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Abstract: Global atmospheric warming is causing physical and biotic changes in Earth’s high moun-
tains at a rate that is likely unprecedented in the Holocene. We summarize changes in the presently
glacierized mountains of northwest North America, including a rapid and large reduction in glacier
ice and permafrost, a related increase in slope instability and landslides, river re-routing and other
hydrological changes, and changing aquatic ecosystems. Atmospheric greenhouse gas concentrations
continue to rise and will likely do so for at least the next several decades, if not longer, and mountains
will continue to warm, perhaps reaching temperatures up to several degrees Celsius warmer than
present over the remainder of this century. As a result, the rate of physical and biotic changes
documented in this paper is very likely to dramatically increase and transform high-mountain
environments.
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1. Introduction

Climate warming over the past century is global in scope, and its rate is unprecedented
in the Holocene Epoch. Its magnitude and effects are particularly large at high latitudes
and in high mountains, where it has caused large reductions in glaciers, ice sheets, sea ice,
and permafrost [1–4]. About one-quarter of the rise in global sea level caused by the global
shrinkage of glaciers over the past half century is believed to have come from glaciers
bordering the Gulf of Alaska [5]. The deglaciation of Glacier Bay in Southeast Alaska,
which began in the late 18th century, involved the loss of several thousand cubic kilometres
of glacier ice [6], resulting in the highest uplift rates on Earth [7]. These losses are exceeded
only by those at the end of the Pleistocene Epoch [8] and are expected to continue and
perhaps accelerate through the remainder of this century [1,9–11].

Climate-driven reductions in the cryosphere are having significant physical impacts in
mountains. High-mountain environments are especially sensitive to climate change because
glacial, nival, and permafrost processes are temperature-dependent [6,12–15]. As glaciers
and permafrost disappear, landslides and debris flows are becoming more common in
mountains ranges around the world, including those in northwest North America [2,15–27].
Glacier thinning and retreat are also accompanied by glacial lake outburst floods that move
large volumes of sediment and water downstream [28,29].

Climate warming in Earth’s high mountains has also been a driver of downstream
hydrological and ecological changes [2,10,30–40]. These changes have adversely impacted
some organisms and forced others to adapt [33–35,38,40]. On the other hand, glacier retreat
is opening up new habitats for some plants and animals [41,42].

In this paper, we examine the physical, hydrological, and ecological effects of the
large-scale and rapid deglacierization of the high mountains of northwest North America.
Our motivation is to better understand the linkages, interdependencies, and complexities
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of the processes induced by current and ongoing deglacierization. Although our study
area is sparsely populated unlike, for example, the European Alps or the Himalayas,
cryosphere loss in northwest North America carries a cascade of ecologically and societally
important consequences.

We first provide examples of large-scale, climate-induced disruptions of rivers in the
St. Elias Mountains and northern Coast Mountains of Alaska and Canada, and point to
other watersheds where similar changes might happen later in this century. Next, we
discuss the impacts of deglacierization on downstream sediment delivery and hydrology.
Third, we consider the effects of deglacierization on ecosystems.

2. River Re-Routing Due to Deglacierization

An important effect of the growth and decay of ice sheets during the Pleistocene is
the disruption and reorganization of rivers. The watersheds of the major river systems of
Europe, Eurasia, and North America were strongly perturbed and shaped by Pleistocene
ice sheets. Among them are the two largest watersheds in the Cordillera of northwest
North America—the Yukon and Fraser watersheds. Prior to the Pleistocene, Yukon River
flowed southward through Yukon Territory, rather than northward as it does today [43–45].
At the same time, Fraser River drained eastward through the Rocky Mountains, probably
via the Peace River valley, whereas today it drains a watershed of some 220,000 km2 and
empties into an inland sea of the Pacific Ocean (Salish Sea) at Vancouver [46].

Watershed reorganization of the scale of that driven by the growth and decay of the
large Pleistocene ice sheets is not possible today because these ice sheets no longer exist
except in Greenland and Antarctica. However, it operates on a smaller scale in mountains
that still support large amounts of glacier ice.

