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Abstract: The analysis of plant macrofossils in peatland ecosystems has been widely used for the
climatic and ecological reconstruction of the Holocene in the high latitudes of the northern hemisphere.
By contrast, perhaps associated with rarity of these ecosystems, this proxy has barely been explored for
southern Europe. In this work, a compilation and review of existing knowledge on the study of plant
macrofossils of peatlands in southern Europe has been carried out, both from a paleoenvironmental
perspective and in terms of biodiversity dynamics. Although small in surface area, the peatlands of
southern Europe stand out for their diversity (botanical, edaphogenic, morphological, etc.), which
has allowed the recovery of a large number of macrofossils from both vascular plants and bryophytes.
The southern zone of Europe contains refuge zones with a high plant diversity that have not suffered
the intense glaciation of the northern zones, this allows a continuous record since the beginning of the
Holocene and the detection of climatic events in lower latitudes, where the ice recession was earlier.
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1. Introduction

Peatland ecosystems occupy 3% of the Earth’s surface, around 420 million ha. mostly in the boreal
zone of the northern hemisphere [1]. The distribution of these habitats has been reduced especially in
southern Europe; c. 60% of European peatlands have been destroyed due to human activities [2,3].
The Habitats Directive 92/43/EEC of the European Union [4], considers peatlands as ecosystems of
priority community interest, for which it is necessary to designate areas for their conservation.

Peatlands provide a detailed record of the climatic and ecological changes that occurred during
the Holocene, because they preserve a continuous record of fossil remains in very good state of
conservation [5,6]. There is a rich history of paleobotanical research in Europe focused on plant
macrofossils, however, most of these studies consider fossils that are older than Holocene. The analysis
of plant macrofossils has been commonly used in oceanic regions of Europe, mainly in Great Britain;
however, despite the potential wealth of information there are few studies in peatlands of southern
Europe. This region has a variety of peatlands, which provide habitats for numerous relict, disjunct
and endemic species, and communities.

Holocene plant macrofossils in southern Europe are generally related to archaeological studies
on the beginnings of agriculture, the expansion of different cereals, the diversity of food of different
cultures, etc. In recent decades the interest in paleoenvironmental studies and the recognition of
the value of information on flora and vegetation of past times, has led to increased studies on plant
macrofossils, within the time frame of the Holocene.
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Plant macrofossil records are spatially much more precise than the pollen data. They present great
taxonomic resolution, if the samples are well preserved, they can be identified at species level such
as Carex or Potamogeton [7,8]. They are a valuable tool for obtaining good radiocarbon dating [9,10]
and are very helpful in the reconstruction of the forest development, tree and, timber line shifts in
the mountain ecosystems [11] or to reconstruct trails of plants spreading and migration. Another
use of these macrofossils is to deliver reference conditions during reconstruction of the vegetation
population, that is necessary for restoration process [12,13]. Southern Europe is heavily populated
and in recent decades many of these ecosystems have been exposed to human land use change (peat
bedding, grazing, fuel, acidifying, etc.), which has affected species composition.

Analyses of plant macrofossils from peat cores provides a high-resolution record of vegetation
change through time. The study of peat slices 1 or 2 cm thin, allows to obtain data for very small
time escals. This is especially valuable to reconstruct local plant development. Peat accumulation
is primarily the result of the slow decay rate of the species in the plant communities under certain
climate and anoxic conditions [14,15]. The more decomposition, the less identifiable macrofossils
remain in the peat, however a biochemical footprint remains, and in recent decades numerous works
have focused on identifying some of the major changes in vegetation by analyzing these biomarkers by
pirolisis-GC/MS [16–21].

In this paper, we will focus on plant macrofossils data. The existence of common or
biogeographically conditioned patterns and the relevance of the data from the botanical and
paleoenvironmental standpoint will be explored.

