
Article

New Approximation Methods Based on Fuzzy
Transform for Solving SODEs: I

Hussein ALKasasbeh 1,*, Irina Perfilieva 2 ID , Muhammad Zaini Ahmad 1 and
Zainor Ridzuan Yahya 1

1 Institute of Engineering Mathematics, Universiti Malaysia Perlis, Kampus Tetap Pauh Putra,
Arau 02600, Perlis, Malaysia; mzaini@unimap.edu.my (M.Z.A.); zainoryahya@unimap.edu.my (Z.R.Y.)

2 Institute for Research and Applications of Fuzzy Modelling, University of Ostrava, NSC IT4Innovations,
30. dubna 22, 701 03 Ostrava, Czech Republic; Irina.Perfilieva@osu.cz

* Correspondence: hussein.ahmad.alka@gmail.com

Received: 17 June 2018; Accepted: 14 August 2018; Published: 23 August 2018
����������
�������

Abstract: In this paper, new approximation methods for solving systems of ordinary differential
equations (SODEs) by fuzzy transform (FzT) are introduced and discussed. In particular, we propose
two modified numerical schemes to solve SODEs where the technique of FzT is combined with
one-stage and two-stage numerical methods. Moreover, the error analysis of the new approximation
methods is discussed. Finally, numerical examples of the proposed approach are confirmed, and
applications are presented.
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1. Introduction

Differential equations have great potential to model and understand real-world problems in
science and engineering. In many cases, differential equations cannot be solved analytically, so that
numerical methods are required. Therefore, numerical methods have been elaborated frequently
in scientific research for solving differential equations, for example [1–4]. In this connection, fuzzy
approaches successfully cope with solving differential equations. One of fuzzy approaches that has
been proposed in the literature is fuzzy transform (FzT).

FzT is a general mathematical technique coined and developed by Perfilieva [5]. The study of
FzT is rapidly expanding as a new branch of approximation method based on fuzzy sets. The main
idea of FzT is usually forming a fuzzy partition of a universe into fuzzy subsets. Two shapes for the
basic functions of fuzzy partition, triangular- and sinusoidal-shaped membership functions, were
considered by [6]. Applications of the FzT can be used in the construction of approximate models, the
approximation of functions and the solution of differential equations. FzT has been generalized from
the case of constant components to the case of polynomial components [7]. Later, FzT was successfully
used by [8] for a second order initial value problem. From this idea, FzT was proposed for numerical
solutions of two point boundary value problems by the more efficient way in comparison with the
similar ones obtained by the finite difference method [9].

Recently, in [10], a new numerical method based on FzT to solve a class of delay differential
equations by means of the Picard-like numerical scheme was presented. The author demonstrated
the stability of the method, and the obtained results have good agreement with existing methods.
Furthermore, in some cases, a better approximation was achieved through sinusoidal-shaped basic
functions, while the Bernstein basis polynomials allow better results in the other examples. On the
other hand, a new approach to the fuzzy boundary value problem in the form of the fuzzy relation
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was investigated by [11]. Another approach for the second order linear differential equation with
constant coefficients and Dirichlet boundary conditions was introduced by [12], where the ability of
FzT was demonstrated to deal with boundary value problems affected by noise, and the results were
compared with the finite difference method. To confirm again the ability of FzT with respect to noisy
and non-noisy source functions, FzT based on the shooting method was introduced by [13] for solving
a nonlinear second-order ODE, and the obtained results were better than the classical method, namely
the second order Runge–Kutta. Further, in [14], FzT to approximate the solution of boundary value
problems by minimizing the integral squared error in the two-norm was considered. The trigonometric
function based on higher degree FzT and the accuracy of the resulting approximation increase with
the increase in the degree of FzT were presented by [15], while the weighted transform method was
discussed by [16]. The conditions for quasi-consensus in a multi-agent system with sampled data
based on FzT were proposed by [17]. In [18], the dynamical properties of a two-neuron system with
respect to FzT and a single delay have been investigated. Multi-step FzT was first studied by [19] for
solving ODEs. From this perspective, FzT was considered for solving a class of ODEs.

In this regard, many approximation methods have been studied for solving ODEs, for example
using neural networks [20], embedded three and two pairs of nonlinear methods [21], electrical
analogy [22], multi-general purpose graphical processing units [23], the differential transform
method [24] and a Galerkin finite element method [25]. A numerical method based on the trapezoidal
rule for the Cauchy–Smoluchowski problem was discussed by [26]. In [27,28], the authors studied
ODEs with the initial value as the triangular fuzzy number. A new fuzzification of the classical
Euler method and then incorporating an unconstrained optimization technique were proposed by [1].
Furthermore, most real-life problems involve systems of ODEs, for example the Lotka–Volterra prey
predator model based on an autonomous model [29], a non-autonomous model [30,31] and fuzzy
initial populations [4].

In this study, our aim is to extend the applicability of the FzT to general coupled Systems of
ODEs (SODEs) where this method works better than its classical counterpart. The motivation of the
present research stems from the fuzzy approach as follows. The first application of the FzT for solving
ODEs had been proposed by [6] where a generalization of the Euler method for an ordinary Cauchy
problem was developed and its potential in comparison with classical methods (Euler method) was
demonstrated. The same approach has been successfully used by [32] to solve the Cauchy problem for
a more accurate comparison with the classical method (the second-order Runge–Kutta method) and
with the generalization of Euler method based on FzT, as proposed by [6]. Further, in [19], new fuzzy
methods based on FzT for solving the Cauchy problem were presented, and the authors compared the
results with existing numerical results in [6,32] and with classical methods, including one, two and
three steps. All these fuzzy approximation methods performed better than the classical trapezoidal
rule (one step) and the classical Adam–Moulton method (two and three steps) and outperformed the
previous fuzzy methods in [6,32].

In this contribution, two new approximation methods are presented in detail to solve SODEs
where the technique of FzT is combined with one-stage and two-stage numerical methods. The first
approximation method improves the Euler method (one-stage), and the other approximation method
improves trapezoidal rule (two-stage). The primary focus of this contribution is to demonstrate the
applicability of the FzT for functions of two variables based on the uniform fuzzy partition. The error
analysis is discussed in the context of the uniform fuzzy partition. Algorithms inspired by the FzT
are shown for solving SODEs. Two new approximation methods are applied to the Lotka–Volterra
prey-predator model. This contribution is an important modification relative to classical methods, the
Euler method and the trapezoidal rule. Thus, these methods are compared with the Euler method and
trapezoidal rule. Both approximation methods with the help of FzT provide better numerical solutions
than the classical Euler method and the classical trapezoidal rule.

The paper is organized as follows. In Section 2, several related concepts and results associated
with the FzT are reviewed. In Section 3, we construct procedures to obtain an approximate solution
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for SODEs by using the FzT method. Applications are discussed in Section 4. Finally, conclusions are
given in Section 5.

2. Basic Concepts

Throughout this section, we deal with an interval [a, b] ⊂ R of real numbers. Let [a, b] be an
interval on the real line R. Fuzzy sets on [a, b] will be identified with their membership functions
mapping from [a, b] into [0, 1]. We will assume an interval [a, b] as a real domain. In this section, we
remind about the definitions and claims that were introduced and proven by [5].

Definition 1. (Fuzzy partition) Let x1 < · · · < xn be fixed nodes within [a, b] such that x1 = a, xn = b and
n ≥ 2. The fuzzy sets A1, . . . , An are often called basic functions. We say that fuzzy sets A1, . . . , An ⊂ [a, b]
establish a fuzzy partition of [a, b] if they fulfill the following conditions for k = 1, . . . , n (for the uniformity of
notation, we set x0 = a and xn+1 = b):

1. Ak (x) : [a, b] → [0, 1] is continuous with Ak (xk) = 1, Ak (x) > 0 if x ∈ (xk−1, xk+1) and
Ak (x) = 0 if x /∈ (xk−1, xk+1);

2. Ak (x) , k = 2, . . . , n, strictly increases on [xk−1, xk], and Ak (x) , k = 1, . . . , n− 1, strictly decreases
on [xk, xk+1];

3. For all x ∈ [a, b], ∑n
k=1 Ak(x) = 1. This is called the Ruspini condition.

We say that a fuzzy partition of [a, b] is h-uniform if its nodes x1, . . . , xn, where n ≥ 2
are equidistant. This means that xk = a + h (k− 1) , k = 1, . . . , n, where h = b−a

n−1 , n ≥ 2, and the two
additional properties are fulfilled:

• Ak(xk − x) = Ak(xk + x), k = 2, . . . , n− 1, for all x ∈ [0, h] and:
• Ak(x) = Ak−1(x− h) and Ak+1(x) = Ak(x− h), k = 2, . . . , n− 1, for all x ∈ [xk, xk+1].

Two uniform fuzzy partitions with triangular- and sinusoidal-shaped basic functions can be
found in [5,6]. Throughout this paper, we will write uniform fuzzy partition instead of h-uniform
fuzzy partition.

Definition 2. Let f be a continuous function on [a, b] and Ak(x), k = 1, . . . , n, be a uniform fuzzy partition
of [a, b], n ≥ 2. A vector of real numbers F[ f ] = (F1, F2, . . . , Fn) given by (to complete this notation, we set
x1 = a and xn+1 = b):

Fk [ f ] =

∫ b
a f (x) Ak(x) dx∫ b

a Ak(x) dx
=

∫ xk+1
xk−1

f (x) Ak(x)dx∫ xk+1
xk−1

Ak(x)dx
, k = 1, . . . , n, (1)

is called the direct FzT of f with respect to A1, . . . , An.