2.1. The 2016 Ä’äy Chú (Slims River) River Capture Event

The idea for this paper emerged from the 2016 Ä’äy Chú (formerly known as Slims
River) capture event in Yukon, Canada. Over the past few hundred years, Kaskawulsh
Glacier, one of the largest glaciers in the St. Elias Mountains, terminated at the divide
separating the watershed of Alsek River from that of Yukon River (Figures 1 and 2).
Historically, a large portion of Kaskawulsh Glacier meltwater flowed northward via Ä’äy
Chú into Lhù’ààn Mân (Kluane Lake) and thence to Yukon River, reaching the Bering
Sea more than 2400 km downstream. The remainder of the glacier’s meltwater flowed
southeast via Kaskawulsh River to Alsek River, which in turn flows to the Gulf of Alaska
about 300 km downstream. Even though Kaskawulsh River has a much higher (steeper)
gradient than Ä’äy Chú, it has been unable, during historic time, to capture all the meltwater
flowing from Kaskawulsh Glacier because the glacier itself formed the barrier separating
the two rivers at the drainage divide.

In May 2016, set up by over a century of climate warming leading to the thinning and
retreat of the terminus of Kaskawulsh Glacier, a proglacial lake (“Slims Lake”) at the head
of Ä’äy Chú drained via a channel through the glacier and into a lower lake at the head of
Kaskawulsh River (Figure 2). The sudden emptying of Slims Lake cut off Ä’äy Chú from its
source. Researchers have suggested that, barring a renewed advance of the glacier, which
is unlikely to happen in a warming climate, the beheading of Ä’äy Chú is permanent [48].
Eventually, however, Kaskawulsh River will extend its watershed northward and capture
all the water flowing into Kluane Lake, which is the largest body of water in Yukon. In
the summer of 2016, the level of Kluane Lake fell about 1.7 m below normal and has
remained low since then, creating safety issues related to boat launches at the shoreline
and disruptions to traditional ways of life for the Lh’ùààn Mân Ku Dań (Kluane Lake
People) [49]. Dust storms created by strong winds flowing off Kaskawulsh Glacier and
down Ä’äy Chú Valley create visibility problems along the Alaska Highway at the south
end of Kluane Lake [50]. The effects on the lake ecosystem are still being studied [51,52].
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Figure 1. Map of northwest North America showing the locations of stream reorganization sites 
discussed in the text. (1) Kaskawulsh Glacier/Ä’äy Chú (Slims River); (2) Bering Glacier; (3) Melbern 
and Grand Pacific glaciers; (4) Alsek and Grand Plateau lakes; (5) Morice River Blue shaded area 
represents glacier cover from Randolf Glacier Inventory [47]. Projection is Canada Albers Equal 
Area Conic. 

Figure 1. Map of northwest North America showing the locations of stream reorganization sites
discussed in the text. (1) Kaskawulsh Glacier/Ä’äy Chú (Slims River); (2) Bering Glacier; (3) Melbern
and Grand Pacific glaciers; (4) Alsek and Grand Plateau lakes; (5) Morice River Blue shaded area
represents glacier cover from Randolf Glacier Inventory [47]. Projection is Canada Albers Equal
Area Conic.
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Figure 2. Satellite image showing drainage change at the terminus of Kaskawulsh Glacier between 
2015 and 2016. The thin yellow arrow indicates the main meltwater discharge route prior to piracy. 
The path of Kaskawalsh River, which captured Ä’äy Chú, is indicated by the thick yellow arrow. 
Background image is an August 2021 satellite mosaic from Planet, and projection is Canada Albers 
Equal Area Conic. 
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Figure 2. Satellite image showing drainage change at the terminus of Kaskawulsh Glacier between
2015 and 2016. The thin yellow arrow indicates the main meltwater discharge route prior to piracy.
The path of Kaskawalsh River, which captured Ä’äy Chú, is indicated by the thick yellow arrow.
Background image is an August 2021 satellite mosaic from Planet, and projection is Canada Albers
Equal Area Conic.

2.2. Future Drainage Reorganization Due to Glacier Retreat

There are many locations in the high mountains of northwest North America where
drainage will be perturbed, and possibly re-routed, as glaciers continue to retreat. Lakes
that are currently dammed by glacier ice will disappear and the meltwater that feeds them
will take different routes. Here we provide a few examples among the many that we have
identified during our field investigations and examination of satellite images.