2. Material and Methods

Peatlands are widely distributed across northern Europe, however in the southern part its extension
is much smaller, occupying mainly mountainous areas. We review the various types of peatland and
lake systems along the continuum of terrestrialization. Occasionally some peaty paleo-deposit has
been included, due to the paleoenvironmental interest of the identified macrofossils. Figure 1 shows
the distribution of peatlands in Europe according to Moen et al. [22] the numbers refer to Table 1.
All localities below 50◦ N parallel have been considered and a summary of basic core data grouped by
zone is given in Table 1.

Only those studies that have explicitly processed and identified plant macrofossils have been
included, excluding data provided by coals, oospores of Characeae, and invertebrate remains.
The summary Tables 2–4 group the macrofossil taxa identified in each work and include the type
of remains found through a series of abbreviations for vascular plants: Leaf (LF), stomata (ST),
epidermis (E), needles (NE); rhizome (R), wood (W), cones (C), bud scales (BS), bark (BK), roots (R),
seeds (S), fruit (F), these last two concepts appear often confused in the different identifications, are
considered fruits, achenes, or nuts (nutles) of all Cyperaceae and many Rosaceae, as well as the cariopsis
of Poaceae. In the case of Bryophyta, the filidia are more abundant in the remains and only in very
well conserved peat do filidia, caulidia, or large fragments of moss appear and very rarely capsules
and the term vegetative part (VP) has been chosen. Data referring to sclerotia (SCL) of fungi have been
included, as they are large and common in numerous papers.
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Figure 1. Distribution of peatlands in Europe and the location of sites mentioned in the text. The 
references correspond to the numbering in the bibliography (modified from Moen et al. 2017). 
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Figure 1. Distribution of peatlands in Europe and the location of sites mentioned in the text.
The references correspond to the numbering in the bibliography (modified from Moen et al. 2017).

Table 1. Description of sites mentioned in the text. Ref: The references correspond to the numbering in
the bibliography.

SITE LOCATION DEPTH
(cm) Yrs. Cal. BP MATERIAL ALT

(m a.s.l.) REF AUTOR

WEST ZONE
Zalama, De Ordunte Mts.

(ES) 226 8000 Peat 1330 38 Souto, 2018

Borralleiras, Cabaleiros
Mts. (ES) 230 5500 Peat 600 38 Souto, 2018

Pena da Cadela, Serra do
Xistral (ES) 183 5500 Peat 970 51 Castro et al.,

2015
Chan de Veiga Mol, Serra

do Xistral (ES) 845 8000 Peat 695 52 Castro, 2017

Pedrido, Serra do Xistral
(ES) 250 4750 Peat 770 53 Stefanini et al.,

2018
Noja, Cantabric Coast

(ES) 100 3200–4600 Coast peat
deposit 50 49 García et al.,

2008
Merón, Cantabric Coast

(ES) 20 6000–7000 Coast peat
deposit 50 49 García et al.,

2008
Baldaio, Cantabric Coast

(ES) 30 870 Coast peat
deposit 25 49 García et al.,

2008
Le Moura, Cantabric

Coast (FR) 600 10,000 Peat 50 Oldfield, 1964
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Table 1. Cont.

SITE LOCATION DEPTH
(cm) Yrs. Cal. BP MATERIAL ALT

(m a.s.l.) REF AUTOR

CENTRAL ZONE
Grande Basse, Vosges Mts.

