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Abstract: Searching for unknown earthquakes in Slovenia in the first millennium, we performed
archaeoseismological analysis of Roman settlements. The Mesto pod mestom museum in Celje exhibits
a paved Roman road, which suffered severe deformation. Built on fine gravel and sand from the
Savinja River, the road displays a bulge and trench, pop-up structures, and pavement slabs tilted
up to 40◦. The city wall was built over the deformed road in Late Roman times, supported by a
foundation containing recycled material (spolia) from public buildings, including an emperor’s statue.
We hypothesize that a severe earthquake hit the town before 350 AD, causing widespread destruction.
Seismic-induced liquefaction caused differential subsidence, deforming the road. One of the nearby
faults from the strike-slip Periadriatic fault system was the seismic source of this event.

Keywords: paleoseismology; Periadriatic fault system; active tectonics; Southern Alps; Pannonian
Basin; Dinarides

1. Introduction

Slovenia is the seismically most active region of the Alpine–Dinaric junction. Several
active faults have been recognized and mapped [1], presenting seismic hazard for the
region [2]. The historical seismic catalogue of Slovenia [3] contains a multitude of data,
but—inherently—mostly lacks any information for the first millennium. In this effect it
shares its incompleteness with the catalogues of the neighbouring countries [4,5]. Therefore,
further methods, such as palaeoseismology and archaeoseismology, are needed to find
information at least on the strongest events in Slovenia [6]. We applied the methods of
archaeoseismology [7–10] to find evidence for past earthquakes recorded by the built
environment. We conducted a systematic survey of Roman settlements, inhabited mostly
in the first to fourth centuries, to identify and parametrize unknown earthquakes in the
Carpathian–Pannonian region [11]. Remnants of Roman architecture are eminently suitable
for preserving evidence of past earthquakes [12]. In the absence of upright walls, collapse
features and floor-level deformation additionally give evidence within the Pannonian
Basin: Carnuntum in Austria [13], Brigetio in Hungary [14], Siscia in Croatia [15], Virunum
(Magdalensberg) in Austria [16], to name a few. Celeia (modern Celje), the best-studied
Roman town in Slovenia, displaying certain features which can be attributed to seismic
damage, is the topic of the present paper.

1.1. Geological Background—Celeia

Celeia developed in the Celje Basin, located in NE Slovenia, at the transition from the
Southern Alps to the Pannonian Basin system and in the eastern part of the Periadriatic fault
system (Figures 1 and 2). The basin coincides with the post-Miocene Celje syncline [17,18],
which according to Placer [19], belongs to the Sava folds structural domain. This is an
asymmetrical syncline with a W–E oriented axis and a steeper southern limb [18]. The
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basin lies between active faults, the Sava and Celje faults to the south and the Šoštanj fault
to the north, which are part of the dextral–transpressive Periadriatic fault system [1,20,21].
The basin could be deformed transtensionally [20,22]. The Sava fault is an active dextral
strike-slip fault with an estimated slip rate of 0.5–1.5 mm/year and a seismogenic potential
of up to magnitude 6.8 [23,24] or even higher in case of activation of several segments [1].
In the western part in NE Italy and NW Slovenia, this fault is one of the possible sources of
the 1348 Mw 6.4–7.0, Imax IX–X Carinthia earthquake [25–27]. The Šoštanj fault is an active
dextral strike-slip fault with an estimated slip rate of 0.1–0.9 mm/year and a seismogenic
potential of up to magnitude 7.0 when individual segments are activated [1]. In the eastern
part of the Celje Basin, where Celeia is located, there are only 8 km between these two
major active faults. The largest historical earthquake recorded in the immediate vicinity of
the Celje Basin is the 1974 Mw 4.8, Imax VII Kozjansko earthquake [25]. The epicenter of
this earthquake was located in the eastern part of the Sava folds, just SE of the Celje Basin
and the Sava–Celje fault, but its source is unknown.
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Figure 1. Active faults and seismicity of Slovenia (Mw ≥ 5.0). Note that along the Sava fault
near Celje only Mw 5.0–5.9 earthquakes are known; the magnitude estimation, however, differs
between the catalogues (see Figure 2 for comparison with Slovenian catalogue). The faults are
summarized from [1,28], and the earthquakes are taken from the SHEEC catalogues 1000–1899 [29]
and 1900–2006 [30].



