h-uniform generalized fuzzy partition. Further, we will show that FzT components with respect to
new representations of h-uniform generalized fuzzy partition can be simplified and approximated of
an original function, say f .

Definition 5. Let f be a continuous function on [a, b] and Bk(t), k = 1, . . . , n, be h-uniform generalized fuzzy
partition of [a, b], n ≥ 2. A vector of real numbers F[ f ] = (F1, F2, . . . , Fn) given by

Fk =

∫ b
a f (t) Bk(t) dt∫ b

a Bk(t) dt
, (6)

for k = 1, . . . , n is called the direct FzT of f with respect to Bk.

In the following, we will simplify the representation (6).

Lemma 2. Let f ∈ C ([a, b]) and according to Definition 4, fuzzy sets Bk, k = 1, . . . , n, n ≥ 2, be a h-uniform
generalized fuzzy partition of [a, b] with a generating function K, then representation (6) of direct FzT can be
simplified for k = 1, . . . , n as follows

Fk =

∫ 1
−1 f (th + tk)K(t) dt∫ 1

−1 K(t) dt
=

∫ h
−h f (t + tk)K( t

h ) dt∫ h
−h K( t

h ) dt
. (7)

Proof. By Definition 4, we get

Bk (t) = λβK
(

t− tk
h

)
, t ∈ [tk − h, tk + h] ,
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for k = 1, . . . , n, t0 = t1, tn+1 = tn, and substituting u = t−tk
h and then substituting t = s/h. Thus,

we get ∫ tk+1

tk−1

f (t) Bk(t) dt = λβh
∫ 1

−1
f (th + tk)K(t) dt = λβ

∫ h

−h
f (t + tk)K(

t
h
) dt,

∫ tk+1

tk−1

Bk(t) dt = λβh
∫ 1

−1
K(t) dt = λβ

∫ h

−h
K(

t
h
) dt,

and its corresponding results with representation (6).

If λ > 0, the Lemma 1 still hold by choosing suitable constant λ, satisfying λ = 1/
(∫ 1
−1 βK(t)dt

)
,

where
∫ 1
−1 βK(t)dt > 0. So, we will restrict ourselves to h-uniform generalized fuzzy partition with

0 < λ = 1/
(∫ 1
−1 βK(t)dt

)
, where

∫ 1
−1 βK(t)dt 6= 0. In the following, we will simplify the above

given expressions for the coefficients F[ f ] = (F1, F2, . . . , Fn) in the representation (6). This fact is very
important for applications which are more flexible and consequently easier to use.

Corollary 1. Let the assumptions of Lemma 2 be fulfilled and 0 < λ = 1/
(∫ 1
−1 βK(t)dt

)
, where∫ 1

−1 βK(t)dt 6= 0. Then, the coefficients F[ f ] = (F1, F2, . . . , Fn) in the expression (6) of the FzT component Fk
of f as follows:

Fk =
1
h

∫ b

a
f (t) Bk(t) dt =

λβ

h

∫ b

a
f (t)K

(
t− tk

h

)
dt, (8)

for k = 1, . . . , n, where interval [a, b] is partitioned by the h-uniform generalized fuzzy partition B1, . . . , Bn.

Proof. Let k ∈ {1, . . . , n} and consider set of fuzzy sets Bk(t) be the h-uniform generalized fuzzy
partition of [a, b] defined by (5). Using the proof of Lemma 2, we get

∫ tk+1

tk−1

Bk(t) dt =
∫ tk+1

tk−1

Ak(t, a), dt =
∫ tk+h

tk−h
λβK

(
t− tk

h

)
dt = hλ

∫ 1

−1
βK (t) dt = h, (9)

where 0 < λ = 1/
(∫ 1
−1 βK(t)dt

)
,
∫ 1
−1 βK(t)dt 6= 0, h is bandwidth of the fuzzy partition and

tk = a + (k− 1)h and then its corresponding in the expression (6).

Lemma 3. Let f ∈ C [a, b]. Then for any ε > 0 there exist nε ∈ N and B1, . . . , Bnε be basic functions form the
h-uniform generalized fuzzy partition of [a, b]. Let Fk, k = 1 . . . , n, be the integral FzT components of f with
respect to B1, . . . , Bnε . Then for each k = 1 . . . , nε − 1 the following estimations hold: | f (t)− Fi| ≤ ε for each
t ∈ [a, b] ∩ [tk, tk+1] and i = k, k + 1.

Proof. see [5].

Corollary 2. Let the conditions of Lemma 3 be fulfilled. Then for each k = 1 . . . , nε − 1 the following
estimations hold: |Fk − Fk+1| < ε.

Proof. According to [5,39], let t ∈ [a, b] ∩ [tk, tk+1]. Then by Lemma 3, for any k = 1, . . . , n − 1
we obtain that | f (t)− Fk| < ε/2 and | f (t)− Fk+1| < ε/2. Thus,

|Fk − Fk+1| ≤ | f (t)− Fk|+ | f (t)− Fk+1| <
ε

2
+

ε

2
= ε.

The following theorem estimates the difference between the original function and its direct FzT
with respect to the h-uniform generalized fuzzy partition.
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Theorem 1. Let f (t) ∈ C2 [a, b] and the conditions of Lemma 2 be fulfilled. Then for k = 1, . . . , n

Fk = λ f (tk) +O
(
h2) , (10)

where 0 < λ = 1/
(∫ 1
−1 βK(t)dt

)
and

∫ 1
−1 βK(t)dt 6= 0.

Proof. By locality condition of definition of h-uniform generalized fuzzy partition, Corollary 1,
Lemma 1, and according to [17], using the trapezoid formula with nodes tk−1, tk, tk+1 to the numerical
computation of the integral, we get for k = 1, . . . , n and 0 < λ = 1/

(∫ 1
−1 βK(t)dt

)
Fk =

1
h

∫ tk+1

tk−1

f (t) Bk(t) dt,

=
1
h

h
2
( f (tk−1) Bk(tk−1) + 2 f (tk) Bk(tk) + f (tk+1) Bk(tk+1)) +O

(
h2
)

,

= f (tk) Bk(tk) +O
(

h2
)
= λ f (tk) +O

(
h2
)

. (11)

Corollary 3. Let f (t) ∈ C2 [a, b] and the conditions of Lemma 2 be fulfilled. Let moreover, f be Lipschitz
continuous with respect to t, i.e., there exists a constant L ∈ R, such that for all t ∈ [a, b] and t, t′ ∈ R,

| f (t)− f (t′)| ≤ L|t− t′|. (12)

Then for k = 1, . . . , n ∣∣∣∣ f (t)− 1
λ

Fk

∣∣∣∣ ≤ Lh +
h2

6λ
M,

where 0 < λ = 1/
(∫ 1
−1 βK(t)dt

)
,
∫ 1
−1 βK(t)dt 6= 0, M = max

t∈[tk−1, tk+1]
| f ′′ (t)| and |t− tk| < h whenever

t ∈ [tk−1, tk+1].