(FR) 200 3000 Peat 945 64 Kalis et al., 2006

Canard Ib, Taillefer
Massif (FR) 125 10,000 Peat 2200 58 Ponel et al., 1992

Lac Lauzons,
Hautes-Alpes (FR) 170 10,000 Peat 2180 59 Ponel et al., 2011

Egelsee-Moor Mire,
Salzburg (AT) 600 10,000 Peat 700 69 Krisai et al., 2016

Fuorn Mire, Fuorn Valley
(CH) 255 8500 Peat-Gyttja 1805 63 Stahii et al., 2006

Lac de Fully, Rhône
Valley (CH) 270 11,000 Gyttja 2135 62 Finsinger and

Tinner, 2007

Gerzensee (CH) 190–200 11,500 Gyttja 630 61 Tobolski and
Ammann, 2000

Leysin (CH) 320–350 10,850–12,050 Gyttja 1230 61 Tobolski and
Ammann, 2000

Northern Black Forest
(GR) 80 2000 Peat 430 72 Hölzer and

Hólzer, 2000
Palughetto, Lapisina

Valley (IT) 50 12,200 Paleo peat 1040 67 Avigliano et al.,
2000

Totenmoos, South Tyrol
(IT) 800 15,000 Peat 1718 68 Heiss et al., 2005

Paludetto S2, Venetian
plain (IT) 500–1050 8700 Peat 50 75 Miola et al., 2010

Fiorentina, Venetian plain
(IT) 1100–1800 3000–17,000 Peat-clay-silt 50 74 Miola et al., 2006

La Rota, Posta Fibreno
(IT) 400 600 Peat 76 Zaccone et al.,

2017

EAST ZONE
Begbunar, Osogovo Mts

(BG) 105 5000 Peat 1800 95 Lazarova et al.,
2015

Lake Ostrezko, Rila Mts
(BG) 200 6000 Peat 2340 92 Tonkov and

Marinova, 2005
Lake Besbog, Pirin Mts

(BG) 380 15,000 Peat-Gyttja 2200 94 Stefanova et al.,
2006

Vodniza, Rila Mts (BG) 500 9500 Peat-Gyttja 2113 91 Tonkov et al.,
2018

Tara, Mts. (RS) 270 9000 Peat 1600 97 Fisinger et al.,
2017

Nagymohos (HU) 140–280 4000–7500 Peat 300 85 Magyari et al.,
2001

Báb-tava, Bereg Plain,
(HU) 142–176 1000–2300 Peat 100 86 Magyari et al.,

2008
Sirok Nyírjes-to, Mátra

Mts, (HU) 400 9000 Peat 250 m 42 Jakab & Sümegi,
2010

Gärgäläu fen, Rodna Mts.
(RO) 150 9500 Peat 1810 11 Feurdean et al.,

2016
Valea Morii, North

western (RO) 100 1100 Peat 640 88 Galka et al., 2018

Tăul Muced, Rodna Mts.
(RO) 500 9000 Peat 1360 84 Galka et al., 2016

Belanské Lúky, Tatra Mts.
(SK) 230 10,000 Peat 700 79 Hájková et al.,

2012
Nádas Lake, Cserhát Mts.

(HU) 340 8000 Peat-Clay 360 87 Sümegi et al.,
2009

Starunia, Carpathos (UA) 300–500 12,000 Peat-Clay 400 83 Stachowicz-Rybka
et al., 2009
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3. Results and Discussion

Southern Europe contains numerous refugia with a high plant diversity that did not suffer the
intense glaciation of the northern areas. The long persistence of peat “islands” has allowed the
development of endemic plants and communities. The age of many of these peatlands, with records
beginning before the Holocene (Table 1), allows a continuous recording and detection of climatic
events in lower latitudes, where the ice recession was earlier. We can define three basic areas of study:
A western area where most peatland habitats are mainly on the Iberian Peninsula; a central area in the
Alps; and an eastern area that encompasses the Carpathians and Balkans.

3.1. Problems in the Identification of Plant Macrofossils

The analysis of macrofossils is not a technique with a complicated methodology, nor does it
require great investment, or equipment, but it does require expert knowledge in botany (taxonomy),
plant histology (morphology), and plant ecology.

The identification of plant macrofossils is based on comparisons with published descriptions and
illustrations and the use of reference material. Few publications cover the range of plant material found
in peatlands and in many cases corresponds to works from Russia [23–26] or northern Europe [27–31].

An important component of the remains preserved in peat are seeds and fruits, whose identification
is easy from monographs of each botanical group; some families or typical genus of peatlands have
been studied from this point of view, as for example Cyperaceae [32]; Juncus [33]; Vaccinium [34];
Menyanthes [35]; or Betula [36].