2.2.1. Bering Glacier, Alaska

A lake dammed by an arm of Bering Glacier overtops a divide and drains to the
southeast via Kosakuts and Kaliakh rivers (Figure 3). If Bering Glacier thins, as it likely
will, the level of the lake will drop, ending flow to Kosakuts River. Eventually, water will
flow out of the lake into another valley to the west.
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Figure 3. Satellite image showing a possible change in drainage at the southeast side of Bering
Glacier. Yellow line shows the current drainage route; dashed white line indicates the possible future
drainage path described in the text. Background image is a July 2021 satellite mosaic from Planet,
and projection is Alaska Albers Equal Area Conic.

2.2.2. Grand Pacific and Melbern Glaciers, BC

Grand Pacific and Melbern glaciers, two of the largest valley glaciers in BC, have de-
creased over 50% in volume in the past few hundred years. Melbern Glacier has retreated
15 km during this period, accompanied by about 300–600 m of thinning [53]. More than half
of the retreat has happened in recent decades. Retreat of the glacier has been accompanied by
the formation of one of the largest ice-marginal lakes on Earth today, glacial Lake Melbern,
which is now 20 km long and has an area of about 31.4 km2 (Figures 4 and 5). Glacial Lake
Melbern is impounded by Melbern and Grand Pacific glaciers in the south and bordered by
an end moraine in the north. It presently discharges northward into Tatshenshini River just
upstream of the latter’s confluence with Alsek River. This route, however, may be ephemeral,
as another steeper route exists, directly to Alsek River. The lower route might be taken if the
moraine at the north end of Melbern Lake were to breach (Figure 4).

Another possible future scenario is that the dam formed by Melbern and Grand Pacific
glaciers at the south end of Lake Melbern could fail, draining the lake and, as a consequence,
opening a new fiord on Canada’s west coast. This possibility is contingent on subglacial
topography beneath the glaciers being low enough for water to drain south. Modeling
work [54] and measurements of lake depth suggest that this is a distinct possibility. Grand
Pacific Glacier, which terminates in Tarr Inlet at the BC–Alaska boundary (Figure 4),
retreated 24 km between 1879 and 1912 [53]. As Grand Pacific and Melbern glaciers
continue to retreat, the divide separating Tarr Inlet and the valley presently occupied by
glacial Lake Melbern will become ice-free, potentially allowing the lake to empty into
Glacier Bay.



Quaternary 2023, 6, 1 6 of 18Quaternary 2023, 6, 1 6 of 20 
 

 

 
Figure 4. Satellite image mosaic of possible drainage changes in the lower Alsek River valley and 
Melbern valley. Yellow line shows the current drainage routes; dashed white lines indicate possible 
future drainage paths described in the text. Background image is an August 2021 satellite mosaic 
from Planet, and projection is Alaska Albers Equal Area Conic. 

 
Figure 5. Glacial Lake Melbern, northwest British Columbia (compare with Figure 4). The lake is 20 
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ier Bay. An end moraine dams the lake at its north end. Photo by John Clague. 
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Figure 5. Glacial Lake Melbern, northwest British Columbia (compare with Figure 4). The lake is
20 km long and is impounded behind confluent Melbern and Grand Pacific glaciers northwest of
Glacier Bay. An end moraine dams the lake at its north end. Photo by John Clague.

2.2.3. Alsek Lake and Grand Plateau Glacier, Alaska

A river capture event may also happen in the future near the mouth of Alsek River.
Alsek River makes an anomalous right-angle turn at Alsek Lake and flows 20 km west to
Dry Bay (Figure 4). A more direct route to the Pacific Ocean is to the south, but this path is
blocked by the north fork of Grand Plateau Glacier which, in that area, is grounded more
than 400 m below sea level [55]. This glacier, however, is rapidly retreating due, in part, to
the calving of its terminus in Alsek Lake and the unofficially named Grand Plateau Lake
(Figure 6). The latter, which barely existed in the early 20th century [56,57], is now 9 km
wide and has a surface area of about 74 km2. Grand Plateau Lake currently has an area of
46 km2, compared to only 5 km2 in 1948. Laser altimetry shows that the terminus of Grand
Plateau Glacier has thinned at rates of up to 10 m/yr in recent years [55].
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Figure 6. Recent growth of Grand Plateau and Alsek lakes, Alaska. Upper panel shows lake extents
annually from 1985 to 2021 (from Landsat imagery), plus 1948 and 1978 (from georeferenced historic
air photos). Background image is a July 2021 satellite mosaic from Planet and projection is Alaska
Albers Equal Area Conic. Lower panel is time series of the lake areas. Error bars are per [58].