Quaternary 2023, 6, 10 3 of 13Quaternary 2023, 6, x FOR PEER REVIEW 3 of 13 
 

 

 

Figure 2. Geological setting of the Celje Basin with simplified geological units (redrawn after [17,31], 

active faults [1] and historical earthquake epicenters (select data taken from ref. [25)). 

The Celje Basin is crossed by by the Savinja River and its tributaries, which deposited 

a series of terraces during the Pliocene and Quaternary [31]. The pre-Pliocene basement 

consists of folded Oligocene and Miocene strata [17,18]. The arrangement of Pliocene–

Quaternary terraces, with the oldest terraces at the margins and the Savinja River running 

along the southern margin of the basin, indicates that asymmetric folding continued dur-

ing the Quaternary and was probably driven by the activity of the Sava–Celje fault [32]. 

Celeia is located in the Holocene floodplain at the confluence zone between the Sav-

inja and Hudinja rivers in the SE of the basin. The studied site is below the Princes’ Palace 

(Knežji dvor), the 16th century residence of the counts of Celje, now part of the Provincial 

Museum (Pokrajinski Muzeum, Trg celjskih knezov 8). The building is located less than 

100 m north of the Savinja River and 700 m west of the Hudinja River, in a flat terrain 

about 200 m north of the southern slopes of the basin, within the fault zone of the Celje 

fault (Figure 2). The groundwater is therefore very shallow below the surface, according 

to the nearest hydrogeological boreholes only 2–3 m below the surface [33]. (However, 

archaeologists excavating down to a 3.8 to 4 m depth have never seen groundwater.) The 

thickness of the Quaternary deposits near the site is only 5–8 m; these consist mainly of 

sandy to silty gravel with individual silt and sand layers between the gravel [33,34], while 

sands predominate closer to the Hudinja River [35]. 

  

Figure 2. Geological setting of the Celje Basin with simplified geological units (redrawn after [17,31],
active faults [1] and historical earthquake epicenters (select data taken from ref. [25]).

The Celje Basin is crossed by by the Savinja River and its tributaries, which deposited
a series of terraces during the Pliocene and Quaternary [31]. The pre-Pliocene basement
consists of folded Oligocene and Miocene strata [17,18]. The arrangement of Pliocene–
Quaternary terraces, with the oldest terraces at the margins and the Savinja River running
along the southern margin of the basin, indicates that asymmetric folding continued during
the Quaternary and was probably driven by the activity of the Sava–Celje fault [32].

Celeia is located in the Holocene floodplain at the confluence zone between the Savinja
and Hudinja rivers in the SE of the basin. The studied site is below the Princes’ Palace
(Knežji dvor), the 16th century residence of the counts of Celje, now part of the Provincial
Museum (Pokrajinski Muzeum, Trg celjskih knezov 8). The building is located less than
100 m north of the Savinja River and 700 m west of the Hudinja River, in a flat terrain
about 200 m north of the southern slopes of the basin, within the fault zone of the Celje
fault (Figure 2). The groundwater is therefore very shallow below the surface, according
to the nearest hydrogeological boreholes only 2–3 m below the surface [33]. (However,
archaeologists excavating down to a 3.8 to 4 m depth have never seen groundwater.) The
thickness of the Quaternary deposits near the site is only 5–8 m; these consist mainly of
sandy to silty gravel with individual silt and sand layers between the gravel [33,34], while
sands predominate closer to the Hudinja River [35].
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1.2. Celeia History and Structure