Proof. By the assumption f has continuous second order derivatives on [a, b] and is Lipschitz
continuous with respect to t. Therefore, using the trapezoid rule and let us choose a value of k
in the range 1 ≤ k ≤ n and t ∈ [tk−1, tk+1], we get for 0 < λ = 1/

(∫ 1
−1 βK(t)dt

)
∣∣∣∣ f (t)− 1

λ
Fk

∣∣∣∣ = ∣∣∣∣ f (t)− 1
hλ

∫ tk+1

tk−1

f (t) Bk(t) dt
∣∣∣∣ ,

=

∣∣∣∣ f (t)− 1
hλ

[
hλ f (tk)−

h3

12
(

f ′′ (ξk−1) + f ′′ (ξk+1)
)]∣∣∣∣ ,

≤ | f (t)− f (tk)|+
h2

12λ
2M,

≤ L |t− tk|+
h2

6λ
M ≤ Lh +

h2

6λ
M, (13)

where ξk−1 ∈ (tk−1, tk), ξk+1 ∈ (tk, tk+1) and M = max
t∈[tk−1, tk+1]

| f ′′ (t)|.

Remark 2. In view of (13), if 0 < λ ≤ 1. Then,
∣∣∣ f (t)− 1

λ Fk

∣∣∣ ≤ Lh + h2

6 M.

Definition 6. Let F[ f ] = (F1, F2, . . . , Fn) be direct FzT of a function f ∈ C [a, b] with respect to the fuzzy
partition Bk(t), k = 1, . . . , n of [a, b]. Then, the function f̂ defined on [a, b]

f̂ (t) =
∑n

k=1 FkBk(t)
∑n

k=1 Bk(t)
, (14)
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is called the inverse FzT of f .

The following lemma estimates the difference between the original function and its inverse FzT.

Lemma 4. Let the assumptions of Theorem 1 and let f̂ (t) be the inverse FzT of f with respect to the fuzzy
partition of [a, b] is given by Definition 4 . Then, the following estimation holds for t ∈ [a, b] and k = 1, . . . , n

f̂ (t) = λ f (tk) +O
(

h2
)

, (15)

where 0 < λ = 1/
(∫ 1
−1 βK(t)dt

)
and

∫ 1
−1 βK(t)dt 6= 0.

Proof. Let t ∈ [a, b] so that t ∈ [tk, tk+1] for some k = 1, . . . , n. By Theorem 1,

f̂ (t)− λ f (tk) =
∑n

k=1 FkBk(t)
∑n

k=1 Bk(t)
− λ f (tk) =

∑n
k=1 FkBk(t)

∑n
k=1 Bk(t)

− ∑n
k=1 λ f (tk) Bk(t)

∑n
k=1 Bk(t)

,

=
∑n

k=1 (Fk − λ f (tk)) Bk(t)
∑n

k=1 Bk(t)
= O

(
h2
)

.

Theorem 2. Let f ∈ C [a, b]. Thus, for any ε > 0 there exist nε ∈ N and B1, . . . , Bnε be the h-uniform
generalized fuzzy partition of [a, b] defined by (5). Then, the following estimations hold

∣∣∣ f̂ (t)− f (t)
∣∣∣ < ε for

each t ∈ [a, b] ∩ [tk, tk+1].

Proof. From the proof of Lemma 4 and then using Lemma (3) in the sense that for all k = 1, . . . , n,∣∣∣ f̂ (t)− f (t)
∣∣∣ = ∑n

k=1 |Fk − f (t)| Bk(t)
∑n

k=1 Bk(t)
< ε.

Remark 3. According to Definition (4), it is easy to see that the inverse FzT f̂ (tk) = Fk for all k = 1, . . . , n.

On the basis of Definition 4, necessary steps of a new method to construct generalized uniform
fuzzy partitions of [−1, 1] for solve case K is not normal in the following.

1. Select the generating function K which is assumed to be even, continuous and K (t) > 0 if
t ∈ (−1, 1).

2. Specify the value β = 1/K(0), where K(0) 6= 0 to get the normal generating function K and then

compute the value λ = 1/
(∫ 1
−1 βK(t)dt

)
, where

∫ 1
−1 βK(t)dt 6= 0.

3. If conditions β > 0 and λ > 0 holds, then construct generalized uniform fuzzy partitions of
[−1, 1] by λβK (t).

Example 1. Let K : R→ [0, 1] be defined by

K(t) = (1 + cos (πt))m .

One can see in Table 1 the h-uniform generalized fuzzy partition of [a, b] determined by Definition 4.

Table 1. Example 1.

KCm
2
(t) β λ Bk = λβK

(
t−tk

h

)
(1 + cos (πt))m 1

2m

√
πΓ(m+1)

2Γ(m+ 1
2 )

(√
πΓ(m+1)

2Γ(m+ 1
2 )

)
1

2m

(
1 + cos

(
π t−tk

h

))m

The following remark is for modified Trapezoidal rule based on FzT and NIM to solve SODEs.
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Remark 4. In view of Equation (9),
∫ tk+1

tk−1
Bk(t) dt = h. This means that

∫ tk+1
tk

Bk(t) dt = h
2 .

Important property of the direct FzT as well as inverse FzT is their linearity, namely, given
f , g ∈ C [a, b] and α, β ∈ R, if h = α f + βg, then F [h] = αF [ f ] + βF [g] and ĥ = α f̂ + βĝ.

4. New Fuzzy Numerical Methods for Solving SODEs

Consider the initial value problem (IVP) for the SODEs:{
x′(t) = f (t, x, y) , x (t1) = x1, a = t1 ≤ t ≤ tn = b

y′(t) = g (t, x, y) , y (t1) = y1,
(16)

where x1, y1 ∈ R and f , g are continuous function on D = [a, b]× R× R. If f (g) satisfies a Lipschitz
condition on D in the variable x (y), then the initial-value problem (16) has a unique solution x(t) (y(t))
for a ≤ t ≤ b. In many cases, the problem (16) cannot be solved analytically so that numerical solutions
are required. In [16], new representations of basic function based on the FzT are constructed for solving
generalized Cauchy problems with help of NIM, FzT and classical methods (one-step, two-step and
three-step) have presented while Euler method and Mid-point rule, based on FzT to solve Cauchy
problem proposed by [17,18]. Further, NIM has been proposed for solving ODEs and delay differential
equations [3]. Moreover, Adams-Bashforth methods and Adams-Moulton methods are noted as two
families of multistep methods in literature. Multistep methods refer to using several previous values
from the previous steps. The Adams-Bashforth methods were presented by John Couch Adams to
solve a differential equation modelling capillary action due to Francis Bashforth and it follows that the
Adams-Moulton method was developed improved multistep methods for solving ballistic equations
by Forest Ray Moulton. In particular, the Adams-Moulton method is similar to the Adams-Bashforth
method and the Adams-Moulton method was used Newton’s method to solve the implicit equation.
Clearly, Adams-Bashforth methods are explicit methods and the Adams–Moulton methods are implicit
methods, for example, see ([40], p. 111).

Necessary steps of construction of the generalized uniform fuzzy partitions can be summarized
as follows.

1. Specify the number n of components and compute the step h = (tn − t1) / (n− 1). If we want to
obtain as best approximation of f as possible, then n should be large.

2. Construct the nodes t1 < . . . < tn, where tk = t1 + h(k− 1).
3. Select the shape of basic functions. This is achieved by selecting the shape of generating function.
4. Construct a h-uniform generalized fuzzy partition of [t1, tn] by new representations of basic

functions are defined by Definition 4.