If Grand Plateau Glacier retreats another 7 km, Alsek River might abandon its current
westerly path and flow directly south into the Pacific Ocean via Grand Plateau Lake, 30 km
southeast of Dry Bay. Traditional and modern human activities centered on Dry Bay
include commercial fishing, subsistence and sport hunting and fishing, and the terminus
of a world-renowned rafting expedition. Under present management guidelines, these
activities cannot be relocated to the predicted future outlet of Alsek River, which lies within
federally designated wilderness of Glacier Bay National Park and Preserve.

3. Impacts of Deglacierization on Sediment Delivery and Hydrology

Drainage capture and diversion are only two of the effects of current deglacierization
on glacier-fed rivers in northwest North America. Perhaps more important are the potential
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changes in sediment flux and possible changes in channel-forming flows that will likely
accompany the loss of ice in the headwaters of these rivers.

Earlier onset of snowmelt in mountains has been accompanied by a greater proportion
of winter precipitation falling as rain, which has altered annual hydrographs and, in some
cases, has led to earlier spring runoff and a decrease in summer stream flows [37,59–68].
Although summer runoff from watersheds in heavily glacierized mountains continues to
increase, peak summer runoff will likely decrease in many mountain ranges later in this
century due to progressive reductions in snow and ice cover [9,69].

Glacierized areas have higher sediment yields than most unglaciated areas [70–72].
Slope failures and sediment mobilization linked to glacier recession and alpine permafrost
thaw are likely to substantially increase erosion and sediment delivery to streams, at least
over the short term [73–76]. However, there is still limited understanding of the effects of
glacier recession on erosion and sediment production. Recent studies have adopted a land-
scape approach that emphasizes the importance of the connectivity of different areas within
a catchment to decadal-scale changes in sediment production and delivery in attempts to
quantify the catchment-scale response to glacier recession [13]. The time it will take for
deglacierization to impact downstream hydrology and sediment yield depends on the con-
nectivity of new sediment sources to the catchment drainage network [13,31,36,37,77,78]. If
sediment is trapped in a proglacial lake or stored on floodplains, or if the capacity of the
stream network is insufficient to transport the sediment, the lower watershed may show re-
duced sedimentary signals of deglacierization until proglacial lakes drain or lose accommo-
dation space, or until an extreme event forces a widespread change to the landscape [13,14].
In deglacierizing watersheds with high connectivity between upland sediment sources and
downstream sinks, greater sediment supply might be accompanied by increased braiding
of channels, which would later decline as sediment supply wanes [79,80]. Overall, however,
it is reasonable to expect increased sediment flux from rapidly deglacierizing and thawing
watersheds over timescales of several decades [13,24,81].

Extreme precipitation and runoff events are important drivers of sediment mobiliza-
tion and transport in northwest North America. High-intensity precipitation, rain-on-snow
events, and outburst floods from glacier-, moraine-, and landslide-dammed lakes generate
some of the largest hydrologic and sediment transport events on Earth (Figure 7) [82,83].
As glaciers thin and retreat and as alpine permafrost thaws, marginally stable rock slopes
may fail, delivering increased amounts of rock debris to alpine valley bottoms.

Researchers have argued that landslides and debris flows are becoming more common
in deglaciating mountains ranges around the world, including those in northwest North
America [2,14–27,73,84]. Slopes may be destabilized from thermal stresses on steep faces,
thawing of permafrost, and perhaps increased storm rainfall.

Another consequence of the continuing deglaciation of high mountains is that many
glacier-dammed lakes are draining suddenly and catastrophically, entraining and rede-
positing large amount of sediment and transforming valley floors downstream [28,29]
(Figures 8 and 9). Glacier lake outburst floods may become more frequent in high moun-
tains as new lakes form and existing ones grow [85,86]. Many glacier- and moraine-
dammed lakes will be impacted by mass movements from adjacent destabilized mountain
slopes [23,74,87].