Celeia, a town of merchants and craftsmen, had flourished since ancient times. Its
population was of Celtic origin. Romanization started early, even before the annexation to
the Empire in 15 BC. In Claudian times (AD 41–54) it became a town of Noricum province,
extending on the northern bank of the River Savinja, surrounded by its tributaries. Pliny
lists its name in his Naturalis Historia; therefore, it had become an important administrative
centre in Noricum province by that time. Abundant inscriptions found throughout the
centuries in secondary positions inform us about the inhabitants of the municipium. In situ
archaeological finds are rare—the lowest archaeological objects remaining from Roman
Celeia are up to 7 m below the level of modern Celje. Excavations proved that Celeia was
designed according to Roman urban planning rules. The WNW–ESE-trending main street,
the decumanus maximus, was crossed by at least three NNE–SSE-trending perpendicular
streets; the main one was the cardo maximus. Pavements of these streets and foundations
and floors of public and private buildings were identified during rescue excavations by
archaeologists. Additionally, there are numerous walls higher than 2 m (Figure 3) [36].
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Figure 3. Excavated Roman ruins below the modern streets and houses of Celje (redrawn after
ref. [36], modified). (A) Roman road, deformed, at the western end of the decumanus maximus. Red
circle marks the location of the western gate of Celeia. (B) Roman road, deformed and repaired by
landfill, nearby Forum in the centre along the decumanus maximus. (C) Roman road, undeformed,
along the cardo maximus. Locations of photos on Figures 5 to 8 are within the white rectangle enclosed
by the red circle.
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The rich town’s development was halted by the Marcomannic war, which lasted until
182 AD. Recovering from extensive damage, the town was reduced in dimensions, while
maintaining a rich architectural program, starting in Severan times (193–211 AD). Unusually,
the new structures were built on top of a metre-thick deposit of gravel, considered as flood
deposit of the River Savinja or artificial landfill by the Romans. The economic success of the
town is marked by the large amount of marble-clad buildings and a marble-paved forum.
The main streets (decumanus maximus and cardo maximus) were raised to a higher level and
paved with limestone slabs. The completely renovated town prospered into the fourth
century, decorated with porticoed streets and a large, richly decorated forum. In the middle
of the fourth century, Celeia was enclosed by a monumental masonry wall, built probably
during the reign of Emperor Constans (337–350 AD). The once affluent town declined by
the sixth century, mostly due to Barbarian incursions. While town life did not cease after
this period, the lack of major construction work resulted in the Late Antique ground level
being almost the same level as the Medieval ground.

We carried out an archaeoseismological study of an in situ preserved part of a Roman
road in Celje, which shows various anomalies compared with regular roads of that time.

1.3. A Roman Road—Construction Methods

Roman roads in affluent towns were built with bedding (rudus) of rammed-down lay-
ers of stone rubble and gravel. Main roads were paved with flat limestone slabs (Figure 4).
The main east–west road in Celeia, the decumanus maximus had a 6 m wide paved sur-
face, gently inclined from the centre to both sides, to allow rainfall to rapidly reach the
stone-paved canals on both sides. Adjoining sidewalks, up to 4 m wide, paved or unpaved,
followed the road [36].
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2. Materials and Methods

The Celje Regional Museum, located in the Princes’ Palace (Trg Celjskih knezov 8),
has an underground exhibition hall, Mesto pod mestom (=Town beneath town), built over
the in situ Roman road and parts of the west gate of Celeia. The floor level of the hall
and of the road is 3.0 m below the entrance to the palace building. An in situ portion of
the road is exhibited. The road and the remaining walls of the west gate were studied in
detail, documenting deformation features that can be attributed to seismic events [37,38].
The photographic structure-from-motion technique was applied to provide views which
would be otherwise inaccessible and invisible in the tight underground space of the exhibit.
Documentation included taking 700 photos with a Canon PowerShot SX620 HS camera.
3D photographic models were built with the Agisoft Metashape software for visualization
purposes [39]. The models are provided as Supplementary Models S1–S3. Horizontal and
vertical dimensions were measured by a Leica Disto 8 laser range finder. The potential
seismic intensity was assessed based on combined use of the earthquake archaeological
effect (EAE-13) scale [40], referring damage in archaeological settings to the EMS98 scale [30]
and the Environmental Seismic Intensity Scale 2007—ESI 2007 [41].