Some species are only represented by fruits and seeds (e.g., Drosera). These are often herbaceous
species with small or delicate vegetative tissues (Figure 2). Other species, such as Eriophorum have
resistant and perennial organs; the macrofossils found in the fossil record correspond mainly to remains
of subterranean organs, roots, rhizomes, or basal areas of aerial parts and occasionally fruits (Figure 2),
its identification depends on the epidermal cell pattern, stomas, hairs, or foliar margin and when not
enough diagnostic characters of the species are preserved its identification results more difficult. For
plant macrofossils found in ombrophic peatlands, descriptive and illustrated work by Souto et al. [37]
can be consulted.Quaternary 2019, 2, x FOR PEER REVIEW  6 of 18 
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based mainly on the anatomy of the leaves and on their small size and it is common that they are well 
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zones of insertion of filidia or only the caulidia (Figure 3). They are important components of peatland 
flora, so their identification in macrofossil studies is vital to the interpretation of these habitats [39–
42]. A detailed description of fossil bryophytes for ombrotrophic peatlands of the Cantabrian coast 
can be found in Souto et al. [43]. 
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The bryophytes are relatively easy to identify, since the determination of material in vivo is based
mainly on the anatomy of the leaves and on their small size and it is common that they are well
conserved in the peat. Sometimes they are altered by decay, keeping only certain parts, such as the
zones of insertion of filidia or only the caulidia (Figure 3). They are important components of peatland
flora, so their identification in macrofossil studies is vital to the interpretation of these habitats [39–42].
A detailed description of fossil bryophytes for ombrotrophic peatlands of the Cantabrian coast can be
found in Souto et al. [43].
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leaves, (c) mid-leaf cells (fossils), (d,e,f) current leaves, hyaline apex and papillary rim (Souto, 2018) [38].

3.2. Macrofossils: West Zone (Iberian Peninsula)

In the Iberian Peninsula, the first studies of macrofossils in peatlands consisted of specific
identifications, the works of Maldonado et al. [44] in Sierra de Gredos stand out. They prospected
a wide area of peatlands and small lakes, located between 1100 and 1840 m a.s.l., collecting a great
quantity of samples, among which stand out stumps in position of life, trunks of up to 5 m of length and
40 cm of diameter and numerous strobilus, dated between 850 and 5500 years cal BP. Other sampling
areas include a synthesis on macrofossils collected in coastal areas, from the Cantabrian region to
southern Portugal [45–48], the quaternary sediments that preserve peat bog deposits found in Noja,
Oyambre-Merón, and Baldaio [49] stand out for their diversity in species. Although these works
improve knowledge in the Iberian Peninsula mainly of forest species, they are not paleoenvironmental
reconstructions of the same ecosystem over time. The work in the peatland of Le Moura [50] (Biarritz,
south-west France), is the first that conserves a continuous sample of the flora since 10,000 years cal BP.

In the last decade, more precise paleobotanical investigations have been carried out, based on the
analysis of plant macrofossils extracted from peat samples from different ombrotrophic peatlands in
the north of the Peninsula [37,38,43,51–53]. These works provide a precise vision of the vegetation in
each peatland, and the similarities between different proxy can offer more solid data for this region.

In the Iberian Peninsula, the different types of peatlands of the Atlantic region and some types of
the Mediterranean and alpine region are present [54–57]. In the northwest of the Iberian Peninsula,
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the largest area is located, forming a complex system (macrotope) (Serras Septentrionais of Galicia,
about 10,000 hectares). In this area, blanket bogs find their most southwestern distribution limit in
Europe, they are currently restricted to mountain oceanic sectors, under an Atlantic hyperhumic
climate very similar to that of northwestern Europe. Due to their ombrotrophic these peatlands
are excellent paleoenvironmental archives and have been the subject of numerous studies from a
multiproxy approach [37,38,43,51–53].

