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Abstract: The European conquest of the New World produced major socio-environmental
reorganization in the Americas, but for many specific regions and ecosystems, we still do not
understand how these changes occurred within a broader temporal framework. In this paper,
we reconstruct the long-term environmental and vegetation changes experienced by high-altitude
wetlands of the southcentral Andes over the last two millennia. Pollen and charcoal analyses of a
5.5-m-long core recovered from the semi-arid puna of northern Chile indicate that while climatic
drivers influenced vegetation turnaround, human land use and management strategies significantly
affected long-term changes. Our results indicate that the puna vegetation mostly dominated by
grasslands and some peatland taxa stabilized during the late Holocene, xerophytic shrubs expanded
during extremely dry events, and peatland vegetation persisted in relation to landscape-scale
management strategies by Andean pastoralist societies. Environmental changes produced during
the post-conquest period included the introduction of exotic taxa, such as clovers, associated with
the translocation of exotic herding animals (sheep, cattle, and donkeys) and a deterioration in the
management of highland wetlands.

Keywords: Holocene; human impact; environmental change; socio-ecological systems; camelid
pastoralism; microcharcoal

1. Introduction

The European conquest of the New World produced major transformations in the
socio-environmental systems that evolved in the continent for several millennia [1,2]. Some of the
socio-ecological effects that this event produced include demographic collapse, reorganization of the
socio-political systems, disruption of previous resource management practices, biodiversity loss, and
the translocation of new species of animals and plants [3,4]. Although some regions experienced
more direct and dramatic changes than others did, the entire hemisphere experienced significant
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socio-ecological reorganization. Paleo-ecological reconstructions have shown an intensification of
land use following European settlements in some regions. For example, intense deforestation and
land clearing allowed large-scale farming during post-colonial times in the Dominican Republic [5,6],
and large forests were burned and logged for pastures for livestock raising in northern and southern
Patagonia [7,8].

In the Andes, although we know much about the significant demographic and socio-political
changes that the European conquest produced [9,10], only a few studies have addressed the resulting
ecological effects. Part of the problem is that very few regional syntheses describe specific trajectories of
socio-ecological change (but see [11–13]). For instance, in the Andean highlands, an immediate process
occurring after the Spanish conquest was an exponential increase in mining activities that directly
produced a significant increase in pollution and deforestation [14,15]. Nevertheless, post-colonial land
use also involved the introduction of new domesticated animals including cattle, sheep, goats, pigs,
and donkeys, but also the introduction of new cultigens such as wheat, barley, and fava beans, as well
as a number of unintentional weeds [14–19]. Although some direct effects of these processes included
the replacement of native domesticated camelid herds and cultigens such as maize and quinoa, other
direct and indirect effects of this process remain poorly investigated. Moreover, to improve our
understanding of the scale and nature of these changes, it is necessary to untangle the long-term
trajectories of climatic and socio-ecological change. In this paper, we address the problem of how
Andean vegetation responded to the interaction between land-use intensification and extreme climatic
events before and after the European conquest. Using data from a pollen record and informed by
the archaeological and paleo-ecological records of the area, we evaluated the various transformations
that vegetation underwent in the south central Andean of northern Chile and neighboring areas of
southern Peru and western Bolivia in the south central Andes.

Paleo-ecological studies suggest that the current distribution and composition of high-Andean
ecosystems is the product of both humans and climate change. During the Last Glacial Maximum
(LGM), glacier expansion restricted the presence of Andean woodlands above 4000 m above sea
level (a.s.l.) causing their migration to protected sites and lower elevations [20–23]. Subsequently, as
conditions became warmer and more humid during the glacial-interglacial transition, grasslands
and woodlands expanded across the Altiplano [24,25]. During the mid-Holocene, however,
aridity prevailed, producing expansion of sclerophyllous shrubs and drying of some lakes and
wetlands [26–28]. Loss of woody vegetation was enhanced by anthropogenic disturbance as firewood
extraction and landscape transformation intensified, particularly after agro-pastoralism became the
main subsistence strategy throughout much of the Andes, starting around 3500 years ago [29–31].