3. Results

The deformed road as exhibited in situ in the underground museum hall features a
pavement made of irregular slabs, separated by gaps several centimetres wide (Figure 5). A
reconstructed original cross-section of the decumanus maximus is drawn on the eastern wall
of the museum hall. Opposed to the flat surface of the road as shown in the reconstruction,
the surface on display shows significant differences: it has two convex features, different
in size, a concave feature between them, and steep margins, tilted towards both flanking
ditches. The maximum difference in altitude between the lowest and highest points is
40 cm within the 6 m wide road. Most of the pavement slabs are horizontal or gently tilted,
but those on the southern flank (point B on Figure 5) are oriented with a tilt of max. 40◦

towards the ditch. Those slabs which paved the floor of the ditch, laid horizontally, are
now tilted by 20◦ inwards (Figure 6).
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Figure 5. East end of the main Roman road, the decumanus maximus, exhibited in situ in the under-
gound museum Mesto pod mestom in Celje. The road is 6 m wide; with the adjacent paved ditch and
sidewalk, it reached 14 m width. The maximum difference in altitude between the lowest and highest
points is 40 cm within the 6 m wide road. 3D model by Agisoft Metashape. See the original, flat
surface, mildly tilted towards the colonnade, on the graphical reconstruction behind. Deformation
features: A—trench-like subsidence. B—pop-up structure of flagstones of the sidewalk (see Figure 6).
View to east. For location, see Figure 3.
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Figure 6. Deformed ditch paved with slabs along the southern edge of the road (location B on
Figure 5). Road surface (left) is tilted by 40◦. The adjacent flagstone of the horizontal sidewalk is tilted
by 20◦ towards the road surface. Field of view is 1.8 m wide. View to east. Archaeoseismological
Database (ADB) photo #4459. For location, see Figure 3.

The western end of the road carries two edifices, parts of the west gate towers of the
town. The south tower (Figure 7) was built over the steeply tilted surface of the road. The
north tower (Figure 8) was also built on top of the road (not visible in the plane of the
photograph). Construction of these two edifices reduced the original 6 m width of the
paved road to 4 m only. Two courses of sandstone ashlars form the upright wall of the
north tower. The underlying foundation is about 10–15 cm wider. This foundation contains
various, beautifully carved, decorative elements of former buildings: the plinth of a column,
a pedestal of a statue, a ledge of a colonnade, and a headless torso, each made of marble.
There are further ”recycled” elements (spolia) of former buildings in the foundation of both
towers: parts of old tombstones, headless statues of emperors and architectural members
from the forum and the town’s main temple.
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Figure 7. South tower of western gate in the city wall, built on top of the deformed road (location A
in Figure 3, encircled). Field of view is ca. 3.5 m wide. View to west. 3D model created by Agisoft
MetaShape. For location see Figure 3.
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in Figure 3, encircled). Wall built of sandstone ashlars. The foundation (below the 10–15 cm wide
ledge) was made of marble spolia, i.e., recycled debris of buildings and statues. A—marble plinth of
column (left). B—pedestal of a statue. C—ledges from a marble colonnade. D—headless statue of
an emperor. Field of view is ca. 4 m wide. View to west–northwest. 3D model created by Agisoft
MetaShape. For location see Figure 3.

4. Discussion
4.1. Why an Earthquake?

The deformation features seen on the surface of the exhibited road are interpreted by
Bausovac and Krajšek [36] as the result of compaction over a 20 cm deep ditch of an earlier
road, lying ca. 1 m deeper, below gravel and sand. While uneven thickness of underlying,
compactible material can have an influence on overlying strata, we think that this feature is
not sufficient to explain the extensive deformation visible on the road surface.

Earthquake waves, when hitting water-saturated, loose sediments, cause a sudden
increase in pore pressure, which in turn increases the distance of grains, in this case of
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gravel and sand. The sediment made of disconnected grains loses cohesion, and behaves
like a liquid. Structures, such as roads, built on top of the sediment, lose support, suffering
deformation in various geometries and ultimately sink into the liquefied sediment. The
wavy road surface, showing two ”ridges” and a ”trough” between them, is the result of
the uneven settlement of the heavy stone pavement into the liquefied subsoil. Beyond the
differential vertical settlement, the road pavement exhibits horizontal displacement too:
the anomalous position of the floor slabs of the ditch, now tilted by 20◦ inwards, caused
the buckling (pop-up structure) of these slabs.