To begin the derivation of a modified Trapezoidal rule (1-step) and Adams Moulton method
(2 and 3-step), integrate (16) on the interval [tk, tk+1], k = 1, . . . , n− 1 to obtain=

x(tk+1) = x (tk) +
∫ tk+1

tk

f (s, x(s), y (s)) ds,

y(tk+1) = y (tk) +
∫ tk+1

tk

g (s, x(s), y (s)) ds. (17)

Consider the following integral

I f =
∫ tk+1

tk

f (s, x(s), y (s)) ds,

Ig =
∫ tk+1

tk

g (s, x(s), y (s)) ds. (18)
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However, we cannot integrate f (s, x(s), y (s)) and g (s, x(s), y (s)) without knowing x(s) and y(s).
So, the above integral (18) can be approximated by the following approach

I f ≈
∫ tk+1

tk

f1 (s, x(s), y (s)) ds,

Ig ≈
∫ tk+1

tk

g1 (s, x(s), y (s)) ds, (19)

where f1 and g1 are the approximation of f and g on the interval [tk, tk+1]. Choosing different f1 (g1)
leads to different schemes. In particular, we choose f1 (g1) which contributes to the one, two and
three-step methods based on FzT. Later, modification of these methods based on FzT and NIM.

In this section, we present three new schemes to solve SODEs (16) that use the F-transform and
NIM and suppose that the functions f and g on [a, b] are sufficiently smooth. The first scheme uses
1-step method while the second one uses the 2-step method and the last uses the 3-step method.

4.1. Numerical Scheme I: Modified Trapezoidal Rule Based on FzT and NIM for SODEs

According to necessary steps of construction of the generalized uniform fuzzy partitions in Section
4, we contributed to approximation methods of SODEs (16) by scheme provides formulas for the FzT
components, Xk (Yk), k = 2, . . . , n− 1, of the unknown function x (t) (y (t)) with respect to choose
some of the h-uniform generalized fuzzy partition, B1, . . . , Bn, of interval [a, b] with parameter h to
approximate solution of SODEs (16). As initial step, choose the number n ≥ 2 and compute h =

(b− a) / (n− 1), then construct the h-uniform generalized fuzzy partition of [a, b] using Definition 4.
Let X1 = x1 and Y1 = y1. In the following, we apply the FzT and NIM to the SODEs (16) for obtaining
the numerical Scheme I, where k = 1, . . . , n− 1.

First, let f1 (g1) in the Equation (19) is chosen as

f1 =BkFk + Bk+1Fk+1,

g1 =BkGk + Bk+1Gk+1, (20)

where

Fk =

∫ b
a f (t, Xk, Yk) Bk(t) dt∫ b

a Bk(t) dt
, Gk =

∫ b
a g(t, Xk, Yk) Bk(t) dt∫ b

a Bk(t) dt
, (21)

and Bk represents the generalized uniform fuzzy partitions that are defined by Definition 4. Then,
substituting (20) into (19) for k = 1, . . . , n− 1

I f ≈
∫ tk+1

tk

BkFkds +
∫ tk+1

tk

Bk+1Fk+1ds,

Ig ≈
∫ tk+1

tk

BkGkds +
∫ tk+1

tk

Bk+1Gk+1ds.

By Remark 4 in the interval [tk, tk+1], we have

I f ≈
h
2
(Fk + Fk+1) , Ig ≈

h
2
(Gk + Gk+1) .
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Hence, the one step method based on FzT for (17) is derived as follows, where k = 1, . . . , n− 1.

Xk+1 = Xk +
h
2
(Fk + Fk+1) ,

Yk+1 = Yk +
h
2
(Gk + Gk+1) , (22)

where Fk and Gk are defined by (21).
This method computes the approximate coordinates [X1, . . . , Xn] and [Y1, . . . , Yn] of the FzT for

the functions x(t) and y(t). The problem with the previous scheme (22) is that the unknown quantities
Fk+1 and Gk+1 which means that Xk+1(Yk+1) appears on both sides and an implicit method. Therefore,
one solution to this problem would be to use an explicit method such as another fuzzy approach,
namely Scheme I. For this purpose, the scheme (22) is of the form

Xk+1 = fx + N(Xk+1), Yk+1 = fy + N(Yk+1),

and can be solved by NIM (2), where

fx = Xk +
h
2

Fk, and N(Xk+1) =
h
2

Fk+1.

fy = Yk +
h
2

Gk, and N(Yk+1) =
h
2

Gk+1.

The three term approximation of the NIM (3) gives the following formulas for solving SODEs (16):

ux0 = Xk +
h
2 Fk, uy0 = Yk +

h
2 Gk,

ux1 = N (ux0) , uy1 = N
(
uy0
)

,
ux2 = N (ux0 + ux1)− N (ux0) , uy2 = N

(
uy0 + uy1

)
− N

(
uy0
)

,


Hence, the three term approximate solution is

ux = ux0 + ux1 + ux2 = ux0 + N (ux0 + ux1)

and
uy = uy0 + N

(
uy0 + uy1

)
,

which leads to the following formulas.

X∗k+1 = Xk + hFk/2, Y∗k+1 = Yk + hGk/2,

X∗∗k+1 = X∗k+1 + hF∗k+1/2, Y∗∗k+1 = Y∗k+1 + hG∗k+1/2,

Xk+1 = Xk + h
(

Fk + F∗∗k+1

)
/2, Yk+1 = Yk + h

(
Gk + G∗∗k+1

)
/2,


(23)

where

Fk =

∫ b
a f (t, Xk, Yk)Bk (t) dt∫ b

a Bk (t) dt
, Gk =

∫ b
a g(t, Xk, Yk)Bk (t) dt∫ b

a Bk (t) dt
,

F∗k+1 =

∫ b
a f (t, X∗k+1, Y∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
, G∗k+1 =

∫ b
a g(t, X∗k+1, Y∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
,

F∗∗k+1 =

∫ b
a f (t, X∗∗k+1, Y∗∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
, G∗∗k+1 =

∫ b
a g(t, X∗∗k+1, Y∗∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
.



(24)
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In the sequel, the approximate solution of SODEs (16) can be obtained using the inverse FzT
as follows:

xn (t) =
n

∑
k=1

XkBk (t) , yn (t) =
n

∑
k=1

YkBk (t) . (25)

4.2. Numerical Scheme II: Modified 2-Step Adams Moulton Method Based on FzT and NIM for SODEs

The Scheme I uses 1-step method for solving SODEs (16). In this subsection, we improve 2-step
Adams Moulton method using FzT and NIM for solving SODEs (16). Let us recall that the modified
2-step Adams Moulton method proposed by [16]. From this idea, the modified 2-step Adams Moulton
method can be extended to approximate the solution of (16) by necessary steps of construction of the
generalized uniform fuzzy partitions in Section 4. It is worth noting that three terms of NIM were used
in [16], while four terms of NIM are used in this study. Let FzT components, Xk (Yk), k = 2, . . . , n− 1,
of the unknown function x (t) (y (t)) with respect to choose some of the h-uniform generalized fuzzy
partition (5) and let X1 = x1, Y1 = y1, X2 = x2 and Y2 = y2 if possible; otherwise, we can compute FzT
components X2 and Y2 from the numerical Scheme I. In the following, we apply the F-transform and
NIM to the SODEs (16) for obtaining the numerical Scheme II, where k = 2, . . . , n− 1. First, if f1 in the
Equation (19) is approximated by

f1 = (p0 + p1) Fk+1 + p2Fk + p3Fk−1, (26)

where

Fk =

∫ b
a f (t, Xk, Yk) Bk(t) dt∫ b

a Bk(t) dt
,

pk = (−1)k ∫ 1
0 (−s+1

k )ds. Substituting (26) into (19), then for k = 1, . . . , n− 1

I f ≈
h

12
(5Fk+1 + 8Fk − Fk−1) .