Once deglaciation is complete, there will be a reduction in sediment delivery to alpine
rivers and streams [88], but in the near future, that trend will be punctuated by extreme
events that perturb the cycle, perhaps more frequently than in recent decades. This is, in
effect, an episodically interrupted paraglacial cycle that plays out over a period of one or
more centuries [89,90].

Changes during this transitional deglacierizing period are difficult to characterize
and are subject to much uncertainty [81,91,92]. Sediment yields are likely to show annual
to multi-decadal spikes as new sediment sources become available, but these spikes are
idiosyncratic and subject to specific local conditions [93–95]. Conversely, coarse sediment
delivery may be interrupted as glacial lakes form and trap sediment [96].
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event has been documented by [97]. 

Figure 8. Floor of the west fork of Nostetuko River in the central Coast Mountains of British
Columbia following the outburst flood from moraine-dammed Queen Bess Lake in August 1997. The
floodwaters entrained and transported sediment on the valley floor and eroded the valley walls. This
event has been documented by [97].
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Figure 9. Top: Deeply eroded channel and fan of Elliot Creek following the outburst of Elliot Lake in
the southern Coast Mountains of British Columbia (photos courtesy of Kat Pyne, Hakai Institute).
A large rockslide entered the lake and generated a displacement wave that travelled 8 km down
the valley to the fan where Elliot Creek enters Southgate River (lower photo). This event has been
documented by [74].

Another approach to linking glacier recession and sediment production and delivery
is empirical and field-based. Previous research on the impacts of the rapid reduction
in glaciers in the Coast Mountains of British Columbia at the end of the Little Ice Age
provide key insights into what can be expected in terms of channel-forming flows in
many watersheds in northwest North America later in this century. Glacier cover in British
Columbia increased during the climactic advances of the Little Ice Age in the eighteenth and
nineteenth centuries [98]. As late as the late 1800s, alpine glaciers in the Coast Mountains
were up to twice as large as they are today [99]. Researchers have documented broad
braidplains downstream of the glacierized headwaters of the Bella Coola and Morice
rivers in the central Coast Mountains during the Little Ice Age [100,101]. When glaciers
retreated from their Little Ice Age limits, the amount of sediment delivered to the main
stems of the Bella Coola, Morice, and other rivers in the Coast Mountains decreased. This,
in turn, caused the rivers to alter their planforms from braided to anastomosing. In the
case of Morice River, the width of the floodplain decreased by about 50% by the end of
the nineteenth century (Figure 10). Since then, floods have perturbed the multi-channel
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planform of the river several times, but the river has maintained its present overall regime
throughout this period [101].
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floodplain today. Modified from [101].

Changes such as those in the Bella Coola and Morice river watersheds may not be
characteristic of most heavily glacierized catchments in the high mountains of northwest
North America. Indeed, changes in the type and temporal scale of runoff from glaciers
depend on a large number of factors, including glacier size, elevation range, basin hyp-
sometry, and the proportion of glacier cover in a catchment. Runoff and sediment delivery
from larger glaciers may increase for decades during the initial period of negative mass
balance, but will inevitably be followed by a decrease in the long term [36,37,102,103].
Recent field-based and modelling studies show that some watersheds with small glaciers
have already reached their tipping points and show decreasing annual discharge [104–110].
In contrast, runoff from catchments with the largest ice volumes will likely continue to
increase for much or all of the remainder of this century and beyond [2].

4. Impacts of Deglacierization on Ecosystems

We turn now to the impacts of deglacierization on downstream aquatic and riparian
plant and animal communities. Seasonal water releases from snow and ice maintain hy-
drologic base flow, nutrient transport, and ecosystem structure and function [2,111–114].
Vegetation cover and type play an important role in the response of the landscape to hydro-
climatic change [115–119]. Vegetation also affects patterns and rates of fluvial channel evolu-
tion [120–122]. Increased channel dynamics have consequences for riparian organisms that
depend on fluvial bar and bed morphology, grain size, and habitat connectivity [123,124].