The cross-section of the pavement of Roman roads of this width was traditionally built
convex, made of two flat surfaces tilting in opposite directions. Their grades perpendicular
to the road axis are usually between 5 and 10%, to help rapid drainage [42]. Five to ten
percent are 3◦ and 6◦, respectively, a fraction of the measured 20◦ to 40◦ tilt of slabs on the
Celeia road.

This kind of liquefaction causing uneven subsidence can be formed on any sediment
with saturated pore space, but is more common for sand. The gravel constituting the
subsoil below the road is eminently suitable for the purpose. Up to 8 m thick, saturated
sandy to silty gravel contains individual silt and sand layers—both above and below an
older road level, which were likely the source of liquefaction. There are similar features
described and illustrated from a variety of archaeological locations in the seismically active
Mediterranean region. A few examples of undulating deformations are in the road-bed of
the central decumanus at the Greco-Roman site of Tindari, Sicily, associated with a fourth-
century earthquake [43]. There is uneven subsidence of a Roman road in Savaria (the
Roman Garden, Szombathely, Hungary), caused by seismically induced liquefaction of the
subsoil [11]. A seismically induced landslide caused folded and upthrusted remains at
the NW corner of the Forum in Roman Baelo Claudia, Spain between AD 40 and 60 [37].
Liquefaction destroyed the port of Messina during the 1908 earthquake, causing metre-
scale, differential subsidence [44,45]. Liquefaction-induced deformation was observed on a
Roman road in Umm Qais (Gadara), Jordan [46]. There are tilted and folded pavements
and stairs of the Propylon in Lagina (Western Anatolia, Turkey) [47].

The sudden availability of valuable spolia from major public buildings and statues
are an indication that these constructions lost their social role for various reasons, e.g.,:
(1) change of religion from the imperial cult to Christianity; (2) damnatio memoriae of an
emperor or high official; and ultimately, (3) edifices and statues were severely damaged or
collapsed in a natural catastrophe, in the case of Celeia, an earthquake. When protective
walls had to be built around the town to reduce the chances of enemy attack, it was all
the more natural to reuse masonry which was found within city limits, as former parts of
destroyed buildings that were not purposed for rebuilding. We suggest the latter case: a
severe earthquake damaged the great public buildings of the town, and their components
were used to build the defensive walls.

4.2. Estimating the Date

When did the earthquake occur? The slab-paved road was built during the second
flourishing period of the town, initiated during the rule of Emperor Severus (193–211 AD).
Deformation occurred later, but certainly before the west gate was built, partially blocking
the already deformed road. This stratigraphic position offers the key to dating. A coin of
Emperor Constans (337–350 AD) was found in the backfill of the foundation trench for
the south tower of the west gate. The golden coin was minted in Aquileia between 348
and 350 AD [36], p. 51. This terminus ante quem datum, i.e., before which the destruction
occurred, is then most probably before 350 AD. We speculate that the interval containing
the seismic event is probably the decade before the construction of the defensive wall: this
was the main street of Celeia and could not be left unrepaired and useless (as it is now) for
the travellers for any period of time. There is an unverified historical datum of a destructive
earthquake in 270 AD [48]: whether it was the same or a different event, we cannot tell at
the moment. Cecić and Živčić [49] gave a brief note on the supposedly earliest earthquake
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on Slovenian territory of 792 AD, expressing doubts that the record is valid. This event is
certainly too late for the earthquake damaging the road.

4.3. Intensity and Magnitude

The archaeological intensity scale [40] emphasizes deformation features on upright
walls. Out of 17 features only one refers to pavements. Somewhat illogically, there are four
pavement deformation features listed among nine off-fault geological effects on the same
scale. These can be used to assign intensity to sites where material from walls has been
stolen. A major drawback of this scale is that—although it has been widely used since its
publication nine years ago, there was neither explanation nor justification published to
support the conclusions.