Remark 1. The elements F1[ f ], . . . , Fn[ f ] are called components of the FzT. If A1, . . . , An forms a uniform
fuzzy partition, then the expression (1) can be simplified as follows:

F1[ f ] =
2
h

∫ x2

x1

f (x) A1(x)dx, Fn[ f ] =
2
h

∫ xn

xn−1

f (x) An(x)dx,

Fk[ f ] =
1
h

∫ xk+1

xk−1

f (x) Ak(x)dx, k = 2, . . . , n− 1. (2)

Definition 3. Let F[ f ] = (F1, F2, . . . , Fn) be the direct FzT of f ∈ C [a, b] with respect to Ak(x), k = 1, . . . , n.
Then, the inverse FzT of f , f̂ : [a, b]→ R, given by:

f̂ (x) =
n

∑
k=1

Fk Ak(x). (3)
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Lemma 1. [6] Let f (x) be continuous on [a, b] and twice continuously differentiable in (a, b), and let basic
functions form a uniform fuzzy partition of [a, b]. Then, for each k = 1, . . . , n:

Fk = f (xk) +O(h2). (4)

Remark 2. An important property of the direct FzT, as well as inverse FzT is their linearity, namely, given
f , g ∈ C [a, b] and α, β ∈ R, if h = α f + βg, then F [h] = αF [ f ] + βF [g] and ĥ = α f̂ + βĝ.

3. FzT for Solving SODEs

In this section, we present methodological remarks and numerical schemes for solving SODEs.

3.1. Methodological Remarks to Applications of the FzT

Consider the Initial Value Problem (IVP) for the SODEs:{
x′(t) = f (t, x (t) , y (t)) , x (t1) = α, t1 ≤ t ≤ tn,

y′(t) = g (t, x (t) , y (t)) , y (t1) = β,
(5)

where α, β ∈ R, f and g are continuous functions on [t1, tn] × R × R and satisfy the Lipschitz
condition. Unfortunately, the analytical solution (x(t), y(t)) of Problem (5) is often difficult and
sometimes impossible to obtain. Thus, approximate solutions by means of FzT are extremely important
for solving (5). A numerical method for (5) is an algorithm that computes FzT components Xk ≈ x(tk)

and Yk ≈ y(tk), for each k = 2, . . . , n (to complete this notation, we set α = X1 = x(t1) and
β = Y1 = y(t1)).

Below, we extend the main principles of FzT detailed in Formulas (6) that are needed later.

Definition 4. Let f (g) be a continuous function on [t1, tn] and A1, . . . , An be the fuzzy partition of [t1, tn].
A vector of real numbers Fk[ f ] = (F1[ f ], . . . , Fn[ f ]) (Gk[g] = (G1[g], . . . , Gn[g])) given by:

Fk[ f ] =

∫ tn
t1

f (t, x (t) , y (t)) Ak(t) dt∫ tn
t1

Ak(t) dt

Gk[g] =

∫ tn
t1

g(t, x (t) , y (t)) Ak(t) dt∫ tn
t1

Ak(t) dt

 , (6)

is called the direct FzT of f (g) that is extended with independent variable t and two dependent variables x
and y.

Remark 3. We need a way to approximate the direct FzT components 6. This is discussed in Corollary 1.

In the following, the necessary steps of the FzT are given.

1. Construction of the fuzzy partition:

(a) Specify the number n of components, and compute the step h = (tn − t1) / (n− 1).
(b) Construct the nodes t1 < . . . < tn, where tk = t1 + h(k− 1).
(c) Select the shape of basic functions. We mostly use triangular- or sinusoidal-shaped basic

functions. Recall that the shape of the basic functions determines the course of f̂ , that is
whether it is piecewise linear or nonlinear.

(d) Construct a uniform fuzzy partition of [t1, tn] by triangular- or sinusoidal-shaped basic
functions [5].

2. Computation of FzT: We replace x′ (t) and y′ (t) by their approximations based on the Taylor
expansion as new functions with respect to the fuzzy partition A1, . . . , An by Step 1. In this way,
similarly to [6], we transfer the original SODEs to the space of fuzzy units, solve them in the new
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space and then transfer them back by the inverse FzT. Compute the approximation for x and y
by the inverse FzT applied to [X1, . . . , Xn] and [Y1, . . . , Yn]. In the next subsections, the schemes
provide formulas for the computation of components of FzT.

3.2. Numerical Scheme I for SODEs

In this subsection, we present a modified scheme to solve SODEs using the FzT. Suppose that
the functions f and g on [t1, tn] are sufficiently smooth in (5). For solving SODEs (5) on [t1, tn],
the interval is divided into n− 1 subintervals. Let us choose some uniform fuzzy partition of interval
[t1, tn] with parameter h = (tn − t1)/(n− 1), n ≥ 2, and basic functions A1, . . . , An. In view of the
methodological remarks in Subsection 3.1, we describe the complete sequence of steps, which leads
to the approximation solution of SODEs (5) (see [6] for technical details). Before we apply the direct
FzT to both parts of the differential equation, we will use the Taylor expansion and replace the first
derivatives of the left-hand sides in (5) by their approximations, i.e.,{

x(t + h) = x(t) + hx′(t) +O(h2),

y(t + h) = y(t) + hy′(t) +O(h2).
(7)

Denote

{
x+(t) = x(t + h),
y+(t) = y(t + h),

as new functions and then apply the direct FzT components

{
Fn

Gn

to both parts of Equation (7).{
Fn[x′(t)] = 1

h (Fn[x+]− Fn[x]) +O(h2),

Gn[y′(t)] = 1
h (Gn[y+]− Gn[y]) +O(h2),

where

{
Fn[x′] = [X′1, . . . , X′n−1],

Gn[y′] = [Y′1, . . . , Y′n−1],

{
Fn[x] = [X1, . . . , Xn−1],

Gn[y] = [Y1, . . . , Yn−1],
and

{
Fn[x+] = [X+

1 , . . . , X+
n−1],

Gn[y+] = [Y+
1 , . . . , Y+

n−1].

Now, prove that:{
X+

1 = X2 +O(h2),

X+
k = Xk+1, k = 2, . . . , n− 2,

and

{
Y+

1 = Y2 +O(h2),

Y+
k = Yk+1, k = 2, . . . , n− 2.

For the values k = 1 and k = n − 1 by Lemma 1, we have

{
X+

k = Xk+1 +O(h2),

Y+
k = Yk+1 +O(h2),

, and for

k = 2, . . . , n− 2, we have:X+
k = 1

h

∫ tk+1
tk−1

x(t + h).Ak(t)dt = 1
h

∫ tk+2
tk

x(s).Ak+1(s)ds = Xk+1,

Y+
k = 1

h

∫ tk+1
tk−1

y(t + h).Ak(t)dt = 1
h

∫ tk+2
tk

y(s).Ak+1(s)ds = Yk+1.

Then, we get: {
hX′k = (Xk+1 − Xk) +O(h2),

hY′k = (Yk+1 −Yk) +O(h2).
, k = 1, . . . , n− 1. (8)

Therefore, we can introduce the (n− 1)× n matrix:

D =
1
h


−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1

 .
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Thus, according to (5), the equality (8) can be rewritten (up to O
(
h2)) as matrix equality:{

Fn[x′] = DFn[x],

Gn[y′] = DGn[y],
(9)

where

{
Fn[x′] = [X′1, . . . , X′n−1]

T ,

Gn[y′] = [Y′1, . . . , Y′n−1]
T ,

and

{
Fn[x] = [X1, . . . , Xn−1]

T ,

Gn[y] = [Y1, . . . , Yn−1]
T .

Now, let us return to the problem (5) and apply the FzT to both sides of the differential equation.
Based on the linearity of FzT and Formula (9), we obtain the following system with respect to the
unknown Fn[x] and Gn[y]: {

DFn[x] = Fn[ f ],

DGn[y] = Gn[g],
(10)

where

{
Fn[ f ] = [F1, . . . , Fn−1]

T ,

Gn[g] = [G1, . . . , Gn−1]
T ,

are the FzT of f (t, x(t), y(t)) (g(t, x(t), y(t))) as a function of t

w.r.t. the chosen basic functions A1, . . . , An. Note that the last components Fn and Gn are not presented
in Fn[ f ] and Gn[g], respectively, due to the dimensionality limitation, and (10) does not include two
initial conditions of (5). Thus, we complete the matrix D by adding the first row as the initial value
as follows:

D∗ =
1
h


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1

 ,

so that D∗ is an n× n nonsingular matrix. Based on the initial conditions and the matrix D∗, we also
expand Fn[ f ] and Gn[g] by adding the first element, as follows:{

F∗n [ f ] = [ x1
h , F1, . . . , Fn−1]

T ,

G∗n[g] = [ y1
h , G1, . . . , Gn−1]

T .

Then, the problem (5) can be completely represented by the following expression with respect to
the unknown Fn[x] and Gn[y]: {

D∗.Fn[x] = F∗n [ f ],

D∗.Gn[y] = G∗n[g].
(11)

The solution of (11) can be obtained by the following formula:{
Fn[x] = (D∗)−1.F∗n [ f ],

Gn[y] = (D∗)−1.G∗n[g].
(12)
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In fact, to obtain the solution of (12), we should compute the inverse matrix of D∗. Therefore, we
have:

(D∗)−1 = h


1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 · · · 0
...

. . .
...

1 1 · · · 1 1

 ,

and by (12), we get:

Xk+1 = Xk + hFk, X1 = α, Yk+1 = Yk + hGk, Y1 = β, k = 1, . . . , n− 1, (13)

where Fk (Gk) is given by Formula (6). Formula (13) can be applied to the computation of X2, . . . , Xn

and Y2, . . . , Yn. However, it cannot be applied directly by using the function f (t, x, y) or g(t, x, y),
because it uses unknown functions x and y. Therefore, we will use the same trick as in [6] and replace
functions by their FzT components:

F̂k[ f ] =

∫ tn
t1

f (t, Xk, Yk) Ak(t) dt∫ tn
t1

Ak(t) dt
, Ĝk[g] =

∫ tn
t1

g(t, Xk, Yk) Ak(t) dt∫ tn
t1

Ak(t) dt
, k = 1, . . . , n− 1. (14)

Thus, the components of FzT of x and y can be approximated from the following Scheme I:

Xk+1 = Xk + hF̂k, X1 = α, | Yk+1 = Yk + hĜk, Y1 = β, k = 1, . . . , n− 1. (15)

Finally, the approximate solution of (5) can be obtained using the inverse FzT as follows:

xn(t) =
n

∑
k=1

Xk Ak(t), yn(t) =
n

∑
k=1

Yk Ak(t), (16)

where Ak(t), k = 1, 2, . . . , n are given basic functions. The proposed method is similar to the
well-known Euler method and under similar assumptions. It has the same degree of accuracy. In the
next theorem, we obtain an error estimate in the context of a fuzzy partition and error analysis of
numerical Scheme I.