The high resolution at which these analyses have been carried out (peat samples were studied
every 1 cm deep), has made it possible to study the transition of the different plant communities over
time, whether or not they represent autogenic successions. The different macrofossils found in these
bogs (Table 2) allowed us to reconstruct with great accuracy the plant communities that developed in
the peat bog over time. Highlighting that there are no remains of vegetation that may have reached
the bog by transport from other places, such as pollen. All the taxa found correspond to species
that are currently present in these peatlands. In these ombrotrophic peatlands, plant macrofossils
show a great diversity of bryophytes, an herbaceous stratum dominated by Cyperaceae and Poaceae
that accompanies different species of Ericaceae shrubs (Table 2). The quotation from Andromeda
polifolia L. [53], a species not present in the peninsula, stands out, so this quotation is of doubtful
interpretation. Many of these peatlands have a strong component of Poaceae and Cyperaceae. Their
greatest contribution to the fossil record is in the form of remains of rhizomes, however these are
difficult to identify at the species level. Future studies should focus on these structures due to the
importance of this group of plants.

Table 2. Macrofossil taxa for ombrotrofic mires in North of Spain. Abbreviations: S—seeds,
SCL—sclerotia, LF—leaf, F—fruit, R—Rhizome, W—wood, VP—vegetative part. Ref.: The references
correspond to the numbering in the bibliography.

REF. BIBLIOGRAPHY [53] [52] [38] [51] [38]

MACROFOSSIL TAXA
Betula pubescens S

Ericaceae LF, F, W LF, F,
W

Erica tetralix LF LF, S
Erica mackaiana LF, S LF, S LF, S LF, S
Calluna vulgaris S LF, S LF, S LF, S LF, S

Andromeda polifolia LF, S
Daboecia cantabrica S S
Vaccinium myrtillus LF LF, W

Poaceae LF
Agrostis curtisii LF,R LF,R
Molinia caerulea LF,R,F LF,R,F LF,R,F LF,R,F
Potentilla erecta LF, F F LF, F

Drosera intermedia S
Drosera rotundifolia S S S S

Narthecium ossifragum S S S
Caltha palustris S S

Cyperaceae LF LF, R LF, R LF, R

Eriophorum sp. S, LF LF, R,
S

LF, R,
S

LF, R,
S

S, LF,
R

Carex echinata F
Carex demissa F
Carex binervis F
Carex durieui F F

Rhynchospora alba F
Trichophorum sp LF
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Table 2. Cont.

REF. BIBLIOGRAPHY [53] [52] [38] [51] [38]

Luzula multiflora S
Juncus bulbosus S S S

Juncus squarrosus S S S
BRYOPHYTA

Aulacomnium palustre VP VP
Calliergonella cuspidata VP

Campylopus sp VP VP
Dicranum scoparium VP

Hypnum cupressiforme VP VP VP VP VP
Leucobryum juniperoideum VP VP VP

Polytrichum sp. VP
Racomitrium lanuginosum VP VP VP

Spagnum capillifolium VP
Spagnum tenellum VP VP VP

Sphagnum acutifolia VP
Sphagnum compactum VP VP
Sphagnum cuspidatum VP

Sphagnum molle VP
Sphagnum papillosum VP VP

Sphagnum sec. acutifolia VP VP VP VP
Sphagnum sec. cuspidata VP VP
Thuidium tamariscinum VP
Calypogeia sphagnicola VP
Odontochisma sphagni VP

FUNGI
Cenoccocum geophilum SCL SCL SCL

3.3. Macrofossils: Central Zone (Alps)

In France there are few works based on plant macrofossils. In most of the cases they have not
been carried out in peatlands, among them, it can be highlighted from the work of Ponel et al. [58,59]
in the French Alps above 2000 m a.s.l. It is based on multiproxy analysis that combined palynology
with identification of plant macrofossils and insects remains (mainly Coleoptera) this significantly
improved the interpretations based on pollen analysis.