Similarity,

Ig ≈
h

12
(5Gk+1 + 8Gk − Gk−1) .

Thus, the two step method based FzT for (17) is given for k = 1, . . . , n− 1 as

Xk+1 = Xk + h (8Fk − Fk−1 + 5Fk+1) /12, Yk+1 = Yk + h (8Gk − Gk−1 + 5Gk+1) /12, (27)

where

Fk =

∫ b
a f (t, Xk, Yk)Bk(t)dt∫ b

a Ak(t)dt
, Gk =

∫ b
a g(t, Xk, Yk)Bk(t)dt∫ b

a Bk(t)dt
,

The problem with the previous scheme (27) is that the unknown quantities Fk+1 and Gk+1.
Therefore, one solution to this problem would be to use an explicit method. For this purpose,
the scheme (27) is of the form

Xk+1 = fx + N(Xk+1), Yk+1 = fy + N(Yk+1),

and can be solved by NIM (2), where

fx = Xk +
h

12
(8Fk − Fk−1) , and N(Xk+1) =

5h
12

Fk+1.

fy = Yk +
h

12
(8Gk − Gk−1) , and N(Yk+1) =

5h
12

Gk+1.
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The four term approximation of the NIM (3) gives the following formulas for solving SODEs (16):

ux0 = Xk +
h

12 (8Fk − Fk−1) , uy0 = Yk +
h

12 (8Gk − Gk−1) ,
ux1 = N (ux0) , uy1 = N

(
uy0
)

,
ux2 = N (ux0 + ux1)− N (ux0) , uy2 = N

(
uy0 + uy1

)
− N

(
uy0
)

,
ux3 = N (ux0 + ux1 + ux2)− N (ux0 + ux1) . uy3 = N

(
uy0 + uy1 + uy2

)
− N

(
uy0 + uy1

)
.


Hence, the four term approximate solution is

ux = ux0 + ux1 + ux2 + ux3 = ux0 + N (ux0 + N (ux0 + ux1))

and
uy = uy0 + N

(
uy0 + N

(
uy0 + uy1

))
,

which leads to the following formulas.

X∗k+1 = Xk + h (8Fk − Fk−1) /12, Y∗k+1 = Yk + h (8Gk − Gk−1) /12,

X∗∗k+1 = X∗k+1 + 5hF∗k+1/12, Y∗∗k+1 = Y∗k+1 + 5hG∗k+1/12,

X∗∗∗k+1 = X∗k+1 + 5hF∗∗k+1/12, Y∗∗∗k+1 = Y∗k+1 + 5hG∗∗k+1/12,

Xk+1 = Xk + h
(

8Fk − Fk−1 + 5F∗∗∗k+1

)
/12, Yk+1 = Yk + h

(
8Gk − Gk−1 + 5G∗∗∗k+1

)
/12,


(28)

where

Fk−1 =

∫ b
a f (t, Xk−1, Yk−1)Bk−1(t)dt∫ b

a Ak−1(t)dt
, Gk−1 =

∫ b
a g(t, Xk−1, Yk−1))Bk−1(t)dt∫ b

a Bk−1(t)dt
,

Fk =

∫ b
a f (t, Xk, Yk)Bk(t)dt∫ b

a Ak(t)dt
, Gk =

∫ b
a g(t, Xk, Yk)Bk(t)dt∫ b

a Bk(t)dt
,

F∗k+1 =

∫ b
a f (t, X∗k+1, Y∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗k+1 =

∫ b
a g(t, X∗k+1, Y∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

F∗∗k+1 =

∫ b
a f (t, X∗∗k+1, Y∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗∗k+1 =

∫ b
a g(t, X∗∗k+1, Y∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

F∗∗∗k+1 =

∫ b
a f (t, X∗∗∗k+1, Y∗∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗∗∗k+1 =

∫ b
a g(t, X∗∗∗k+1, Y∗∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
.

Then, obtain the desired approximation for x and y by the inverse FzT (25) applied to [X1, . . . , Xn]

and [Y1, . . . , Yn].

4.3. Numerical Scheme III: Modified 3-Step Adams Moulton Method Based on FzT and NIM for SODEs

In this subsection, we improve 3-step Adams Moulton method using FzT and NIM for solving
SODEs (16). The modified 3-step Adams Moulton method proposed by [16] for solving Cauchy
problems. From this idea, we can propose to approximate the solution of (16) by NIM and FzT
components, Xk (Yk), k = 2, . . . , n− 1, of the unknown function x(t) (y(t)) with respect to choose
some of the h-uniform generalized fuzzy partition (see Definition 4), B1, . . . , Bn, of interval [a, b] with
parameter h = (b− a) / (n− 1), n ≥ 2. Let X1 = x1, Y1 = y1, X2 = x2, Y2 = y2, X3 = x3, and Y3 = y3

if possible; otherwise, we can compute FzT components X2, Y2, X3 and Y3 from the numerical Scheme
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I. Now, we apply the F -transform and NIM to the SODEs (16) and obtain the following numerical
Scheme III for k = 3, . . . , n− 1:

According to steps of deriving Equation (27) and then steps of NIM in previous Subsection 4.2,
we get the four term approximation of the NIM as follows.

ux0 = Xk +
h

24 (19Fk − 5Fk−1 + Fk−2) , uy0 = Yk +
h

24 (19Gk − 5Gk−1 + Gk−2) ,
ux1 = N (ux0) , uy1 = N

(
uy0
)

,
ux2 = N (ux0 + ux1)− N (ux0) , uy2 = N

(
uy0 + uy1

)
− N

(
uy0
)

,
ux3 = N (ux0 + ux1 + ux2)− N (ux0 + ux1) . uy3 = N

(
uy0 + uy1 + uy2

)
− N

(
uy0 + uy1

)
.


Hence, the four term approximate solution is

ux = ux0 + ux1 + ux2 + ux3 = ux0 + N (ux0 + N (ux0 + ux1))

and
uy = uy0 + N

(
uy0 + N

(
uy0 + uy1

))
,

which leads to the following formulas.