Theorem 1. Let f , g : [t1, tn] → R be twice continuously differentiable on [t1, tn]. Let, moreover, f , g :
[t1, tn]× R× R → R be Lipschitz continuous with respect to x and y, i.e. there exists a constant L ∈ R,
such that for all t ∈ [t1, tn] and x, x′, y, y′ ∈ R,

| f (t, x, y)− f (t, x′, y′)| ≤ L(|x− x′|+ |y− y′|),
|g(t, x, y)− g(t, x′, y′)| ≤ L(|x− x′|+ |y− y′|). (17)

Assume that {Ak | k = 1, . . . , n}, n ≥ 2, is a uniform fuzzy partition of [t1, tn]. Then, the local (global)
error of Scheme I (14)–(15) is of the order h2 (h).

Proof. Let us choose and fix some k, where 2 ≤ k ≤ n, and assume that Xk (Yk) is the k-th FzT
component of x (y). We consider the SODEs (5) and their FzT representation by the system of
equations (11). We start with the following easy consequences from the Taylor expansions:

x(tk+1) = x(tk) + h f (tk, xk, yk) +O
(

h2
)

,

y(tk+1) = y(tk) + hg(tk, xk, yk) +O
(

h2
)

.
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Let ek = xk − Xk, dk = yk −Yk, x(tk) = xk and y(tk) = yk, then according to (14)–(15), we get:

ek+1 = ek + h
(

f (tk, xk, yk)− F̂k
)
+O

(
h2
)

, (18)

dk+1 = dk + h
(

g(tk, xk, yk)− Ĝk
)
+O

(
h2
)

. (19)

By the assumption that f and g have continuous second order derivatives on [t1, tn] and are
Lipschitz continuous with respect to x and y, therefore, using the trapezoid rule and Remark 1, we get:

| f (tk, xk, yk)− F̂k| = | f (tk, xk, yk)−
1
h

∫ tk+1

tk−1

f (t, Xk, Yk)Ak(t)dt|,

= | f (tk, xk, yk)−
1
h

h
2

2 f (tk, Xk, Yk) +O(h2)|,

= | f (tk, xk, yk)− f (tk, Xk, Yk) +O(h2)|,
≤ L(|ek|+ |dk|) +O(h2). (20)

Similarly,
|g(tk, xk, yk)− Ĝk| ≤ L(|ek|+ |dk|) +O(h2).

Therefore,

|ek+1| ≤ |ek|+ hL(|ek|+ |dk|) +O(h2),

|dk+1| ≤ |dk|+ hL(|ek|+ |dk|) +O(h2).

Denoting δk = max(|ek|, |dk|) and using the obvious equality max(a + b, c + b) = max(a, c) + b,
we obtain from the above :

δk+1 ≤ δk + 2hL(|ek|+ |dk|) +O(h2), (21)

and finally,
δk+1 ≤ δk(1 + 2hL) +O(h2).

By iteration, we come to:

δk+1 ≤ δ1(1 + C)k +O(h2)(1 + (1 + C) + . . . + (1 + C)k−1) = δ1(1 + C)k +O(h2)
(1 + C)k − 1

C
,

where C = 2hL. For k = n− 1, we have:

δn . e2Lδ1 +O(h), (22)

where we made use of the following fact: h = (tn − t1)/(n − 1), and the following asymptotic
equalities: (1 + 1/n)n ∼ e, (1 + a)n ∼ 1 + na.

By (21) and (22), we conclude that Scheme I has the local order h2 and the global order h.

Remark 4. Theorem 1 extends Theorem 9.1 of [6] to the SODEs.

Corollary 1. Let the assumptions of Theorem 1 be fulfilled. Then, for each k = 1, . . . , n:

Fk − F̂k = O(h2), and Gk − Ĝk = O(h2),

where Fk, Gk are defined by (6) and F̂k, Ĝk are defined by (14).
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Proof. By Lemma 1, xk − Xk = O(h2) and yk −Yk = O(h2) and (20), we get:

F̂k − f (tk, xk, yk) = O(h2),

and using the trapezoid rule and Remark 1, we obtain:

Fk =
1
h

∫ tk+1

tk−1

f (t, xk, yk)Ak(t)dt,

=
1
h

h
2

2 f (tk, xk, yk) +O(h2),

= f (tk, xk, yk) +O(h2).

which together with the previous estimation proves that:

Fk − F̂k = O(h2).

Similarly,
g(tk, xk, yk)− Ĝk = O(h2) and Gk − Ĝk = O(h2).

Corollary 2. The approximation method for (5) is given by Scheme I (14)–(15) with the local error O(h2).
The approximate solution to (5) can be found by taking the inverse FzT (16) where A1, . . . , An are fixed
basic functions.

Theorem 2. Let f , g ∈ C2 [t1, tn] and bounded on I = [t1, tn]. Let, moreover, basic functions
{Ak | k = 1, . . . , n} , n ≥ 2, form a uniform fuzzy partition of I. Assume that Fk (Gk) , k = 1 . . . , n,
and F′k

(
G′k
)

, k = 1 . . . , n, are the FzT components of f (g) and f ′ (g′) with respect to {Ak | k = 1, . . . , n},
respectively. Then, for k = 1, . . . , n− 1:

|Fk+1 − Fk| ≤ h
∣∣F′k∣∣+ h2

2
M f , |Gk+1 − Gk| ≤ h

∣∣G′k∣∣+ h2

2
Mg, (23)

where M f = max
t∈I
| f ′′(t, x(t), y(t))| and Mg = max

t∈I
|g′′(t, x(t), y(t))|.

Proof. Let us write the following result from Taylor’s theorem:

f (t + h, x(t), y(t)) = f (t, x(t), y(t)) + h f ′(t, x(t), y(t)) +
h2

2
f ′′(ε, x(ε), y(ε)),

g(t + h, x(t), y(t)) =g(t, x(t), y(t)) + hg′(t, x(t), y(t)) +
h2

2
g′′(ξ, x(ξ), y(ξ)).

where tk < ε, ξ < tk+1. Using the linearity of the FzT by Remark 2 and the properties of the uniform
fuzzy partition by Definition 1, we get:

Fk [ f (t + h, x, y)] =
1
h

∫ tk+1

tk−1

f (t + h, x, y)Ak(t)dt,

=
1
h

∫ tk+2

tk

f (t, x, y)Ak+1(t)dt,

= Fk+1[ f (t, x, y)], k = 2, 3, . . . , n− 1,
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and:

Fk+1 = Fk + hF′k +O
(

h2
)

, Gk+1 = Gk + hG′k +O
(

h2
)

,

Fk+1 ≤ Fk + hF′k +
h2

2
M f , Gk+1 ≤ Gk + hG′k +

h2

2
Mg,

which easily leads to (23).

Lemma 2. Consider Scheme I (14)–(15). If the set of fuzzy sets {Ak | k = 1, . . . , n− 1} , n ≥ 2, is a uniform
fuzzy partition of [t1, tn], then we have for fixed k = 1, . . . , n− 1:

Xk+1 − Xk =


2
∫ tn

t1
f (t, Xk, Yk)A1(t)dt if k = 1,

∫ tn
t1

f (t, Xk, Yk)Ak(t)dt if k = 2, . . . , n− 1,

Yk+1 −Yk =


2
∫ tn

t1
g(t, Xk, Yk)A1(t)dt if k = 1,

∫ tn
t1

g(t, Xk, Yk)Ak(t)dt if k = 2, . . . , n− 1,

(24)

Proof. The proof can be obtained from Remark 1; in particular, by the properties of the uniform fuzzy
partition

∫ tn
t1

Ak(t)dt = h/2 for k = 1 and
∫ tn

t1
Ak(t)dt = h for k = 2, . . . , n− 1 and after substituting

this into (14)–(15).

Lemma 3. Suppose that f , g are continuous and bounded on I = [t1, tn], and consider that Scheme I (14)–(15)
with respect to the basic functions forms a uniform fuzzy partition of I. Then, we have for fixed k = 1, . . . , n− 1:

|Xk+1 − Xk| ≤ M1h, |Yk+1 −Yk| ≤ M2h,

where M1 = max
t∈[t1,tn ]

| f (t, x, y)| and M2 = max
t∈[t1,tn ]

|g(t, x, y)|.

Proof. Let us choose a value of k in the range 1 ≤ k ≤ n− 1. By using Lemma 2, we get:

|X2 − X1| =
∣∣∣∣2 ∫ t2

t1

f (t, Xk, Yk)A1(t)dt
∣∣∣∣ ,

≤ 2
∫ t2

t1

| f (t, Xk, Yk)A1(t)| dt ≤ 2M1

∫ tk+1

tk−1

A1(t)dt = M1h,

|Xk+1 − Xk| =
∣∣∣∣∫ tk+1

tk−1

f (t, Xk, Yk)Ak(t)dt
∣∣∣∣ ,

≤
∫ tk+1

tk−1

| f (t, Xk, Yk)Ak(t)| dt ≤ M1

∫ tk+1

tk−1

Ak(t)dt = M1h.

Similarly, |Y2 −Y1| ≤ M2h and |Yk+1 −Yk| ≤ M2h.

Throughout the assumptions of Theorem 3, we consider (t, x1, x2) instead (t, x, y).

Theorem 3. Suppose that f (t, x1, x2), g(t, x1, x2) ∈ C2 [t1, t2]. Let
∣∣∣ ∂ f

∂xi

∣∣∣ ≤ L f

(∣∣∣ ∂g
∂xi

∣∣∣ ≤ Lg

)
, i = 1, 2,

and | f (t, x1, x2)| ≤ M1 (|g(t, x1, x2)| ≤ M2). Consider Scheme I (14)–(15) for some positive integer k, and
{Ak | k = 1, . . . , n− 1} , n ≥ 2, is a uniform fuzzy partition of [t1, tn], then the following hold true:
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1. for a value of k in the range 1 ≤ k ≤ n− 1:∣∣F̂k − F̂k−1
∣∣ ≤ L f hUk,k−1 ,

∣∣Ĝk − Ĝk−1
∣∣ ≤ LghUk,k−1 ,

where Uk,k−1 = |Xk − Xk−1|+ |Yk −Yk−1|.
2. for all k = 1, . . . , n− 1:

|Xn+1 − Xn| ≤
Mh
2

en(2Lh2), |Yn+1 −Yn| ≤
Mh
2

en(2Lh2),

where L = L f + Lg and M = ∑2
i Mi.