Although human disturbance has played a major role on the present-day distribution and
abundance of Andean vegetation, there are still large gaps in information regarding past anthropogenic
impacts. Andean people traditionally used, and even actively managed, grasslands and peatlands
as grazing areas, and woodlands and shrublands as sources of firewood, building material, and raw
material for manufacturing tools [26,32]. Grasslands and woodlands were also important as hunting
and gathering places, which occasionally involved using fire [8,33]. Although anthropogenic fire is
considered the leading cause of vegetation loss and degradation in the past [30], evidence shows
that wild fires were a recurrent event in the central highlands of the Andes, even before human
arrival [23,31,34]. For example, in southern Peru and central Bolivia, pollen of the Andean tree Polylepis
decreased significantly and in correspondence to increased abundance of charcoal related to lighting
and drought events, suggesting that although burning inhibited the expansion of woodlands and even
produced their local disappearance, it might not have been produced by human agency [20,21,25,35,36].

Several paleo-ecological studies provide relevant information regarding past variation of Andean
vegetation, but most of these studies are focused on the eastern slopes of the Andes, with a
few exceptions covering the western semi-arid highlands [33,36,37]. In this study, we rely on a
paleo-ecological approach to reconstruct past vegetation and fire history of the semi-arid Andes
of northern Chile, a region characterized by extreme conditions (freezing night temperatures, high
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solar irradiance, and scarce precipitation), by emphasizing anthropogenic effects, such as land-use
management practices, as much as the potential effects of climate change. More specifically, to improve
our understanding of the long-term history of human impact, we reconstructed past vegetation
dynamics by analyzing fossil pollen and charcoal recovered from a sediment core collected on an
Andean high-elevation peatland (also known as bofedal) located near a Polylepis tarapacana forest.
An assessment of the role of human societies and the resilience of Andean vegetation to prehistoric
and historic disturbance (e.g., fire, grazing) may contribute to a better understanding of the cultural
legacy that the modern landscapes incorporate, and, therefore, to more accurately design policies for
conservation of native ecosystems and adaptation to ongoing climate change.

2. Materials and Methods

2.1. Study Site

The study site, Cosapilla peatland (17◦47′10.62” S, 69◦25′46.20” W, 4380 m a.s.l.), is located on the
Andean Altiplano of northern Chile (Figure 1). Specifically, the core location was situated in the middle
of a bofedal associated with a small herding settlement and in the vicinity of a Polylepis tarapacana
forest patch. The region is situated in a volcanically active region, although most eruptions occur at
very long temporal scales [38]. Three stratovolcanoes in the vicinity reach elevations higher than 6000
m: Parinacota (6342 m), Pomerape (6240 m), and Sajama (6452 m).

In the region, semi-arid and cold conditions prevail, with an average mean annual temperature of
4.2 ◦C and an average total annual precipitation of 300–350 mm−1 [38]. Most of the precipitation (90%)
falls during the austral summer, between November and March. The austral winter (April–October) is
characterized by little precipitation, night freeze temperatures, high solar irradiance, and low cloud
cover. Drastic fluctuations in temperature are experienced during the day; temperature extremes
from high to low can be as much as 30 ◦C. El Niño Southern Oscillation (ENSO) mainly drives the
inter-annual climate variability. During ENSO events, dry conditions prevail in the region through
the austral summer. In contrast, during the La Niña events, wet conditions are common and snow
cover on glaciers persists into the summer in relation to increased cloudiness, lower temperatures, and
increased precipitation.