X∗k+1 = Xk +
h

24 (19Fk − 5Fk−1 + Fk−2) , Y∗k+1 = Yk +
h

24 (19Gk − 5Gk−1 + Gk−2) ,

X∗∗k+1 = X∗k+1 +
9h
24 F∗k+1, Y∗∗k+1 = Y∗k+1 +

9h
24 G∗k+1,

X∗∗∗k+1 = X∗k+1 +
9h
24 F∗∗k+1, Y∗∗∗k+1 = Y∗k+1 +

9h
24 G∗∗k+1,

Xk+1 = Xk, Yk+1 = Yk,

+ h
24

(
19Fk − 5Fk−1 + Fk−2 + 9F∗∗∗k+1

)
, + h

24

(
19Gk − 5Gk−1 + Gk−2 + 9G∗∗∗k+1

)
,



(29)

where

Fk−2 =

∫ b
a f (t, Xk−2, Yk−2)Bk−2(t)dt∫ b

a Bk−2(t)dt
, Gk−2 =

∫ b
a g(t, Xk−2, Yk−2))Bk−2(t)dt∫ b

a Bk−2(t)dt
,

Fk−1 =

∫ b
a f (t, Xk−1, Yk−1)Bk−1(t)dt∫ b

a Bk−1(t)dt
, Gk−1 =

∫ b
a g(t, Xk−1, Yk−1))Bk−1(t)dt∫ b

a Bk−1(t)dt
,

Fk =

∫ b
a f (t, Xk, Yk)Bk(t)dt∫ b

a Bk(t)dt
, Gk =

∫ b
a g(t, Xk, Yk)Bk(t)dt∫ b

a Bk(t)dt
,

F∗k+1 =

∫ b
a f (t, X∗k+1, Y∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗k+1 =

∫ b
a g(t, X∗k+1, Y∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

F∗∗k+1 =

∫ b
a f (t, X∗∗k+1, Y∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗∗k+1 =

∫ b
a g(t, X∗∗k+1, Y∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

F∗∗∗k+1 =

∫ b
a f (t, X∗∗∗k+1, Y∗∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗∗∗k+1 =

∫ b
a g(t, X∗∗∗k+1, Y∗∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
.

In the sequel, the inverse FzT (25) approximates the solution x(t) (y(t)) of the problem (16).
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4.4. Error Analysis of Numerical Scheme I for SODEs

In this subsection, we present error analysis for numerical Scheme I and consider the Formula (23).
If x(tk) = xk and y(tk) = yk denote the exact solution and Xk, Yk denote the numerical solution.
Then, substituting the exact solution in the Formula (23), we get

x∗k+1 = xk + hFe
k /2, y∗k+1 = yk + hGe

k/2,

x∗∗k+1 = x∗k+1 + hFe∗
k+1/2, y∗∗k+1 = y∗k+1 + hGe∗

k+1/2,

xk+1 = xk + h
(

Fe
k + Fe∗∗

k+1

)
/2, yk+1 = yk + h

(
Ge

k + Ge∗∗
k+1

)
/2,


(30)

where

Fe
k =

∫ b
a f (t, xk, yk)Bk (t) dt∫ b

a Bk (t) dt
, Ge

k =

∫ b
a g(t, xk, yk)Bk (t) dt∫ b

a Bk (t) dt
,

Fe∗
k+1 =

∫ b
a f (t, x∗k+1, y∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
, Ge∗

k+1 =

∫ b
a g(t, x∗k+1, y∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
,

Fe∗∗
k+1 =

∫ b
a f (t, x∗∗k+1, y∗∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
, Ge∗∗

k+1 =

∫ b
a g(t, x∗∗k+1, y∗∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
.



(31)

and the truncation error Txk and Tyk of the scheme I are given by

Txk = xk+1−xk
h − 1

2

(
Fe

k + Fe∗∗
k+1

)
, Tyk =

yk+1−yk
h − 1

2

(
Ge

k + Ge∗∗
k+1

)
. (32)

Rearranging (23), we get

0 = Xk+1−Xk
h − 1

2

(
Fk + F∗∗k+1

)
, 0 = Yk+1−Yk

h − 1
2

(
Gk + G∗∗k+1

)
. (33)

Let ek+1 = Xk+1 − xk+1 and dk+1 = Yk+1 − yk+1 , then subtracting (33) from (32), we get

Txkh = ek+1 − ek −
h
2
(Fk − Fe

k )−
h
2
(

F∗∗k+1 − Fe∗∗
k+1
)

,

Tykh = dk+1 − dk −
h
2
(Gk − Ge

k)−
h
2
(
G∗∗k+1 − Ge∗∗

k+1
)

, (34)

Similarly to Lemma 8 and Theorem 2 by [16], we have the following results.

Lemma 5. Let f , g are assumed to be sufficiently smooth functions of its arguments on [a, b] and be Lipschitz
continuous with respect to x and y, i.e., there exists a constant L ∈ R, such that for all t ∈ [a, b] and
x, x′, y, y′ ∈ R,

| f (t, x, y)− f (t, x′, y′)| ≤ L(|x− x′|+ |y− y′|),
|g(t, x, y)− g(t, x′, y′)| ≤ L(|x− x′|+ |y− y′|). (35)

Assume that {Bk | k = 1, . . . , n}, n ≥ 2, is a h-uniform generalized fuzzy partition of [a, b]. Then we get
for k = 1, . . . , n,

|ek+1| ≤ |ek| (1 + c) + Th and
∣∣∣Fe

k − Fe∗∗
k+1

∣∣∣ ≤ LhM2,

|dk+1| ≤ |dk| (1 + c) + Th and
∣∣∣Ge

k − Ge∗∗
k+1

∣∣∣ ≤ LhM3,
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where c = hL + h2L2

2 + h3L3

8 , T = max
1≤k≤n

|Txk, Tyk|, Fe
k , Fe∗∗

k+1, Ge
k, Ge∗∗

k+1 are determined by Formula (31) and

M2, M3 are upper bound for f and g respectively on [a, b].

Theorem 3. Let f , g : [a, b]→ R be twice continuously differentiable on [a, b]. Let moreover, f , g : [a, b]×
R×R → R be Lipschitz continuous with respect to x and y. Assume that {Bk | k = 1, . . . , n}, n ≥ 2, is a
h-uniform generalized fuzzy partition of [a, b]. Then the scheme I (23) is convergent.

The technique of error analysis for rest schemes can be obtained analogously to numerical
Scheme I.

5. Applications

A general model for the dynamical system may be written as dx
dt = xg(x, y), dy

dt = yh(x, y),
where g and h are arbitrary functions of the prey and predator species whose populations are x(t) and
y(t) at time t. However, the following problem of Lotka–Volterra equation with derivatives and with
variable coefficients α (t) , β (t) , δ (t) , γ (t) as functions of time t have not yet been solved by any fuzzy
numerical method. The new differential equations are represented by a non-autonomous ordinary
differential equation system. The model, incorporating the above functions is as follows [41–43]:

dx
dt

=α (t) x (t)− β (t) x (t) y (t) , x (0) = x1

dy
dt

=δ (t) x (t) y (t)− γ (t) y (t) , y (0) = y1 (36)

Two examples are discussed in order to prove that the results obtained by Scheme I (23), II (28)
and III (29) for the numerical solution of the model (36).

Example 2. Consider the problem of Lotka-Volterra-prey- predator model (36). We take α (t) = 4 +

tan (t) , β (t) = exp(2t), γ (t) = −2, δ (t) = cos(t), x(0) = −4 and y(0) = 4.
The exact solution for these coefficients is x(t) = −4

cos(t) , y(t) = 4 exp(−2t) proposed by [41–43].

Example 3. Consider the problem of Lotka-Volterra-prey-predator model (36) with α (t) = −t, β (t) =

−t, γ (t) = t, δ (t) = t, x(0) = 2 and y(0) = 2.
The exact solution for these coefficients is x(t) = 2

2−exp(t2/2) , y(t) = 2
2−exp(t2/2) proposed by [41,42].

The results are listed in Tables 2–6 by the proposed fuzzy approximation methods with respect
to case KC201

2
is defined by Example 1. The proposed fuzzy approximation methods are generated by

Algorithms A1–A3 (Appendix A). The mean square error (MSE) defined as MSE = 1
n (‖Yk − y(tk)‖2)

2.
This is an easily computable quantity for a particular sample. From the numerical tests, the results are
summarized as follows:

1. In view of Tables 2–5, a comparison between the three new proposed schemes ((23), (28) and (29))
and the classical Trapezoidal rule (1-step), classical 2-step Adams Moulton Method and classical
3-step Adams Moulton Method based on Euler method for Examples 2 and 3.