Proof. 1. Using (6), we can get for each k = 2, . . . , n− 1 and t ∈ I ∩ [tk, tk+1]:

∣∣F̂k − F̂k−1
∣∣ =

∣∣∣∣∣∣
∫ tk+1

tk−1
f (t, Xk, Yk)Ak(t)dt∫ tk+1

tk−1
Ak(t)dt

−

∫ tk
tk−2

f (t, Xk−1, Yk−1)Ak−1(t)dt∫ tk
tk−2

Ak−1(t)dt

∣∣∣∣∣∣ .

Based on Remark 1 and Definition 1, the properties of the uniform fuzzy partition, we replace t
by t− h and then Ak−1(t− h) by Ak(t). Thus,

∣∣F̂k − F̂k−1
∣∣ =

∣∣∣∣∣∣
∫ tk+1

tk−1
f (t, Xk, Yk)Ak(t)dt∫ tk+1

tk−1
Ak(t)dt

−

∫ tk+1
tk−1

f (t− h, Xk−1, Yk−1)Ak(t)dt∫ tk+1
tk−1

Ak(t)dt

∣∣∣∣∣∣ ,

≤ L f (|Xk − Xk−1|+ |Yk −Yk−1|)
∫ tk+1

tk−1

Ak(t)dt,

= L f hUk,k−1. (25)

In a similar way,
∣∣Ĝk − Ĝk−1

∣∣ ≤ LghUk,k−1.

2. We first prove the estimate for k = 1. Then, we show that for all k = 2, . . . , n − 1, by using
Lemma 2, for k = 1,

|X2 − X1| =
∣∣∣∣∫ t2

t1

f (t, Xk, Yk)Ak(t)dt
∣∣∣∣ ,

≤
∫ t2

t1

| f (t, Xk, Yk)Ak(t)| dt ≤ M1

∫ t2

t1

Ak(t)dt ≤ Mh
2

,

where M = ∑2
i Mi. By (15), we get:

Xk+1 − Xk = Xk − Xk−1 + h
(

F̂k − F̂k−1
)

, Yk+1 −Yk = Yk −Yk−1 + h
(
Ĝk − Ĝk−1

)
.

By using (25), we get:

|Xk+1 − Xk| ≤ |Xk − Xk−1|+ Lh2 (|Xk − Xk−1|+ |Yk −Yk−1|) ,

≤ |Xk − Xk−1|+ |Yk −Yk−1|+ 2Lh2 (|Xk − Xk−1|+ |Yk −Yk−1|) ,

≤
[
1 + 2Lh2

]
(|Xk − Xk−1|+ |Yk −Yk−1|) ,

≤
(

1 + 2Lh2
)k

U2,1 ≤
Mh
2

(
1 + 2Lh2

)k
,
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where U2,1 = |X2 − X1|+ |Y2 −Y1|, L = L f + Lg and M = ∑2
i Mi. In particular,

|Xn+1 − Xn| ≤
Mh
2

(
1 + 2Lh2

)n
≤ en(2Lh2) Mh

2
,

where we have used inequality
(
1 + 2h2L

)n ≤ en( 2h2L ), n ≥ 0. Analogously, |Yn+1 −Yn| ≤
en(2Lh2) Mh

2 . which concludes the proof.

Remark 5. The following estimations are used in Theorem 4 for k = 1, . . . , n − 1. Let f (g) satisfy the
Lipschitz condition in the second and third arguments; we get:

| f (tk, xk, yk)− f (tk, Xk, Yk)| ≤ L1 |xk − Xk|+ L2 |yk −Yk| ,
|g(tk, xk, yk)− g(tk, Xk, Yk)| ≤ L3 |xk − Xk|+ L4 |yk −Yk| .

From (20), we get:

f (tk, xk, yk)− F̂k ≤ f (tk, xk, yk)− f (tk, Xk, Yk) +
h2

12 2.M2,∣∣ f (tk, xk, yk)− F̂k
∣∣ ≤ L1 |xk − Xk|+ L2 |yk −Yk|+ h2

6 M2,∣∣g(tk, xk, yk)− Ĝk
∣∣ ≤ L3 |xk − Xk|+ L4 |yk −Yk|+ h2

6 M2.

Thus, ∣∣ f (tk, Xk, Yk)− F̂k
∣∣ ≤ h2

6
M2, and

∣∣g(tk, Xk, Yk)− Ĝk
∣∣ ≤ h2

6
M2,

where M2 = M2 f + M2g, M2 f = max
t∈[t1,tn ]

| f ′′ (t, x, y)| and M2g = max
t∈[t1,tn ]

|g′′ (t, x, y)|.

Now, we show that the proposed Scheme I is convergent.

Theorem 4. Let the assumptions of Theorem (3) be fulfilled, and further assume that f (g) satisfies a Lipschitz
condition in the second and third arguments. Consider Scheme I (14)–(15) for some positive integer k, and
{Ak | k = 1, . . . , n − 1}, n ≥ 2, is a uniform fuzzy partition of [t1, tn]. Thus, if a sequence of h =

{h1, ..., hm} → 0, m > 0, and with each h, we compute the Xk,h, Yk,h component, then
∣∣x(tk)− Xk,h

∣∣,∣∣y(tk)−Yk,h
∣∣ converges to zero for each k = 1, . . . , n− 1.

Proof. Let us drop the h subscript in the errors, writing |x(tk)− Xk| and |y(tk)−Yk|. Now, when
k = 1, the result is clearly true, since x(t1) = X1 = x1, y(t1) = Y1 = y1. By Taylor’s theorem, we have:

x(tk+1) = x(tk) + h f (tk, xk, yk) +
h2

2
f ′(εk, x(εk), y(εk)),

y(tk+1) = y(tk) + hg(tk, xk, yk) +
h2

2
g′(ξk, x(ξk), y(ξk)),

where tk < εk, ξk < tk+1. Denote e1k = xk − Xk, e2k = yk − Yk, xk = x(tk) and yk = y(tk). Then,
by (15), we get:

e1k+1 = e1k + h
(

f (tk, xk, yk)− f (tk, Xk, Yk) + f (tk, Xk, Yk)− F̂k
)
+

h2

2
x′′(εk),

e2k+1 = e2k + h
(

g(tk, xk, yk)− g(tk, Xk, Yk) + g(tk, Xk, Yk)− Ĝk
)
+

h2

2
y′′(ξk).



Appl. Syst. Innov. 2018, 1, 29 13 of 28

By virtue of Remark 5, we get:

|e1k+1| ≤ |e1k|+ hL1 |e1k|+ hL2 |e2k|+
h2

2

(
M1 f +

h
3

M2

)
,

|e2k+1| ≤ |e2k|+ hL4 |e2k|+ hL3 |e1k|+
h2

2

(
M1g +

h
3

M2

)
,

where M1 f = max
t∈[t1,tn ]

|x′′(t)| and M1g = max
t∈[t1,tn ]

|y′′(t)|. Therefore,

Case 1. If c = M1 f + M1g +
2h
3 M2, L = ∑4

i=1 Li , we get:

|e1k+1| ≤ |e1k+1|+ |e2k+1| ≤ (1 + 2hL) (|e1k|+ |e2k|) + h2c/2,

≤ (1 + 2hL)Uk +
h2

2
c ≤ (1 + 2hL)k U1 +

(
k−1

∑
j=0

(1 + 2hL)j

)
h2

2
c,

= (1 + 2hL)k U1 +

(
( 1 + 2hL )k − 1

2hL

)
h2

2
c ≤ ek(2hL)

(
U1 +

hc
4L

)
− hc

4L
,

where Uk = |e1k| + |e2k|. Indeed, we have used inequality (1 + 2hL)k ≤ ek( 2hL ), k ≥ 0,
and the quantity ∑k−1

j=0 (1 + 2hL)j is a finite geometric series; these can be calculated by:

2Lh

(
k−1

∑
j=0

(1 + 2hL)j

)
= (1 + 2Lh)

(
k−1

∑
j=0

(1 + 2hL)j

)
−
(

k−1

∑
j=0

(1 + 2hL)j

)
= (1 + 2hL)k − 1.

In particular, when U1 = 0, this implies that:

|xn − Xn| ≤
hc
4L

(
e2L(tn−t1) − 1

)
, |yn −Yn| ≤

hc
4L

(
e2L(tn−t1) − 1

)
. (26)

Case 2. In view of Remark 5, let L = Li, i = 1, . . . , 4

∣∣ f (tk, xk, yk)− F̂k
∣∣ ≤ h2

6
M2 + 2L max {|xk − Xk| , |yk −Yk|} ,∣∣g(tk, xk, yk)− Ĝk

∣∣ ≤ h2

6
M2 + 2L max {|xk − Xk| , |yk −Yk|} .

Thus, e1k+1 = xk − Xk, e2k = yk −Yk,

|e1k+1| ≤ |e1k|+ 2Lh max {|e1k| , |e2k|}+
h2

2
c1,

|e2k+1| ≤ |e2k|+ 2Lh max {|e1k| , |e2k|}+
h2

2
c2,

where c1 = M1 f +
h
3 M2 and c2 = M1g +

h
3 M2. Consequently,

|e1k| ≤ (1 + 4Lh)k |U1|+ h2c1
(1 + 4Lh)k − 1

4Lh
,

|e2k| ≤ (1 + 4Lh)k |U1|+ h2c2
(1 + 4Lh)k − 1

4Lh
,
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where U1 = |e11|+ |e21|. In particular, when U1 = 0, this implies that:

|xn − Xn| ≤ hc1
e4L(tn−t1) − 1

4L
, |yn −Yn| ≤ hc2

e4L(tn−t1) − 1
4L

, (27)

and if a sequence of h→ 0, we get
∣∣e1n,h

∣∣→ 0,
∣∣e2n,h

∣∣→ 0, which concludes the proof.