The vegetation of the study area is typical of the dry puna. The landscape is characterized by the
presence of Andean peatlands, tussock grasslands dominated by Festuca orthophylla, sclerophyllous
shrubs of Baccharis thola and Parastrephia spp., and patches of Polylepis tarapacana woodlands [38,39].
Small shrubs such as Adesmia spinosissima, Fabiana densa, and Tetraglochin cristatum are also common
in the region. The vegetation of Andean peatlands is typically dominated by hygrophilous
forbs (Cypearceae and Juncaceae) and small grasses [40,41]. Oxychloe andina, Distichia muscoides,
and Plantago tubulosa form compact cushions that constitute the habitat for several small forbs.
Peatlands provide key environmental services, including carbon sequestration, regulation of water
influx, soil protection, and habitat for native fauna [42]. Moreover, herders consider Andean
peatlands one of the most important grazing areas because they provide forage rich in protein for
livestock [43]. Occasionally, saltpans are closely located to peatlands, where saline-tolerant species
(Sarcocornia pulvinata, Frankenia triandra, and Atriplex nitrophiloides) are commonly found.
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Figure 1. Map of north semi-arid Andes of Chile showing the location of the Cosapilla peatland. 

2.2. Sampling and Processing 

In 2016, one sediment core was retrieved from an Andean peatland in 50-cm sections with a 
Russian corer, to a maximum depth of 550 cm. Core sections were packed and transported to the 
palynology lab at the Centro de Estudios Avanzados en Zonas Áridas (CEAZA) in La Serena, Chile. 
We characterized the lithology of the sediment cores based on field assessments of the stratigraphy, 
and later observations derived from X-ray radiographs. We determined the content of organic and 
inorganic (carbonates and clastic fraction) matter by collecting 1-cm3 sediment subsamples every 
centimeter and conducting Loss-on-Ignition (LOI)[44,45]. 

We collected sediment sub-samples every 4–7 cm for pollen and microscopic charcoal analysis 
(69 samples in total). We added 2 Lycopodium tablets to calculate pollen concentration and pollen 
influx. We used standardized pollen techniques to process soil samples, including HCl, KOH, HF, 
and acetolysis [46]. Optical microscopy (400×) was used to identify pollen grains. In each sample, we 
identified a minimum of 300 pollen grains, excluding Cyperaceae and other local aquatic taxa. We 
identified pollen grains using palynological atlases [47–50], pollen keys, and the pollen reference 
collections at CEAZA and the Herbario Nacional de Bolivia. 

Microcharcoal concentration was determined in the same samples as counted for pollen and 
spore analysis. We counted microscopic charcoal particles larger than 10 µm size and Lycopodium 
spores on 200 fields of view selected randomly. Microcharcoal particles were categorized either as 
woody or herbaceous particles based on their morphology. We identified herbaceous charcoal as 
particles with presence of stomata within epidermal cells and a flat surface, and we considered that 
they come from grasses or other monocots [51]. We estimated charcoal concentration values by 
counting the number of Lycopodium spores. 

We constructed a core chronology by using 14C accelerator mass spectrometry (AMS) dates on 
seven bulk organic samples. All samples for radiocarbon dating were analyzed at the DirectAMS 
radiocarbon lab. We calibrated the radiocarbon dates by using the Southern Hemisphere calibration 
curve SHCAL13 [52]. We calibrated the samples and generated a Bayesian age–depth model with the 
Bacon package version 2.2 [53] in R (https://www.r-project.org/). The model was built under the 
assumption that the top of the sequence corresponds to the year of core retrieval (2016 CE). 
  

Figure 1. Map of north semi-arid Andes of Chile showing the location of the Cosapilla peatland.

2.2. Sampling and Processing

In 2016, one sediment core was retrieved from an Andean peatland in 50-cm sections with a
Russian corer, to a maximum depth of 550 cm. Core sections were packed and transported to the
palynology lab at the Centro de Estudios Avanzados en Zonas Áridas (CEAZA) in La Serena, Chile.
We characterized the lithology of the sediment cores based on field assessments of the stratigraphy,
and later observations derived from X-ray radiographs. We determined the content of organic and
inorganic (carbonates and clastic fraction) matter by collecting 1-cm3 sediment subsamples every
centimeter and conducting Loss-on-Ignition (LOI) [44,45].