Folds and pop-ups on pavements are ranged into intensity intervals starting at I = VII
and extending upwards [40]. The environmental scale (ESI 2007) is also available: major
liquefaction, causing >30 cm minimum subsidence between the highest and lowest surface
of the deformed road. It yields intensity I = VII–VIII and above [41]. These intensities, being
minimum values, do not exclude assigning a higher value to the Celeia event, considering
the sudden availability of marble spolia stones (see Section 4.1 above). Considering that
well-built masonry public buildings were possibly severely damaged and collapsed in the
earthquake, we can suggest that the earthquake in question was rather an I = VIII+ (maybe
an I = IX) event. However, this higher assignment is to be considered with a low level of
confidence.

Usually, the minimum earthquake magnitude value for liquefying sand is estimated to
be about 5.5–6 [50,51] (Ambraseys, 1991; Valera et al., 1994), while for gravel-rich deposits
about 7 [51] (Valera et al., 1994). Deformed pavements, within the range of amplitude
observed in Celeia, are attributed to earthquakes of a similar magnitude range (Table 1).

Table 1. Maximum deformation caused by liquefaction and estimated value of magnitude at se-
lected sites.

Period of
Construction Site Features Dimensions Magnitude Reference

Roman Brigetio Circular
depressions

Up to 3 m
diameter,

40 cm depth

6.0–6.7 for
the

destructive
1763 AD

event,
approx. at

the same site

Dobosi and
Kázmér

(2022) [14]
Morais et al.
(2017) [52]

Roman Tindari,
Sicily, Italy

Regular,
oblique folds

on paved
road

≤0.43 m
amplitude

≤M 6.0 or
M 6.1–7.0

Bottari et al.
(2008) [43]

Barbano et al.
(2014) [53]

Modern Messina,
Sicily, Italy

Folded
paved road

and kerb

<1 m
subsidence
along the
seashore

Mw 7.1

Carcione and
Kozák (2008)

[44]
Pino et al.
(2009) [45]

The fault responsible for the earthquake was certainly not far from Celeia. Because
portions of the Periadriatic fault system, the Sava fault, the Celje fault, and the Šoštanj fault
are all within less than 8 km of the site, any of them could have caused the destruction.
Maximum magnitudes were estimated for these faults. For the Sava fault the nearest
segment rupture can be as high as Mmax 6.7; for the total fault rupture estimated Mmax is 7.1.
For the Celje fault Mmax 6.7 and Mmax 7.1, respectively; for the Šoštanj fault the individual
ruptures of the nearest segments are estimated as Mmax 5.7–6.7, while the total fault rupture
can be as high as Mmax 7.7. We note that total fault ruptures are unlikely scenarios [1].
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Alternatively, estimated magnitudes for the seismic hazard fault model (simplified from the
active fault database) are as follow: for the Sava East–Celje seismic source: estimated Mmax
is 7.3, for the Šoštanj West seismic source estimated Mmax is 7.3 [2]. Maximum magnitudes
were estimated for these faults [1,2].

Without assigning responsibility to a single fault, one cannot estimate magnitude. It
was certainly much higher than the largest historical earthquake recorded in the immediate
vicinity, i.e., the 1974 Mw 4.8, Imax VII Kozjansko earthquake [25].

5. Conclusions

The Mesto pod mestom museum in Celje exhibits a paved Roman road, part of the west
gate of the Roman town of Celeia. The stone pavement suffered severe deformation. Built
on fine gravel and sand from the Savinja River, the road displays ridge and trough, pop-up
structures, and pavement slabs tilted up to 40◦. The city wall was built over the deformed
road in Late Roman times, based on a foundation containing recycled material (spolia) from
public buildings, including an emperor’s statue. We hypothesize that a severe earthquake
hit the town before 350 AD, causing widespread destruction. Seismic-induced liquefaction
caused differential subsidence, deforming the road. The intensity of the earthquake was
I = VIII or higher on the EMS98 scale. One of the nearby Sava, Celje, or Šoštanj strike-slip
faults was the seismic source of this event. The magnitude was certainly much greater
than the largest historical earthquake recorded in the vicinity, the 1974 Mw 4.8, Imax VII
Kozjansko event.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/quat6010010/s1, Document S1: Read_me_first; Model S1: Celeia
3D road east end; Model S2: Celeia 3D west gate south tower; Model S3: Celeia 3D west gate
north tower.
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34. Drobne, F.; Petauer, D.; Venturini, S. Poročilo o Geoloških Preiskavah za JEZ-I in JEZ-II na Reki Savinji v Celju; Geološki Zavod:
Ljubljana, Slovenia, 1982.
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Železniški Postaji v Celju; Geološki Zavod: Ljubljana, Slovenia, 1982.