3.3. Numerical Scheme II for SODEs

In this subsection, we will construct numerical Scheme II, a more advanced method than that of
Scheme I. The components of FzT of x and y can be approximated by the average of the two methods,
Scheme I (14)–(15) and the backward Scheme I (or implicit Scheme I), then the FzT is given by:

Xp = Xk + hF̂k, X1 = α, Yp = Yk + hĜk, Y1 = β,
Xc = Xk + hF̂k+1, X1 = α, Yc = Yk + hĜk+1, Y1 = β,

Xk+1 = 1
2
(
Xp + Xc

)
, Yk+1 = 1

2
(
Yp + Yc

)
,

 (28)

for k = 1, . . . , n− 1.
The problem with the previous scheme (28) is that the unknown quantities F̂k+1 and Ĝk+1 appear

on both sides (an implicit method). Therefore, one solution to this problem would be to use an explicit
method such as another fuzzy approach. The following Scheme II for k = 1, . . . , n− 1, X1 = α, Y1 = β:

X∗k+1 = Xk + hF̂k, Y∗k+1 = Yk + hĜk,
Xk+1 = Xk +

h
2
(

F̂k + F̂∗k+1
)

, Yk+1 = Yk +
h
2
(
Ĝk + Ĝ∗k+1

)
,

}
(29)

where:

F̂k[ f ] =

∫ tn
t1

f (t,Xk ,Yk)Ak(t)dt∫ tn
t1

Ak(x)dx
, Ĝk[g] =

∫ tn
t1

g(t,Xk ,Yk)Ak(t)dt∫ tn
t1

Ak(x)dx
,

F̂∗k+1[ f ] =

∫ tn
t1

f (t,X∗k+1,Y∗k+1)Ak+1(t)dt∫ tn
t1

Ak+1(x)dx
, Ĝ∗k+1[g] =

∫ tn
t1

g(t,X∗k+1,Y∗k+1)Ak+1(t)dt∫ tn
t1

Ak+1(x)dx
.

 (30)

This method computes the approximate coordinates [X1, . . . , Xn] and [Y1, . . . , Yn] of the direct
FzT of the functions x(t) and y(t), respectively. In the sequel, the inverse FzT (16) approximates the
solution x(t) (y(t)) of the SODEs (5).

In the next theorem, we obtain an error estimate in the context of a fuzzy partition and error
analysis of approximation Scheme II.

Theorem 5. Suppose that f (t, x1, x2), g(t, x1, x2) ∈ C2 [t1, t2]. Let
∣∣∣ ∂ f

∂xi

∣∣∣ ≤ L f

(∣∣∣ ∂g
∂xi

∣∣∣ ≤ Lg

)
, i = 1, 2,

and | f (t, x1, x2)| ≤ M1 (|g(t, x1, x2)| ≤ M2). Consider Scheme II (29)–(30) for some positive integer k and
{Ak | k = 1, . . . , n− 1} , n ≥ 2, to be a uniform fuzzy partition of [t1, tn], then the following hold true:

1. for a value of k in the range 1 ≤ k ≤ n− 1:

∣∣F̂∗k+1 − F̂∗k
∣∣ ≤Lh

(
1 + 2Lh2

)
Uk,k−1,

∣∣Ĝ∗k+1 − Ĝ∗k
∣∣ ≤Lh

(
1 + 2Lh2

)
Uk,k−1,

where Uk,k−1 = |Xk − Xk−1|+ |Yk −Yk−1|.
2. for all k = 1, . . . , n− 1

|Xn+1 − Xn| ≤
Mh
2

en(2Lh2), |Yn+1 −Yn| ≤
Mh
2

en(2Lh2),

where L = L f + Lg and M = ∑2
i Mi.
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Proof. The proof is similar to the proof of Theorem 3, so we just write out the procedure. The proofs
of Part 1 is as follows.∣∣X∗k+1 − X∗k

∣∣+ ∣∣Y∗k+1 −Y∗k
∣∣ ≤ |Xk − Xk−1|+ h

∣∣F̂k − F̂k−1
∣∣+ |Yk −Yk−1|+ h

∣∣Ĝk − Ĝk−1
∣∣ ,∣∣F̂∗k+1 − F̂∗k

∣∣ ≤L f h
(∣∣X∗k+1 − X∗k

∣∣+ ∣∣Y∗k+1 −Y∗k
∣∣) ,∣∣F̂k − F̂k−1

∣∣ ≤L f hUk,k−1, and
∣∣Ĝk − Ĝk−1

∣∣ ≤ LghUk,k−1.

The proof of Part 2, using (29), gives:

|Xk+1 − Xk| ≤ |Xk − Xk−1|+ Lh2
(

1 + Lh2
)

Uk,k−1,

|Xk+1 − Xk| ≤ |Xk+1 − Xk|+ |Yk+1 −Yk| ≤
(

1 + 2Lh2
(

1 + Lh2
))k

U2,1,

≤Mh
2

(
1 + 2Lh2

(
1 + Lh2

))k
.

where Uk,k−1 = |Xk − Xk−1|+ |Yk −Yk−1| and M = M1 + M2. In particular:

|Xn+1 − Xn| ≤ exp
(

n
(

2Lh2
) (

1 + Lh2
)) Mh

2
, |Yn+1 −Yn| ≤ exp

(
n
(

2Lh2
) (

1 + Lh2
)) Mh

2
,

which concludes the proof.

Lemma 4. Let f and g have continuous second order derivatives on t ∈ [t1, tn], and f (g) satisfies a Lipschitz
condition in the second and third arguments. Then, a local error of Scheme II (29)–(30) is of the order h3.

Proof. We consider the SODEs (5). We start with the Taylor expansion and the forward divided
difference approximation of the second derivative (please see Appendix A for more details), i.e.,

x(tk+1) = x(tk) + hx′(tk) +
h2

2

(
x′(tk+1)− x′(tk)

h
− h

2
x′′′(ε2k)

)
+

h3

6
x′′′(ε1k),

x(tk+1) = x(tk) +
h
2

x′(tk) +
h
2

x′(tk+1) + h3
[

1
6

x′′′(ε1k)−
1
4

x′′′(ε2k)

]
,

where εik ∈ (tk, tk+1) , i = 1, 2. The first derivative can be replaced by the right-hand side of the
differential Equation (5). The Taylor expansion becomes:

x(tk+1) = x(tk) +
h
2
( f (tk, xk, yk) + f (tk+1, xk + h f (tk, xk, yk), yk + hg(tk, xk, yk))) + e f h3,

where e f =
[

1
6 x′′′(ε1k)− 1

4 x′′′(ε2k) +
1
4 f2

]
and f2 = ∂

∂x f (ε3k, x(ε3k), y(ε3k)) +
∂

∂y f (ε3k, x(ε3k), y(ε3k)).
We can write this as:

xk+1 = xk +
h
2

(
K0 + K f

)
+ e f h3,

yk+1 = yk +
h
2
(
K1 + Kg

)
+ egh3,

where:

K0 = f (tk, xk, yk), K1 = g(tk, xk, yk),K f = f (tk+1, xk + hK0, yk + hK1), Kg = g(tk+1, xk + hK0, yk + hK1),

eg =

[
1
6

y′′′(ε1k)−
1
4

y′′′(ε2k) +
1
4

g2y′′(ε3k)

]
and g2 =

∂

∂x
g(ε3k, x(ε3k), y(ε3k)) +

∂

∂y
g(ε3k, x(ε3k), y(ε3k)).
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Now, let f (g) satisfy a Lipschitz condition in the second and third arguments. By Lemma 1 and
Remark 5, we have:

| f (tk, xk, yk)− f (t, Xk, Yk)| ≤ L (|xk − Xk|+ |yk −Yk|) ≤ α f h2 ≤ αh2, |g(tk, xk, yk)− g(t, Xk, Yk)| ≤ αg ≤ αh2,

where α = α f + αg is a positive constant. Once again, using Remark 5 and according to (29)–(30),
we obtain for fixed k = 1, . . . , n− 1:

xk+1 − Xk+1 = xk − Xk +
h
2
(
K0 − F̂k

)
+

h
2

(
K f − F̂∗k+1

)
+ e f h3,

K0 − F̂k ≤
∣∣ f (tk, xk, yk)− f (tk, Xk, Yk) + f (tk, Xk, Yk)− F̂k

∣∣ ≤ αh2 +
1
6

M2h2,

K1 − Ĝk =
∣∣g(tk, xk, yk)− g(tk, Xk, Yk) + g(tk, Xk, Yk)− F̂k

∣∣ ≤ αh2 +
1
6

M2h2.

By the trapezium formula, we have:

f (tk+1, X∗k+1, Y∗k+1)− F̂∗k+1 ≤ f (tk+1, X∗k+1, Y∗k+1)− f (tk+1, X∗k+1, Y∗k+1) +
1
6

M2 f h2 =
1
6

M2 f h2 ≤ 1
6

M2h2,

Note that:

f (tk+1, xk + hK0, yk + hK1)− f (tk+1, X∗k+1, Y∗k+1) ≤ L
[
|xk − Xk|+ h

∣∣K0 − F̂k
∣∣+ |yk −Yk|+ h

∣∣K1 − Ĝk
∣∣] .

Next,

K f − F̂∗k+1 = f (tk+1, xk + hK0, yk + hK1)− f (tk+1, X∗k+1, Y∗k+1) + f (tk+1, X∗k+1, Y∗k+1)− F̂∗k+1,

≤
[

αh2 +
1
6

M2h2
]
(2Lh + 1) .

This leads to:

|xk+1 − Xk+1| ≤ |xk − Xk|+ h
2

(
αh2 + 1

6 M2h2
)
+ h

2

([
αh2 + 1

6 M2h2
]
(2Lh + 1)

)
+ e f h3 = |xk − Xk|+ E f h3. (31)

Similarly, |yk+1 −Yk+1| ≤ |yk −Yk| + Egh3, where E f and Eg are appropriate constants that
depend on f and g, respectively. Therefore, the error of this method is O(h3).

To see that Scheme II is globally a second-order method, we need to establish its convergence.