A reduction in glacier ice cover leads to changes in the timing and magnitude of runoff
peaks [125], with impacts on downstream aquatic ecosystems [36,37,126,127]. Runoff
from glacier melt peaks in summer in mid- to high-latitude regions, including northwest
North America. This is a time when runoff from other sources is typically lower, thus
buffering low dry-season stream discharge and maintaining habitats for fish, amphibians,
and other aquatic organisms. Over a multi-decadal timescale, glacierized watersheds in
northwest North America will see an initial increase in summer discharge, but this will
be followed by reduced runoff during the dry season caused by the decrease in glacier
volume [9,103,128,129]. As runoff from glaciers decreases, summer river flows will become
more sensitive to smaller precipitation events, resulting in a more stochastic hydrological
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regime with potential adverse effects on aquatic ecosystems. The replacement of predictable
summer glacier melt by less predictable rainfall events and to snowmelt runoff regimes will
increase the relative magnitude and seasonal duration of short-term flow variability [37].

In the long term, reduced summer glacier melt will also increase stream temperatures
because of (1) an increase in atmospheric energy due to warmer air temperatures, (2) a de-
cline in the contribution of cold water from glacier melt, and (3) the reduced heat capacity of
streams with lower flow [130]. At the same time, reductions in bedload and suspended sedi-
ment transported by rivers will increase light penetration to the channels, with implications
for primary production and photochemical transformation of organic matter [131].

Rising air temperatures and attendant short durations of snow cover influence the
length of the growing season and phenology of plant production and consumers and
the alpine treeline ecotone [132]. They also impact downstream aquatic ecosystems by
governing flow regimes, channel stability, sediment concentration, water temperature, and
nutrient supply, and are essential for supporting life during dry periods when snow and ice
melt are the main water source. A short-term increase in glacier meltwater runoff will lead
to a colder and harsher aquatic environment, and possibly a downstream displacement of
aquatic communities [133]. In the long term, however, glacier retreat will result in increases
in stream temperatures in meltwater streams. For example, the mean August temperature
of an Alaskan stream increased from 2 to 18 ◦C from 1978 to 2003 due to the complete
disappearance of its feeding glacier [134]. Such streams are quickly colonized by aquatic
communities adapted to higher water temperatures [135,136].

”Space-for-time” substitutions, a commonly used approach in ecology in which sites
covering a gradient in glacier cover are used to predict effects of glacier retreat, show
that the richness of local aquatic macrofauna peaks at intermediate levels of glacier
runoff [133,137,138]. The reduction and eventual loss of meltwater flow are predicted
to: (1) reduce environmental heterogeneity at the watershed level; (2) cause the loss of rare
and specialized species from the regional species pool; and (3) elevate algal and herbivore
biomasses, thus shifting ecological structure. Reduced meltwater also has been shown to
reduce migratory corridors for anadromous fish [36] and to shift life cycles [139].

Change in melting in alpine catchments can affect downstream lakes through changes
in water level, turbidity, water chemistry, input of nutrients and other solutes, and the tim-
ing of these inputs. These changes will individually and collectively strongly affect benthic
and pelagic communities [140,141]. Due to glacier retreat, proglacial lakes are currently
forming at a high rate in most arctic and alpine areas of the world [86,142]. Typically, these
lakes are initially dominated by microbes and devoid of higher life [143]. Later, they are
colonized by algae, protozoans, and invertebrates, and food webs form [144]. As glaciers
disappear, or lakes lose connection to them, lake transparency increases, affecting species
with high demands for phosphorus and, thus, increasing ultra-violet radiation and visual
predation pressure [145–147].

5. Conclusions

Advancing glaciers blocked valleys and, in some cases, re-routed entire river systems
when ice sheets formed over the Northern Hemisphere. As we move towards a world with
far fewer glaciers and smaller ice sheets, land that has been covered continuously by ice for
many tens of thousands of years will become ice-free. As it does so, many rivers in high
mountains will be redirected via more hydrologically expedient paths to the sea. In most
instances, the redirection will be inconsequential. In other cases, however, the changes
might have more significance.

Deglacierization of northwest North America will also induce changes in downstream
river planforms and alter aquatic and terrestrial ecosystems. Once glacier-fed streams and
rivers pass their meltwater discharge ”tipping points”, their braided and anastomosing
planforms will likely metamorphose into more stable, single-thread systems, with attendant
effects on riparian habitats.
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