The Val-de-Lans basin (western French Alps) provides a rare opportunity to study Middle
Pleistocene interglacial sediments, in this lacustrine interglacial deposit a rich flora of wetlands
has been sampled [60]. Moreover, lacustrine deposits in Switzerland have recovered an important
representation of the flora between the Younger Dryas and the Preboreal [61–63]. In the Vosges an
interesting work [64] reconstructs fossil phytosociological communities, comparing groups of plant
macrofossils to current communities.

In this central zone, many of the macrofossils are the remains of trees (Table 3) and in many of the
peat cores one of the most studied groups is that of the Pinaceae [65,66]. The remains of conifers found
in the excavation of a paleo-peatland near Venice [67] and in South Tyrol [68] with dates around the
Younger Dryas stand out for their good conservation and abundance.
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Table 3. Macrofossil arboreal taxa for central zone. Abbreviations: S—seeds, F—fruit, W—wood,
BS—bud scales; NE—needles; BK—bark; ST—stomata. Ref.: The references correspond to the
numbering in the bibliography.

REF. BIBLIOGRAPHY [50] [64] [58] [69] [63] [62] [61] [61]

MACROFOSSIL TAXA
Pinus sp. ST S

Pinus cembra BS, NE NE NE, S, W
Pinus mugo W, NE

Pinus uncinata NE, S
Pinus sylvestris NE, BS,S NE,BS,S

Picea abies NE, S NE, W, S NE, ST S
Abies alba NE NE

Juniperus sp. W NE
Juniperus communis NE, S NE, W

Larix sp. Ne BS,BK
Larix decidua NE, ST NE, S, W

Salix sp. BS BS
Populus tremula BS,F BS,F
Alnus glutinosa S, BS S, W

Betula sp. F, W BS S, W
Betula alba F F, BS F, BS F

Betula carpatica F
Betula pendula S, BS F

Betula pubescens F, BS F
Betula nana F

Sambucus racemosa S
Fagus sylvatica BS, W, F

On the other hand, it is remarkable the absence of identified remains of bryophytes, of all the works
studied in the area of the alps, only four [69–72] offer data of mosses. For the reconstructions based on
the ecological needs of moss communities, Mitchell et al. [73] used bryophyte presence/absence data
from sub-alpine peatlands in the SE Swiss Alps, and bootstrapping cross-validation showing that the
best performing single-proxy transfer functions for both DWT (deep water table) and pH were those
based on mosses.

In Italy marine transgression has been studied during the last 8000 BP and as an effect on the
development of marsh plant communities, in samples of more than 10 m the layers of peat were much
rich in plant remains (Cyperaceae and Poaceae) [74,75]. "La Rota" a free-floating mire in lake of Posta
Fibreno is an exceptional case of relic mire in central Italy, the top 220–230 cm of this free-floating mire
consists almost exclusively of Sphagnum palustre [76].

3.4. Macrofossils East Zone

The numerous peatlands studied in the Carpathian area have provided a large amount of
bryophyte data, both from the genus Sphagnum and Amblystegiaceae (Table 4.) Recent advances in
biogeography include the application of macrofossil analysis to study the past distribution of many
species and determine if a current species is relict. These models have made it possible to compare
current distributions with past distributions, for example, relict bryophytes in the Czech Republic and
Slovakia [77–79] and know the degree of regression that some taxa shows today [79]; in some cases it
has been demonstrated the existence of an entire community that at present no longer exists as the case
of Stygio-Caricion limosae alliance [80].

The diversity of peatlands in this area and the good conservation of aquatic and wetland taxa, has
allowed us to reconstruct changes in the different paleoecosystems, based on the preferences of the
different species [81–83]. These species indicate periods of temporary flooding or fluctuations of the
water table, processes of terrestrialization or eutrophication, and autogenic plant succession [84–88].
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The highest mountains of Bulgaria (Rila, Pirin, and the Rhodopes) with glacial relief forms with
cirques, lakes, moraines, and trough river beds [89–91] where numerous fens are preserved, many of
them above 2000 m a.s.l. These peatlands have been the subject of numerous studies [92–95]. That
have shown the importance of plant macrofossil analyses in mountainous areas for the estimation of
presence or absence of arborea taxa and reconstruct the history of the tree-line fluctuations [91,96,97].
The conclusions from pollen studies alone are more difficult in mountains than in the lowlands because
of the importance of pollen transported over long distances [98].