Theorem 6. Let the assumptions of Lemma 4 be fulfilled. Consider Scheme II (29)–(30) for some positive integer
k, and {Ak | k = 1, . . . , n− 1}, n ≥ 2, is a uniform fuzzy partition of [t1, tn]. Thus, if a sequence of h → 0,
and with each h, we compute the Xk,h, Yk,h component, then

∣∣x(tk)− Xk,h
∣∣, ∣∣y(tk)−Yk,h

∣∣ converges to zero for
each k = 1, . . . , n− 1.

Proof. The proof is similar to the proof of Theorem 4, so we just write out the procedure. According to
Remark 5 and (31), we get:

xk+1 − Xk+1 = xk − Xk +
h
2
(
K0 − F̂k

)
+

h
2

(
K f − F̂∗k+1

)
+ e f h3,

K0 − F̂k ≤ L1 |xk − Xk|+ L2 |yk −Yk|+
1
6

M2h2,

K1 − Ĝk ≤ L3 |xk − Xk|+ L4 |yk −Yk|+
1
6

M2h2,

f (tk+1, X∗k+1, Y∗k+1)− F̂∗k+1 =
1
6

M2 f h2 ≤ 1
6

M2h2,
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f (tk+1, xk + hK0, yk + hK1)− f (tk+1, X∗k+1, Y∗k+1) ≤ L1
(
|xk − Xk|+ h

∣∣K0 − F̂k
∣∣)+

L2
(
|yk −Yk|+ h

∣∣K1 − Ĝk
∣∣) ,

K f − F̂∗k+1 = f (tk+1, xk + hK0, yk + hK1)− f (tk+1, X∗k+1, Y∗k+1) + f (tk+1, X∗k+1, Y∗k+1)− F̂∗k+1,

≤ L1 |xk − Xk|+ hL1
∣∣K0 − F̂k

∣∣+ L2 |yk −Yk|+ hL2
∣∣K1 − Ĝk

∣∣+ 1
6

M2h2.

Once again, using Remark 5 gives:

|xk+1 − Xk+1| ≤ |xk − Xk|+
h
2

(
L1 |xk − Xk|+ L2 |yk −Yk|+

1
6

M2h2
)
+

h
2

(
L1 |xk − Xk|+ hL1

∣∣K0 − F̂k
∣∣+ L2 |yk −Yk|+ hL2

∣∣K1 − Ĝk
∣∣+ 1

6
M2h2

)
+(

1
4

SM1 −
1

12
M2

)
h3,

where

e f ≤ 1
6 M2 f − 1

4 M2 f +
1
4 SM1 f =

1
4 SM1 f − 1

12 M2 f ,

M1 = M1 f + M1g, M1 f = max
t∈[t1,tn ]

| f ′(t, x, y)|, M1g = max
t∈[t1,tn ]

|g′(t, x, y)|,

M2 = M2 f + M2g, M2 f = max
t∈[t1,tn ]

| f ′′(t, x, y)|, M2g = max
t∈[t1,tn ]

|g′′(t, x, y)|,

S = S f + Sg is the upper bound of ∂ f
∂xi

(
∂g
∂xi

)
, i = 1, 2, x = x1 and y = x2.

Simplifying, then:

|xk+1 − Xk+1| ≤ |xk − Xk|+

+
h
2
(2L1 + hL1L1 + hL2L3) |xk − Xk|+

h
2
(2L2 + hL1L2 + hL2L4) |yk −Yk|

+

(
1
4

SM1 +
1

12
[hL1 + hL2 + 1] M2

)
h3.

Similarly,

|yk+1 −Yk+1| ≤ |yk −Yk|

+
h
2
(2L4 + hL3L2 + hL4L4) |yk −Yk|+

h
2
(2L3 + hL3L1 + hL4L3) |xk − Xk|

+

(
1
4

SM1 +
1
12

[hL3 + hL4 + 1] M2

)
h3.

Therefore,

Case 1. If L = ∑4
i=1 Li and c = 1

2 SM1 +
1
6 [2hL + 1] M2, we get

|xk+1 − Xk+1| ≤ |xk+1 − Xk+1|+ |yk+1 −Yk+1| ≤ [1 + 2hL (1 + hL)] (|xk − Xk|+ |yk −Yk|) +
h3

2
c,

|yk+1 −Yk+1| ≤ |xk+1 − Xk+1|+ |yk+1 −Yk+1| ≤ [1 + 2hL (1 + hL)] (|xk − Xk|+ |yk −Yk|) +
h3

2
c.
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By using the proof of Theorem 4, when U1 = 0, this implies that:

|xn − Xn| ≤
h2c

4L
(

1 + L(tn−t1)
n

) [exp
(

2L (tn − t1)

(
1 +

L (tn − t1)

n

))
− 1
]

. (32)

In a similar way,

|yn −Yn| ≤
h2c

4L
(

1 + L(tn−t1)
n

) [exp
(

2L (tn − t1)

(
1 +

L (tn − t1)

n

))
− 1
]

. (33)

Case 2. If L = Li, i = 1, . . . , 4 and:∣∣ f (tk, xk, yk)− F̂k
∣∣ ≤ h2

6 M2 + 2L max {|xk − Xk| , |yk −Yk|} ,∣∣∣ g(tk, xk, yk)− Ĝk

∣∣∣ ≤ h2

6 M2 + 2L max {|xk − Xk| , |yk −Yk|} .

Thus,{
|xk+1 − Xk+1| ≤ |xk − Xk|+ 2Lh (1 + hL) max {|xk − Xk| , |yk −Yk|}+ h3

2 c,
|yk+1 −Yk+1| ≤ |yk −Yk|+ 2Lh (1 + hL) max {|xk − Xk| , |yk −Yk|}+ h3

2 c,

where c = 1
2 SM1 +

1
6 [2hL + 1] M2. Consequently, |xk − Xk| ≤ (1 + 4Lh (1 + hL))k |U1|+ h3c (1+4Lh(1+hL))k−1

4Lh(1+hL) ,

|yk −Yk| ≤ (1 + 4Lh (1 + hL))k |U1|+ h3c (1+4Lh(1+hL))k−1
4Lh(1+hL) ,

where Uk = |xk − Xk|+ |yk −Yk|. In particular,
when U1 = 0, we get:

|xn − Xn| ≤ h2c

[
exp

(
4L(tn−t1)

(
1+

L(tn−t1)
n

))
−1
]

4L
(

1+
L(tn−t1)

n

) ,

|yn −Yn| ≤ h2c

[
exp

(
4L(tn−t1)

(
1+

L(tn−t1)
n

))
−1
]

4L
(

1+
L(tn−t1)

n

) ,

(34)

and if h = {h1, ..., hm} → 0, m > 0 in (32), (33) and (34), we get
∣∣xn − Xn,h

∣∣ → 0,∣∣yn −Yn,h
∣∣→ 0, which concludes the proof.

4. Applications

One of the main problems of mathematics appears with variable coefficients when
α (t) , β (t) , δ (t) , γ (t) are analytic functions and added to the model. The new differential equations
are represented by non-autonomous SODEs. In this model, time varying values for the growth rate of
the prey, the efficiency of the predator, being the ability to capture prey, the death rate of the predator
and the growth rate of the predator are considered. It is important to remark that since in this problem,
the coefficients are time varying, careful attention must be paid in order to obtain the correct recurrence
equation system of the model. The model, incorporating the above functions, is as follows [30,33,34]:

dx
dt

=α (t) x (t)− β (t) x (t) y (t) , x (0) = x1

dy
dt

=δ (t) x (t) y (t)− γ (t) y (t) , y (0) = y1 (35)
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Three examples are discussed in order to prove the results obtained by Scheme I (14)–(15) and
Scheme II (29)–(30), two examples for the numerical solution of the model (35) and one example for
the linear case.

Example 1. Consider the problem of the Lotka–Volterra prey-predator model (35). We take

α (t) = 4 + tan (t) , β (t) = exp(2t), γ (t) = −2, δ (t) = cos(t), x(0) = −4 and y(0) = 4.

The exact solution for these coefficients is x(t) = −4
cos(t) , y(t) = 4 exp(−2t), as proposed by [30,33,34].

Example 2. Consider the problem of the Lotka–Volterra prey-predator model (35) with

α (t) = −t, β (t) = −t, γ (t) = t, δ (t) = t, x(0) = 2 and y(0) = 2.

The exact solution for these coefficients is x(t) = 2
2−exp(t2/2) , y(t) = 2

2−exp(t2/2) , as proposed by [30,33].

Example 3. Consider the following non-autonomous SODEs with initial values (5):{
x′(t) = x(t)− y(t) + 2t− t2 − t3 , x(0) = 1 , t ∈ [0, 1]

y′(t) = x(t) + y(t)− 4t2 + t3 , y(0) = 0.
(36)

The exact solution of (36) is given by x(t) = et cos(t) + t2 and y(t) = et sin(t)− t3.

The results are listed in Tables 1–7 by the proposed fuzzy approximation methods with respect
to the raised cosine generating function and Table 8 by the proposed fuzzy approximation methods
with respect to the triangular generating function and raised cosine generating function. The proposed
fuzzy approximation methods are generated by Algorithms A1 and A2 (please see Appendix B).
The mean square error (MSE) is defined as MSE = 1

n (‖Yk − y(tk)‖2)
2. This is an easily computable

quantity for a particular sample. From the numerical tests, the results are summarized as follows:

1. In view of Tables 2–7, a comparison is made between the two new proposed schemes (15), (29),
the Euler method and the trapezoidal rule based on the Euler method for Examples 1–3.

2. Moreover, a comparison of MSE for Examples 1–3 is shown in Table 1. It is observed that the new
fuzzy approximation methods yield more accurate results in comparison with the classical Euler
and classical trapezoidal rule (one-step). The best result (in comparison with the Schemes I and
II) is obtained by Scheme II.

3. In Table 8, a comparison is given between the errors for two proposed schemes based on the FzT
with respect to fuzzy partitions determined by [6,19].