2. Moreover, comparison of MSE for Examples 2 and 3 shown in Table 6. It is observed that the
new fuzzy approximation methods yield more accurate results in comparison with the classical
Trapezoidal rule (one step) and classical Adams Moulton method (two and three steps). Hence,
the new fuzzy approximation methods provide alternative techniques for solving SODEs with
better results.
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Table 2. Comparison of numerical results of x(t) for Example 2.

ti Solution x(t)
Proposed
Scheme I

Proposed
Scheme II

Proposed
Scheme III

Trap 1 2-Step Adams 2 3-Step Adams 3

0.00 −4.00000 −4.00000 −4.00000 −4.00000 −4.00000 −4.00000 −4.00000
0.05 −4.00501 −4.00506 −4.00501 −4.00501 −4.00714 −4.00501 −4.00501
0.10 −4.02008 −4.02059 −4.02011 −4.02008 −4.02627 −4.02187 −4.02008
0.15 −4.04543 −4.04589 −4.04536 −4.04536 −4.05752 −4.04875 −4.04703
0.20 −4.08136 −4.08128 −4.08121 −4.08119 −4.10134 −4.08610 −4.08434
0.25 −4.12834 −4.12721 −4.12813 −4.12811 −4.15850 −4.13442 −4.13261
0.30 −4.18701 −4.18423 −4.18673 −4.18670 −4.23015 −4.19440 −4.19250
0.35 −4.25816 −4.25304 −4.25783 −4.25779 −4.31783 −4.26691 −4.26487
0.40 −4.34282 −4.33453 −4.34243 −4.34236 −4.42361 −4.35300 −4.35077
0.45 −4.44224 −4.42976 −4.44178 −4.44170 −4.55014 −4.45399 −4.45151
0.50 −4.55798 −4.54001 −4.55745 −4.55733 −4.70086 −4.57151 −4.56871
0.55 −4.69195 −4.66686 −4.69134 −4.69117 −4.88023 −4.70755 −4.70433
0.60 −4.84651 −4.81220 −4.84581 −4.84558 −5.09399 −4.86455 −4.86079
0.65 −5.02460 −4.97833 −5.02378 −5.02346 −5.34964 −5.04556 −5.04112
0.70 −5.22984 −5.16805 −5.22887 −5.22845 −5.65700 −5.25435 −5.24903
0.75 −5.46680 −5.38480 −5.46565 −5.46508 −6.02912 −5.49569 −5.48924
0.80 −5.74130 −5.63286 −5.73990 −5.73914 −6.48349 −5.77559 −5.76768
0.85 −6.06076 −5.91759 −6.05906 −6.05803 −7.04390 −6.10182 −6.09202
0.90 −6.43490 −6.24582 −6.43281 −6.43141 −7.74310 −6.48450 −6.47222
0.95 −6.87660 −6.62636 −6.87400 −6.87209 −8.62699 −6.93706 −6.92148
1.00 −7.40326 −7.07221 −7.40106 −7.39831 −9.76103 −7.47766 −7.45769

1 Trapezoidal rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.

Table 3. Comparison of numerical results of y(t) for Example 2.

ti Solution y(t)
Proposed
Scheme I

Proposed
Scheme II

Proposed
Scheme III

Trap 1 2-Step Adams 2 3-Step Adams 3

0.00 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000
0.05 3.61935 3.62135 3.61935 3.61935 3.62045 3.61935 3.61935
0.10 3.27492 3.27848 3.27485 3.27492 3.27766 3.27601 3.27492
0.15 2.96327 2.96802 2.96314 2.96327 2.96757 2.96496 2.96415
0.20 2.68128 2.68698 2.68112 2.68124 2.68671 2.68326 2.68261
0.25 2.42612 2.43262 2.42595 2.42607 2.43201 2.42819 2.42769
0.30 2.19525 2.20247 2.19508 2.19520 2.20079 2.19724 2.19688
0.35 1.98634 1.99425 1.98619 1.98630 1.99067 1.98815 1.98792
0.40 1.79732 1.80593 1.79718 1.79729 1.79951 1.79888 1.79875
0.45 1.62628 1.63564 1.62616 1.62627 1.62541 1.62754 1.62752
0.50 1.47152 1.48170 1.47143 1.47153 1.46664 1.47245 1.47253
0.55 1.33148 1.34257 1.33142 1.33153 1.32166 1.33207 1.33224
0.60 1.20478 1.21688 1.20474 1.20485 1.18908 1.20500 1.20526
0.65 1.09013 1.10337 1.09012 1.09023 1.06762 1.08998 1.09033
0.70 0.98639 1.00091 0.98641 0.98652 0.95615 0.98587 0.98632
0.75 0.89252 0.90848 0.89257 0.89269 0.85366 0.89163 0.89217
0.80 0.80759 0.82515 0.80766 0.80779 0.75923 0.80632 0.80696
0.85 0.73073 0.75011 0.73084 0.73097 0.67208 0.72910 0.72984
0.90 0.66120 0.68260 0.66133 0.66148 0.59150 0.65919 0.66004
0.95 0.59827 0.62195 0.59844 0.59860 0.51692 0.59590 0.59686
1.00 0.54134 0.56745 0.54145 0.54163 0.44787 0.53860 0.53969

1 Trapezoidal rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.
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Table 4. Comparison of numerical results of x(t) for Example 3.

ti Solution x(t)
Proposed
Scheme I

Proposed
Scheme II

Proposed
Scheme III

Trap 1 2-Step Adams 2 3-Step Adams 3

0.00 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
0.05 2.00250 2.00257 2.00250 2.00250 2.00250 2.00250 2.00250
0.10 2.01008 2.01016 2.01007 2.01008 2.01005 2.01006 2.01008
0.15 2.02289 2.02299 2.02289 2.02289 2.02279 2.02285 2.02286
0.20 2.04124 2.04138 2.04124 2.04124 2.04101 2.04117 2.04118
0.25 2.06557 2.06577 2.06558 2.06558 2.06511 2.06546 2.06547
0.30 2.09650 2.09676 2.09652 2.09651 2.09567 2.09633 2.09633
0.35 2.13485 2.13520 2.13488 2.13486 2.13344 2.13459 2.13459
0.40 2.18171 2.18218 2.18176 2.18172 2.17942 2.18132 2.18132
0.45 2.23852 2.23915 2.23860 2.23854 2.23493 2.23795 2.23796
0.50 2.30720 2.30803 2.30731 2.30722 2.30167 2.30637 2.30638
0.55 2.39031 2.39140 2.39047 2.39034 2.38192 2.38910 2.38911
0.60 2.49133 2.49279 2.49157 2.49138 2.47868 2.48956 2.48957
0.65 2.61513 2.61708 2.61549 2.61520 2.59605 2.61251 2.61251
0.70 2.76863 2.77126 2.76917 2.76873 2.73967 2.76465 2.76466
0.75 2.96202 2.96563 2.96288 2.96218 2.91754 2.95585 2.95584
0.80 3.21093 3.21600 3.21235 3.21120 3.14130 3.20103 3.20099
0.85 3.54059 3.54791 3.54308 3.54108 3.42845 3.52398 3.52386
0.90 3.99443 4.00539 3.99914 3.99541 3.80653 3.96482 3.96449
0.95 4.65413 4.67130 4.66407 4.65640 4.32100 4.59671 4.59578
1.00 5.69348 5.72071 5.71719 5.69904 5.05197 5.56751 5.56473