Table 4. Bryophyta macrofossil. Abbreviations: VP—Vegetative parts. Ref.: The references correspond
to the numbering in the bibliography.

COD. SITE LOCATION [79] [85] [97] [87] [86] [84] [88]

MACROFOSSIL TAXA
Amblystegium kochii VP

Amblystegium serpens VP
Anomodon sp. VP

Aulacomnium palustre VP VP
Brachythecium mildeanum VP
Bryum pseudotriquetum VP VP

Calliergon giganteum VP
Calliergonella cuspidate VP
Campylium stellatum VP VP

Campylopus sp. VP
Depranocladus VP

Depranocladus aduncus VP VP
Herzogiella seligeri VP
Leucodon sciuroides VP
Meesia cf hexasticha VP

Meesia longiseta VP VP VP VP
Meesia trinquetra VP

Philonotis calcarean VP
Polytrichum strictum VP VP
Scorpidium cossonii VP

Scorpidium revolvens VP
Sphagnum sp. VP VP VP

Sphagnum acutifolia VP VP
Sphagnum angustifolium VP
Sphagnum cuspidatum VP

Sphagnum fuscum VP
Sphagnum magellanicum VP VP

Sphagnum obtusum VP
Sphagnum palustre VP VP VP VP VP

Sphagnum sec. cuspidate VP VP VP VP
Sphagnum squarrosum VP VP

Sphagnum subsecundum VP
Thuidium recognitum VP

Warnstorfia exannulata VP VP VP
Warnstorfia fluitans VP

4. Conclusions

In the studies analyzed for southern Europe we find a great diversity of plant macrofossils.
Around 200 taxa of vascular plants and around 50 of bryophytes. With the exception of arboreal and
shrub taxa, which present a great diversity of preserved remains, most herbaceous species leave only
seeds and fruits in the fossil record. The differential preservation of the different parts of each species
must be taken into account for the correct identification of taxa.

High resolution sampling offers the possibility of studying the processes of autogenic succession
in these ecosystems. The comparison of the evolution of the different types of peatlands could allow to
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find patterns and to separate these autogenic changes from climatic or anthropogenic changes. Future
studies in the different areas where peatlands abound may help to consolidate the information offered
by the different species.

Identification of indicator species, observations, and relationships between current vegetation can
be used as a model analogous to past conditions, at least during the Holocene. The European
Vegetation Archive (EVA: [99]) and European Vegetation Classification (EVC: [100]) are tools
that allow us to know and classify the different groups of European habitats. Another model
are macrofossil databases tracing the species distribution dynamics during glacial/interglacial
cycles (http://www.sci.muni.cz/bot-any/mirecol/paleo [101]) and making the information more widely
accessible to botanists and increasing confidence in paleoecological reconstructions and interpretations.

The study of current species based on their nutritional, environmental, or competitive requirements
has provided very useful data for interpreting the different plant communities of the past, especially
highlighting the data offered by bryophytes. The works where different proxies are used; allowing to
test from different points of view the different hypotheses formulated on the observed environmental
changes. In recent years, numerous investigations have been conducted in analyzing other proxy
evidence include diatoms, mollusca, fungal remains, ostracods, cladocera, insect remains, and tecameba.

The rarity of these habitats in southern Europe, makes them a valuable resource for study and their
present and past diversity must be preserved. All this information obtained from plant macrofossils,
apart from studying the dynamics of the vegetation of the past, can also serve to discover future
changes and develop programs for the restoration of ecosystems that are realistic and viable over
time [102,103]. These habitats are very scarce and are in serious danger in southern Europe.
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