The better results (in comparison with the non-linear case) are obtained by the linear case
and non-autonomous SODEs in Example 3. Further, the results obtained using proposed fuzzy
approximation methods for Examples 1–3 are shown in Figure 1 by using the raised cosine generating
function. In view of Figure 1, the graphical results of Examples 1–3 show a comparison between
numerical schemes (I and II) and the exact solution. Furthermore, in view of Figure 1, a comparison
is given between the numerical results of Examples 1 and 2 and exact solutions for h = 0.01, while
a comparison is given between the numerical results of Example 3 and exact solutions for h = 0.1.
All the graphs are plotted using MATLAB software. This constitutes an important improvement to the
previous fuzzy approach, which did not provide such information for SODEs. Thus, this study will be
particularly important.

Remark 6. We compare new results based on FzT with the conventional numerical methods. For a discussion
of the conventional numerical methods, the Euler method and trapezoidal rule to solve SODEs, see for
example [35,36].
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Table 1. The values of MSE for Example 1–3.

Method
Example 1 Example 2 Example 3

x(t) y(t) x(t) y(t) x(t) y(t)

Scheme I 2.91443 × 10−1 6.67431 × 10−3 1.12399 × 10−1 1.12399 × 10−1 2.92534 × 10−4 1.58256 × 10−3

Scheme II 2.24139 × 10−2 3.77476 × 10−4 3.04846 × 10−4 3.04846 × 10−4 1.72082 × 10−5 4.10161 × 10−5

Euler 6.99731 × 10−1 1.19826 × 10−2 1.14890 × 10−1 1.14890 × 10−1 5.43867 × 10−4 1.68059 × 10−3

Trapezoidal 5.99915 × 10−1 1.40165 × 10−3 2.75574 × 10−2 2.75574 × 10−2 3.19103 × 10−5 5.21595 × 10−4

Table 2. Comparison of numerical results of x(t) for Example 3.

ti Solution x(t)
Proposed
Scheme I

Proposed
Scheme II

Euler Trapezoidal

0.00 1.00000 1.00000 1.00000 1.00000 1.00000
0.10 1.10965 1.10581 1.11259 1.10000 1.10945
0.20 1.23706 1.22517 1.24000 1.21890 1.23671
0.30 1.37957 1.36112 1.38257 1.35438 1.37924
0.40 1.53406 1.51087 1.53717 1.50368 1.53402
0.50 1.69689 1.67119 1.70015 1.66355 1.69755
0.60 1.86386 1.83827 1.86733 1.83022 1.86575
0.70 2.03020 2.00777 2.03392 1.99935 2.03396
0.80 2.19055 2.17473 2.19456 2.16601 2.19692
0.90 2.33891 2.33356 2.34322 2.32461 2.34870
1.00 2.46869 2.47798 2.47776 2.46891 2.48270

Table 3. Comparison of numerical results of y(t) for Example 3.

ti Solution y(t)
Proposed
Scheme I

Proposed
Scheme II

Euler Trapezoidal

0.00 0.00000 0.00000 0.00000 0.00000 0.00000
0.10 0.10933 0.09948 0.10781 0.10000 0.10805
0.20 0.23466 0.21563 0.23168 0.21610 0.23113
0.30 0.37191 0.34407 0.36755 0.34440 0.36521
0.40 0.51694 0.48088 0.51126 0.48098 0.50621
0.50 0.66544 0.62209 0.65855 0.62184 0.64994
0.60 0.81285 0.76359 0.80488 0.76288 0.79202
0.70 0.95430 0.90109 0.94543 0.89979 0.92782
0.80 1.08451 1.03002 1.07494 1.02801 1.05236
0.90 1.19767 1.14549 1.18766 1.14261 1.16023
1.00 1.28736 1.24213 1.28463 1.23823 1.24549
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Table 4. Comparison of numerical results of x(t) for Example 1.

ti Solution x(t) Proposed
Scheme I

Proposed
Scheme II Euler Trapezoidal

0.00 −4.00000 −4.00000 −4.00000 −4.00000 −4.00000
0.05 −4.00501 −3.97865 −3.99616 −4.00000 −4.00714
0.10 −4.02008 −3.99232 −4.01193 −4.01429 −4.02627
0.15 −4.04543 −4.01914 −4.03732 −4.04276 −4.05752
0.20 −4.08136 −4.05937 −4.07264 −4.08574 −4.10134
0.25 −4.12834 −4.11358 −4.11833 −4.14389 −4.15850
0.30 −4.18701 −4.18268 −4.17490 −4.21830 −4.23015
0.35 −4.25816 −4.26794 −4.24305 −4.31052 −4.31783
0.40 −4.34282 −4.37105 −4.32359 −4.42260 −4.42361
0.45 −4.44224 −4.49423 −4.41752 −4.55722 −4.55014
0.50 −4.55798 −4.64028 −4.52605 −4.71784 −4.70086
0.55 −4.69195 −4.81278 −4.65062 −4.90891 −4.88023
0.60 −4.84651 −5.01628 −4.79297 −5.13613 −5.09399
0.65 −5.02460 −5.25662 −4.95520 −5.40685 −5.34964
0.70 −5.22984 −5.54127 −5.13983 −5.73061 −5.65700
0.75 −5.46680 −5.87990 −5.34992 −6.11990 −6.02912
0.80 −5.74130 −6.28518 −5.58925 −6.59122 −6.48349
0.85 −6.06076 −6.77381 −5.86249 −7.16663 −7.04390
0.90 −6.43490 −7.36820 −6.17551 −7.87602 −7.74310
0.95 −6.87660 −8.09874 −6.53582 −8.76042 −8.62699
1.00 −7.40326 −9.00740 −6.96630 −9.87710 −9.76103

Table 5. Comparison of numerical results of y(t) for Example 1.

ti Solution y(t) Proposed
Scheme I

Proposed
Scheme II Euler Trapezoidal

0.00 4.00000 4.00000 4.00000 4.00000 4.00000
0.05 3.61935 3.60013 3.62249 3.60000 3.62045
0.10 3.27492 3.24497 3.28040 3.24090 3.27766
0.15 2.96327 2.92506 2.97057 2.91774 2.96757
0.20 2.68128 2.63645 2.69004 2.62635 2.68671
0.25 2.42612 2.37573 2.43612 2.36315 2.43201
0.30 2.19525 2.13994 2.20634 2.12506 2.20079
0.35 1.98634 1.92646 1.99847 1.90938 1.99067
0.40 1.79732 1.73299 1.81047 1.71374 1.79951
0.45 1.62628 1.55749 1.64050 1.53607 1.62541
0.50 1.47152 1.39815 1.48689 1.37451 1.46664
0.55 1.33148 1.25333 1.34811 1.22742 1.32166
0.60 1.20478 1.12159 1.22279 1.09333 1.18908
0.65 1.09013 1.00161 1.10969 0.97093 1.06762
0.70 0.98639 0.89223 1.00768 0.85906 0.95615
0.75 0.89252 0.79241 0.91576 0.75670 0.85366
0.80 0.80759 0.70122 0.83301 0.66295 0.75923
0.85 0.73073 0.61784 0.75862 0.57703 0.67208
0.90 0.66120 0.54154 0.69184 0.49827 0.59150
0.95 0.59827 0.47170 0.63202 0.42612 0.51692
1.00 0.54134 0.40778 0.57734 0.36016 0.44787
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Table 6. Comparison of numerical results of x(t) for Example 2.

ti Solution x(t) Proposed
Scheme I

Proposed
Scheme II Euler Trapezoidal

0.00 2.00000 2.00000 2.00000 2.00000 2.00000
0.05 2.00250 2.00149 2.00325 2.00000 2.00250
0.10 2.01008 2.00650 2.01082 2.00500 2.01005
0.15 2.02289 2.01660 2.02364 2.01508 2.02279
0.20 2.04124 2.03197 2.04201 2.03042 2.04101
0.25 2.06557 2.05294 2.06636 2.05134 2.06511
0.30 2.09650 2.07996 2.09731 2.07830 2.09567
0.35 2.13485 2.11365 2.13568 2.11191 2.13344
0.40 2.18171 2.15485 2.18256 2.15301 2.17942
0.45 2.23852 2.20462 2.23939 2.20265 2.23493
0.50 2.30720 2.26437 2.30808 2.26226 2.30167
0.55 2.39031 2.33595 2.39116 2.33365 2.38192
0.60 2.49133 2.42177 2.49211 2.41923 2.47868
0.65 2.61513 2.52506 2.61574 2.52224 2.59605
0.70 2.76863 2.65022 2.76888 2.64702 2.73967
0.75 2.96202 2.80329 2.96157 2.79961 2.91754
0.80 3.21093 2.99285 3.20907 2.98854 3.14130
0.85 3.54059 3.23143 3.53586 3.22625 3.42845
0.90 3.99443 3.53788 3.98346 3.53151 3.80653
0.95 4.65413 3.94192 4.62841 3.93381 4.32100
1.00 5.69348 4.49277 5.61875 4.48201 5.05197

Table 7. Comparison of numerical results of y(t) for Example 2.

ti Solution y(t) Proposed
Scheme I

Proposed
Scheme II Euler Trapezoidal

0.00 2.00000 2.00000 2.00000 2.00000 2.00000
0.05 2.00250 2.00149 2.00325 2.00000 2.00250
0.10 2.01008 2.00650 2.01082 2.00500 2.01005
0.15 2.02289 2.01660 2.02364 2.01508 2.02279
0.20 2.04124 2.03197 2.04201 2.03042 2.04101
0.25 2.06557 2.05294 2.06636 2.05134 2.06511
0.30 2.09650 2.07996 2.09731 2.07830 2.09567
0.35 2.13485 2.11365 2.13568 2.11191 2.13344
0.40 2.18171 2.15485 2.18256 2.15301 2.17942
0.45 2.23852 2.20462 2.23939 2.20265 2.23493
0.50 2.30720 2.26437 2.30808 2.26226 2.30167
0.55 2.39031 2.33595 2.39116 2.33365 2.38192
0.60 2.49133 2.42177 2.49211 2.41923 2.47868
0.65 2.61513 2.52506 2.61574 2.52224 2.59605
0.70 2.76863 2.65022 2.76888 2.64702 2.73967
0.75 2.96202 2.80329 2.96157 2.79961 2.91754
0.80 3.21093 2.99285 3.20907 2.98854 3.14130
0.85 3.54059 3.23143 3.53586 3.22625 3.42845
0.90 3.99443 3.53788 3.98346 3.53151 3.80653
0.95 4.65413 3.94192 4.62841 3.93381 4.32100
1.00 5.69348 4.49277 5.61875 4.48201 5.05197
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Figure 1. A comparison between three fuzzy numerical methods and the exact solution for three
examples.
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Table 8. The values of MSE for Examples 1–3 by the different types of fuzzy partitions.