1 Trapezoidal rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.

Table 5. Comparison of numerical results of y(t) for Example 3.

ti Solution y(t)
Proposed
Scheme I

Proposed
Scheme II

Proposed
Scheme III

Trap 1 2-Step Adams 2 3-Step Adams 3

0.00 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
0.05 2.00250 2.00257 2.00250 2.00250 2.00250 2.00250 2.00250
0.10 2.01008 2.01016 2.01007 2.01008 2.01005 2.01006 2.01008
0.15 2.02289 2.02299 2.02289 2.02289 2.02279 2.02285 2.02286
0.20 2.04124 2.04138 2.04124 2.04124 2.04101 2.04117 2.04118
0.25 2.06557 2.06577 2.06558 2.06558 2.06511 2.06546 2.06547
0.30 2.09650 2.09676 2.09652 2.09651 2.09567 2.09633 2.09633
0.35 2.13485 2.13520 2.13488 2.13486 2.13344 2.13459 2.13459
0.40 2.18171 2.18218 2.18176 2.18172 2.17942 2.18132 2.18132
0.45 2.23852 2.23915 2.23860 2.23854 2.23493 2.23795 2.23796
0.50 2.30720 2.30803 2.30731 2.30722 2.30167 2.30637 2.30638
0.55 2.39031 2.39140 2.39047 2.39034 2.38192 2.38910 2.38911
0.60 2.49133 2.49279 2.49157 2.49138 2.47868 2.48956 2.48957
0.65 2.61513 2.61708 2.61549 2.61520 2.59605 2.61251 2.61251
0.70 2.76863 2.77126 2.76917 2.76873 2.73967 2.76465 2.76466
0.75 2.96202 2.96563 2.96288 2.96218 2.91754 2.95585 2.95584
0.80 3.21093 3.21600 3.21235 3.21120 3.14130 3.20103 3.20099
0.85 3.54059 3.54791 3.54308 3.54108 3.42845 3.52398 3.52386
0.90 3.99443 4.00539 3.99914 3.99541 3.80653 3.96482 3.96449
0.95 4.65413 4.67130 4.66407 4.65640 4.32100 4.59671 4.59578
1.00 5.69348 5.72071 5.71719 5.69904 5.05197 5.56751 5.56473

1 Trapezoidal rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.
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Table 6. The values of MSE for Examples 2 and 3.

(a) The Values of MSE of x(t) for SODEs

Case
Proposed Scheme for x(t) Classical Method for x(t)

I II III Trapezoidal Rule 2-Step Adams Moulton 3-Step Adams Moulton

Ex.1 KC201
2

1.21569 × 10−2 1.21112 × 10−6 3.71739 × 10−6 5.99915 × 10−1 8.37463 × 10−4 4.72086 × 10−4

Ex.2 KC201
2

6.02153 × 10−5 3.29699 × 10−5 1.77640 × 10−6 2.75574 × 10−2 9.75470 × 10−4 1.01541 × 10−3

(b) The Values of MSE of y(t) for SODEs

Case
Proposed Scheme for y(t) Classical Method for y(t)

I II III Trapezoidal Rule 2-Step Adams Moulton 3-Step Adams Moulton

Ex.1 KC201
2

1.80417 × 10−4 1.20902 × 10−8 2.08739 × 10−8 1.40165 × 10−3 2.25155 × 10−6 1.09674 × 10−6

Ex.2 KC201
2

6.02153 × 10−5 3.29699 × 10−5 1.77640 × 10−6 2.75574 × 10−2 9.75470 × 10−4 1.01541 × 10−3

Further, the results obtained using proposed fuzzy approximation methods for Examples 2 and 3
are shown in Figures 1–3 by using KC201

2
. In view of Figures 2 and 3, the graphical results of Examples 2

and 3 show a comparison between numerical Schemes (I, II and III) and exact solutions are shown
separated from each other for clarity while a comparison between three proposed fuzzy numerical
methods (Schemes I, II and III) and exact solution are shown in Figure 1. Furthermore, in view of
Figures 2 and 3, a comparison between the numerical results and exact solutions for h = 0.01. All the
graphs are plotted using MATLAB software.
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Figure 1. A comparison between three fuzzy numerical methods and exact solution for two examples.
(a) Example 2; (b) Example 3.
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Figure 2. The graphical solution of Example 2. (a) Scheme I; (b) Scheme II; (c) Scheme III.



Appl. Syst. Innov. 2018, 3, 30 21 of 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.5

3

3.5

4

4.5

5

5.5

6

t

 

 
 Exact
 Scheme I

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.5

3

3.5

4

4.5

5

5.5

6

t

 

 
 Exact
 Scheme II

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.5

3

3.5

4

4.5

5

5.5

6

t

 

 
 Exact
 Scheme III

(c)

Figure 3. The graphical solution of Example 3. (a) Scheme I; (b) Scheme II; (c) Scheme III.

6. Conclusions

Three approximation methods are used the new generalized uniform fuzzy partitions for solving
SODEs. In accordance with the three approximation methods for Cauchy problem by [16], Trapezoidal
rule (one step) and Adams Moulton method (two and three steps) are improved using FzT and NIM.
The results proved that the first approximation method converged to the exact solution. As an
application, a predator-prey model is solved by using three proposed approximation methods.
From the numerical results, it is observed that the new fuzzy approximation methods yield more
accurate results in comparison with the classical Trapezoidal rule (one step) and classical Adams
Moulton method (two and three steps). So, it is recommended to use the proposed methods to solve
differential equations.
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In this regard, it is well-known that FzT has a certain advantage to cope with problems affected
by noise. This is because the FzT components of original and noisy functions are very similar to each
other. In addition, we can reduce a higher-order differential equation into a system of first-order
differential equations by relabeling the variables. Thus, the proposed methods can also be applied
to a higher-order differential equation in the case of non-noisy or noisy right-hand side. From
Algorithms A1–A3 (Appendix A), it is observed that the new fuzzy approximation methods are more
time consuming in comparison with the considered Trapezoidal rule and the Adams Moulton methods.
In the future research, we plan to give more details about running time of proposed methods. Further,
we plan to solve a boundary value problem for a second order ordinary differential equation with
fuzzy boundary conditions, see preliminary results in [44].
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Appendix A. Algorithms

In this appendix, algorithms of approximation methods based on FzT and NIM for Sections 4.1–4.3
are explained with details. A pseudocode is used to describe the algorithms and simplified code that
is easy to read. This pseudocode specifies the form of the input to be supplied and the form of the
desired output. As a consequence, a stopping technique independent of the numerical technique
is incorporated into each algorithm to avoid infinite loops. Two punctuation symbols are used in
the algorithms, a period (.) indicates the termination of a step and a semicolon (;) separates tasks
within a step. In algorithms with help of MATLAB software, the definite integral is specified by
integral (function,upper limits,lower limits). The steps in the algorithms follow the rules of structured
program construction. They have been arranged so that there should be minimal difficulty translating
pseudocode into any programming language suitable for scientific applications. To approximate the
solution of SODEs (16) at (N + 1) equally spaced numbers in the interval [a, b], proceed as follows.