36. Bausovac, M.; Krajšek, J. Municipum Claudium Celeia; Celeia Antiqua 2; The Celje Regional Museum: Celje, Slovenia, 2020; 120p.
37. Rodríguez-Pascua, M.A.; Pérez-López, R.; Giner-Robles, J.L.; Silva, P.G.; GarduñoMonroy, V.H.; Reicherter, K. A comprehensive

classification of Earthquake Archaeological Effects (EAE) in archaeoseismology: Application to ancient remains of Roman and
Mesoamerican cultures. Quat. Int. 2011, 242, 20–30. [CrossRef]

38. Rodríguez-Pascua, M.; Silva, P.G.; Giner-Robles, J.L.; Pérez-López, R.; Perucha, M.A.; Martín-González, F. Arqueosismología: Una
nova herramienta para la sismología y la protección del patrimonio. Rev. Otarq 2016, 1, 151–169. [CrossRef]

39. Forlin, P.; Valente, R.; Kázmér, M. Assessing earthquake effects on archaeological sites using photogrammetry and 3D model
analysis. Digit. Appl. Archaeol. Cult. Herit. 2017, 9, e00073. [CrossRef]

40. Rodríguez-Pascua, M.; Silva, P.G.; Pérez-López, R.; Giner-Robles, J.-L.; Martín-González, F.; Perucha, M.A. Preliminary intensity
correlation between macroseismic scales (ESI07 and EMS98) and Earthquake Archaeological Effects (EAEs). In Seismic Hazard,
Critical Facilities and Slow Active Faults, Proceedings of the 4th International INQUA Meeting on Paleoseismology, Active Tectonics and
Archaeoseismology (PATA), Aachen, Germany, 9–14 October 2013; Grützner, C., Rudersdorf, A., Pérez-López, R., Reicherter, K., Eds.;
PATA Days: Aachen, Germany, 2013; pp. 221–224.

41. Michetti, A.M.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J.;
et al. Environmental Seismic Intensity Scale 2007—ESI 2007; Memorie Descrittive della Carta Geologica d’Italia; Servizio Geologico
d’Italia: Rome, Italy, 2007; Volume LXXIV, pp. 7–54.

42. Xeidakis, G.S.; Varagouli, E.G. Design and construction of Roman road: The Case of Via Egnatia in the Aegean Thrace, Northern
Greece. In Environmental and Engineering Geoscience III(1); Spring: Berlin/Heidelberg, Germany, 1997; pp. 123–132.

43. Bottari, C.; Carveni, P.; Sacca, C.; Spigo, U.; Teramo, A. Evidence of seismic deformation of the paved floor of the decumanus at
Tindari (NE, Sicily). Geophys. J. Int. 2008, 174, 213–222. [CrossRef]

44. Carcione, J.M.; Kozák, J.T. The Messina-Reggio earthquake of December 28, 1908. Stud. Geophys. Geod. 2008, 58, 661–672.
[CrossRef]

45. Pino, N.A.; Piatanesi, A.; Valensise, G.; Boschi, E. The 28 December 1908, Messina Straits earthquake (MW 7.1): A great earthquake
through a century of seismology. Seismol. Res. Lett. 2009, 80, 243–259. [CrossRef]

46. Fandi, M. Effects of large historical earthquakes on archeological structures in Jordan. Arab. J. Geosci. 2018, 11, 9. [CrossRef]
47. Karabacak, V. Seismic damage in the Lagina sacred area on the Mugla Fault: A key point for the understanding of the obliquely

situated faults of western Anatolia. J. Seismol. 2016, 20, 277–289. [CrossRef]
48. Stopar, I. Celje; Iro Motovun: Motovun, Croatia, 1986; 142p.
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