Case
Proposed Scheme for x(t) Proposed Scheme for y(t)

I II I II

Ex.1 T 1 2.48353 × 10−1 3.37890 × 10−2 6.03282 × 10−3 5.38734 × 10−4

C 2 2.91443 × 10−1 2.24139 × 10−2 6.67431 × 10−3 3.77476 × 10−4

Ex.2 T 1.12099 × 10−1 3.01900 × 10−4 1.12099 × 10−1 3.01900 × 10−4

C 1.12399 × 10−1 3.04846 × 10−4 1.12399 × 10−1 3.04846 × 10−4

Ex.3 T 2.71905 × 10−4 2.08807 × 10−5 1.61509 × 10−3 4.84176 × 10−5

C 2.92534 × 10−4 1.72082 × 10−5 1.58256 × 10−3 4.10161 × 10−5

1 Triangular generating function; 2 Raised cosine generating function.

5. Conclusions

We extended the applicability of fuzzy-based numerical methods to the problems of
conventional mathematics. In particular, we contributed to approximation methods of the SODEs.
Two approximation methods based on the FzT were proposed and their error estimate analyzed.
Moreover, we proved that two approximation methods, namely Schemes I and II, determine an
approximate solution, which converges to the exact solution, and the local truncation error of the
Scheme I (Scheme II) is O(h2)

(
O(h3)

)
. As an application, a system of nonlinear differential equations

is solved by using Schemes I and II. From the numerical results, it is observed that the new fuzzy
approximation methods yield more accurate results in comparison with the classical Euler method
(one-stage) and classical trapezoidal rule (two-stage). Hence, the new fuzzy approximation methods
provided alternative techniques for solving differential equations with better results, and the objective
of this research was achieved and tested.

As a consequence, it should be noted that the numerical solutions depend on the types of uniform
fuzzy partitions. For cases

(
1−

∣∣∣ x−xk
h

∣∣∣) and 1
2

(
1 + cos

(
π
(

x−xk
h

)))
, the shape of the basic functions

determines the form of representation (linear or non-linear) of the numerical solution. This agrees
with the results proposed by [5,6] using uniform fuzzy partitions. It is also worth pointing out that the
results in this research are better in comparison with the classical numerical methods using uniform
fuzzy partitions for linear and nonlinear cases. Thus, the proposed method is very much suitable for
solving SODEs (5) in a linear or nonlinear case under the assumption of f and g satisfying the Lipschitz
condition. If we want to obtain the best approximation of f and g as possible, then the number n
of components should be large. It should be stressed that the application of the FzT can be used for
removing noise from the given data. This is especially important for various practical applications of
FzT. The proposed methods can also be applied to the n-dimensional system of first-order coupled
differential equations in the case of a non-noisy or noisy right-hand side. The discussion will continue
in [37] to give more details about the fuzzy partition and the modification of multiple steps.
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Appendix A. Taylor Series

A Taylor series is given that:

x(tk+1) = x(tk) + hx′(tk) +
h2

2
x′′(tk) +

h3

6
x′′′(ε1k),

= x(tk) + hx′(tk) +
h2

2

(
x′(tk+1)− x′(tk)

h
− h

2
x′′′(ε2k)

)
+

h3

6
x′′′(ε1k),

= x(tk) +
h
2

x′(tk) +
h
2

x′(tk+1) + h3
[

1
6

x′′′(ε1k)−
1
4

x′′′(ε2k)

]
, (A1)

where x′′(t) = x′(tk+1)−x′(tk)
h − h

2 x′′′(ε2k). Calculus can be used to derive that:

x′(tk+1) = f (tk+1, x(tk+1), y(tk+1))

= f (tk+1, x(tk) + h f (tk, x(tk), y(tk)), y(tk) + hg(tk, x(tk), y(tk)))

+
h2

2
f2(ε3k, x(ε3k), y(ε3k))x′′(ε3k),

where f2(ε3k, x(ε3k), y(ε3k)) =
∂

∂x f (ε3k, x(ε3k), y(ε3k)) +
∂

∂y f (ε3k, x(ε3k), y(ε3k)).

Substituting Equation (A1), it is given that:

x(tk+1) = x(tk) +
h
2

x′(tk)

+
h
2

f (tk+1, x(tk) + h f (tk, x(tk), y(tk)), y(tk) + hg(tk, x(tk), y(tk)))

+
h
2

h2

2
f2(ε3k, x(ε3k), y(ε3k))x′′(ε3k)

+ h3
[

1
6

x′′′(ε1k)−
1
4

x′′′(ε2k)

]
,

x(tk+1) = x(tk)+

h
2
(

x′(tk) + f (tk+1, x(tk) + h f (tk, x(tk), y(tk)), y(tk) + hg(tk, x(tk), y(tk)))
)

+ h3
[

1
6

x′′′(ε1k)−
1
4

x′′′(ε2k) +
1
4

f2(ε3k, x(ε3k), y(ε3k))x′′(ε3k)

]
.

It can be rewritten as:

x(tk+1) = x(tk) +
h
2

(
K0 + K f

)
+ e f h3,

where:

K0 = x′(t) = f (tk, x(tk), y(tk)), K1 = y′(t) = g(tk, x(tk), y(tk)), K f = f (tk+1, x(tk) + hK0, y(tk) + hK1),

e f =
1
6

x′′′(ε1k)−
1
4

x′′′(ε2k) +
1
4

f2(ε3k, x(ε3k), y(ε3k))x′′(ε3k), and tk < ε1k, ε2k, ε3k < tk+1.

Similarly,

y(tk+1) = y(tk) +
h
2
(
K1 + Kg

)
+ egh3,
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where:

Kg = g(tk+1, x(tk) + hK0, y(tk) + hK1), eg =
1
6

y′′′(ξ1k)−
1
4

y′′′(ξ2k) +
1
4

g2(ξ3k, x(ξ3k), y(ξ3k))y′′(ξ3k),

g2(ε3k, x(ε3k), y(ε3k)) =
∂

∂x
g(ε3k, x(ε3k), y(ε3k)) +

∂

∂y
g(ε3k, x(ε3k), y(ε3k)),

and tk < ξ1k, ξ2k, ξ3k < tk+1.

Appendix B. Algorithms

In this Appendix, the algorithms of the approximation methods based on FzT for Sections 3.2
and 3.3 are explained in detail. Pseudocode is used to describe the algorithms and a simplified code
that is easy to read. This pseudocode specifies the form of the input to be supplied and the form of
the desired output. As a consequence, a stopping technique independent of the numerical technique
is incorporated into each algorithm to avoid infinite loops. Two punctuation symbols are used in
the algorithms: a period (.) indicates the termination of a step, and a semicolon (;) separates tasks
within a step. The integral symbol (integral(function,upper limits,lower limits)) is used to denote
a definite integral. The steps in the algorithms follow the rules of structured program construction.
They have been arranged so that there should be minimal difficulty translating pseudocode into any
programming language suitable for scientific applications. We approximate the solution of SODEs (5)
at (N + 1) equally-spaced numbers in the interval [a, b] as follows.

Algorithm A1. One-stage (modified Euler) algorithm for the system of ODEs.

INPUT: f (t, x, y) and g(t, x, y) in Equation (5); endpoints a, b; integer N; initial condition y1.

Step 1 Set h = (b− a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k− 1)h.
Step 2 Define the generalized uniform fuzzy partitions as Ak(t) = 1

2

(
1 + cos

(
π
(

t−t(k)
h

)))
.

Step 3 For k = 1 to N, do Steps 4–7.
Step 4 F(k) =integral( f (t, X(k), Y(k))Ak(t), t(k− 1), t(k + 1))/integral(Ak(t), t(k− 1), t(k + 1)).

Step 5 G(k) =integral(g(t, X(k), Y(k))Ak(t), t(k− 1), t(k + 1))/integral(Ak(t), t(k− 1), t(k + 1)).

Step 6 X(k + 1) =X(k) + hF(k).
Step 7 Y(k + 1) =Y(k) + hG(k).

end.
OUTPUT: Approximation X and Y to x and y, respectively, at the (N + 1) values of t.

Algorithm A2. Two-stage (modified trapezoidal rule) algorithm for the system of ODEs.

INPUT: f (t, x, y); g(t, x, y); endpoints a, b; integer N; initial condition y1.

Step 1 Set h = (b− a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k− 1)h.
Step 2 Define the generalized uniform fuzzy partitions as Ak(t) = 1

2

(
1 + cos

(
π
(

t−t(k)
h

)))
.

Step 3 For k = 1 to N, do Steps 4–11.
Step 04 F(k) =integral( f (t, X(k), Y(k))Ak(t), t(k− 1), t(k + 1))/integral(Ak(t), t(k− 1), t(k + 1)).

Step 05 G(k) =integral(g(t, X(k), Y(k))Ak(t), t(k− 1), t(k + 1))/integral(Ak(t), t(k− 1), t(k + 1)).

Step 06 Xstar(k + 1) =X(k) + hF(k).
Step 07 Ystar(k + 1) =Y(k) + hG(k).
Step 08 Fstar(k + 1) =integral( f (t, Xstar(k + 1), Ystar(k + 1))Ak+1(t), t(k), t(k + 2))/integral(Ak+1(t), t(k), t(k + 2)).

Step 09 Gstar(k + 1) =integral(g(t, Xstar(k + 1), Ystar(k + 1))Ak+1(t), t(k), t(k + 2))/integral(Ak+1(t), t(k), t(k + 2)).

Step 10 X(k + 1) =X(k) + h (F(k) + Fstar(k + 1)) /2.

Step 11 Y(k + 1) =Y(k) + h (G(k) + Gstar(k + 1)) /2.
end.

OUTPUT: Approximation X and Y to x and y, respectively, at the (N + 1) values of t.
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