Algorithm A1. One-step algorithm for system of ODEs.

INPUT: f (t, x, y); g(t, x, y); endpoints a, b; integer N; initial condition y1; m.

Step 1 Set h = (b− a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k− 1)h.

Step 2 Define the generalized uniform fuzzy partitions as Bk(t) =
(√

πΓ(m+1)
2Γ(m+ 1

2 )

)
1

2m

(
1 + cos

(
π

t−t(k)
h

))m
.

Step 3 for k = 1 to N do Steps 04–15.
Step 04 F(k) = integral( f (t, X(k), Y(k))Bk(t), t(k− 1), t(k + 1))/integral(Bk(t), t(k− 1), t(k + 1)).

Step 05 G(k) = integral(g(t, X(k), Y(k))Bk(t), t(k− 1), t(k + 1))/integral(Bk(t), t(k− 1), t(k + 1)).

Step 06 Xstar(k + 1) = X(k) + hF(k)/2.

Step 07 Ystar(k + 1) = Y(k) + hG(k)/2.

Step 08 Fstar(k + 1) = integral( f (t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 09 Gstar(k + 1) = integral(g(t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 10 Xstar2(k + 1) = Xstar(k + 1) + hFstar(k + 1)/2.

Step 11 Ystar2(k + 1) = Ystar(k + 1) + hGstar(k + 1)/2.

Step 12 Fstar2(k + 1) = integral( f (t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 13 Gstar2(k + 1) = integral(g(t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 14 X(k + 1) = X(k) + h (F(k) + Fstar2(k + 1)) /2.

Step 15 Y(k + 1) = Y(k) + h (G(k) + Gstar2(k + 1)) /2.
end.

OUTPUT: Approximation X and Y to x and y, respectively at the (N + 1) values of t.
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Algorithm A2. Two-step algorithm for system of ODEs.

INPUT: f (t, x, y); g(t, x, y); endpoints a, b; integer N; initial condition y1; m.

Step 1 Set h = (b− a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k− 1)h.

Step 2 Define the generalized uniform fuzzy partitions as Bk(t) =
(√

πΓ(m+1)
2Γ(m+ 1

2 )

)
1

2m

(
1 + cos

(
π

t−t(k)
h

))m
.

Step 3 Set X2 = x2; Y2 = y2. (In the case of no exact solutions, compute X2 and Y2 using Algorithm 1.)
Step 4 for k = 2 to N do Steps 05–18.

Step 05 F(k− 1) =integral( f (t, X(k− 1), Y(k− 1))Bk−1(t), t(k− 1), t(k + 1))/integral(Bk−1(t), t(k− 1), t(k + 1)).

Step 06 G(k− 1) =integral(g(t, X(k− 1), Y(k− 1))Bk−1(t), t(k− 1), t(k + 1))/integral(Bk−1(t), t(k− 1), t(k + 1)).

Step 07 F(k) =integral( f (t, X(k), Y(k))Bk(t), t(k− 1), t(k + 1))/integral(Bk(t), t(k− 1), t(k + 1)).

Step 08 G(k) =integral(g(t, X(k), Y(k))Bk(t), t(k− 1), t(k + 1))/integral(Bk(t), t(k− 1), t(k + 1)).

Step 09 Xstar(k + 1) =X(k) + h(8F(k)− F(k− 1))/12.

Step 10 Ystar(k + 1) =Y(k) + h(8G(k)− G(k− 1))/12.

Step 11 Fstar(k + 1) =integral( f (t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 12 Gstar(k + 1) =integral(g(t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 13 Xstar2(k + 1) =Xstar(k + 1) + 5hFstar(k + 1)/12.

Step 14 Ystar2(k + 1) =Ystar(k + 1) + 5hGstar(k + 1)/12.

Step 15 Fstar2(k + 1) =integral( f (t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 16 Gstar2(k + 1) =integral(g(t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 17 X(k + 1) =X(k) + h(8F(k)− F(k− 1) + 5Fstar2(k + 1))/12.

Step 18 Y(k + 1) =Y(k) + h(8G(k)− G(k− 1) + 5Gstar2(k + 1))/12.
end.

OUTPUT: Approximation X and Y to x and y, respectively at the (N + 1) values of t.

Algorithm A3. Three-step algorithm for system of ODEs.

INPUT: f (t, x, y); g(t, x, y); endpoints a, b; integer N; initial condition y1; m.

Step 1 Set h = (b− a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k− 1)h.

Step 2 Define the generalized uniform fuzzy partitions as Bk(t) =
(√

πΓ(m+1)
2Γ(m+ 1

2 )

)
1

2m

(
1 + cos

(
π

t−t(k)
h

))m
.

Step 3 Set X2 = x2; Y2 = y2; X3 = x3; Y3 = y3. (In the case of no exact solutions, compute X2, Y2, X3 and Y3 using Algorithm 1 or 2.)
Step 4 for k = 3 to N do Steps 05–20.

Step 05 F(k− 2) =integral( f (t, X(k− 2), Y(k− 2))Bk−2(t), t(k− 1), t(k + 1))/integral(Bk−2(t), t(k− 1), t(k + 1)).

Step 06 G(k− 2) =integral(g(t, X(k− 2), Y(k− 2))Bk−2(t), t(k− 1), t(k + 1))/integral(Bk−2(t), t(k− 1), t(k + 1)).

Step 07 F(k− 1) =integral( f (t, X(k− 1), Y(k− 1))Bk−1(t), t(k− 1), t(k + 1))/integral(Bk−1(t), t(k− 1), t(k + 1)).

Step 08 G(k− 1) =integral(g(t, X(k− 1), Y(k− 1))Bk−1(t), t(k− 1), t(k + 1))/integral(Bk−1(t), t(k− 1), t(k + 1)).

Step 09 F(k) =integral( f (t, X(k), Y(k))Bk(t), t(k− 1), t(k + 1))/integral(Bk(t), t(k− 1), t(k + 1)).

Step 10 G(k) =integral(g(t, X(k), Y(k))Bk(t), t(k− 1), t(k + 1))/integral(Bk(t), t(k− 1), t(k + 1)).

Step 11 Xstar(k + 1) =X(k) + h(19F(k)− 5F(k− 1) + F(k− 2))/24.

Step 12 Ystar(k + 1) =Y(k) + h(19G(k)− 5G(k− 1) + G(k− 2))/24.

Step 13 Fstar(k + 1) =integral( f (t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 14 Gstar(k + 1) =integral(g(t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 15 Xstar2(k + 1) =Xstar(k + 1) + 9hFstar(k + 1)/24.

Step 16 Ystar2(k + 1) =Ystar(k + 1) + 9hGstar(k + 1)/24.

Step 17 Fstar2(k + 1) =integral( f (t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 18 Gstar2(k + 1) =integral(g(t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k− 1), t(k + 1))/integral(Bk+1(t), t(k− 1), t(k + 1)).

Step 19 X(k + 1) =X(k) + h(19F(k)− 5F(k− 1) + F(k− 2) + 9Fstar2(k + 1))/24.

Step 20 Y(k + 1) =Y(k) + h(19G(k)− 5G(k− 1) + G(k− 2) + 9Gstar2(k + 1))/24.
end.

OUTPUT: Approximation X and Y to x and y, respectively at the (N + 1) values of t.
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