We collected sediment sub-samples every 4–7 cm for pollen and microscopic charcoal analysis
(69 samples in total). We added 2 Lycopodium tablets to calculate pollen concentration and pollen
influx. We used standardized pollen techniques to process soil samples, including HCl, KOH, HF,
and acetolysis [46]. Optical microscopy (400×) was used to identify pollen grains. In each sample,
we identified a minimum of 300 pollen grains, excluding Cyperaceae and other local aquatic taxa.
We identified pollen grains using palynological atlases [47–50], pollen keys, and the pollen reference
collections at CEAZA and the Herbario Nacional de Bolivia.

Microcharcoal concentration was determined in the same samples as counted for pollen and spore
analysis. We counted microscopic charcoal particles larger than 10 µm size and Lycopodium spores on
200 fields of view selected randomly. Microcharcoal particles were categorized either as woody or
herbaceous particles based on their morphology. We identified herbaceous charcoal as particles with
presence of stomata within epidermal cells and a flat surface, and we considered that they come from
grasses or other monocots [51]. We estimated charcoal concentration values by counting the number of
Lycopodium spores.

We constructed a core chronology by using 14C accelerator mass spectrometry (AMS) dates on
seven bulk organic samples. All samples for radiocarbon dating were analyzed at the DirectAMS
radiocarbon lab. We calibrated the radiocarbon dates by using the Southern Hemisphere calibration
curve SHCAL13 [52]. We calibrated the samples and generated a Bayesian age–depth model with the
Bacon package version 2.2 [53] in R (https://www.r-project.org/). The model was built under the
assumption that the top of the sequence corresponds to the year of core retrieval (2016 CE).

https://www.r-project.org/
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2.3. Statistical Analysis

We used the pollen sum to calculate relative abundances of each taxon, which was expressed
as percentages. We assigned pollen taxa to a vegetation type based on fieldwork and bibliographic
references [39,41,50,54]. We created pollen diagrams using pollen percentages with Tilia and Tilia
Graph. Pollen zones were determined using the stratigraphically-constrained incremental sum of
square clustering (CONISS 1.5.12). The method works by combining the two most similar and
stratigraphically adjacent samples [55]. We performed a multivariate analysis to detect differences
in the composition of the pollen assemblage between different pollen intervals. A detrended
correspondence analysis (DCA) was conducted using all pollen taxa present at abundances higher
than 2% and recorded in more than five samples. We performed a DCA to detect major compositional
changes and species turnover of dominant taxa through time. The Vegan package of R statistical
software (version 3.4.2, R Foundation for Statistical Computing, Vienna, Austria) was used to perform
the analysis.

3. Results

3.1. Chronology and Lithological Description

The AMS radiocarbon dates from the sediments provided a consistent chronology with an absence
of anomalous dates (Table 1). The earliest date, near the bottom of the core, dates to approximately 7702
calendar year BP. A second date, situated a meter above, dates to 1404 calendar year BP, suggesting a
greater compaction in the lowermost meter of deposition, thus a greater temporal resolution in the
upper 480 cm. The age-deposition model shows a phase of initial slow sedimentation between ~7700
and ~1400 calendar year BP (0.04 ± 0.013 mm/y), followed by a period of decreased deposition
(0.5–1 cm/y) that continued up to 2.3 m (ca. 200 calendar year BP), and a third period of increased
deposition rate (0.16 ± 0.08 mm/y) (Figure 2).

The sediment of the core is characterized by the abundance of peat soil, intermixed with layers of
higher silt and sand content (Figure 3). The base of the core is composed mainly of fine and compact
layers of sand and silt wit. One sandy layer was observed at 350 cm in depth. The loss-on-ignition
analysis showed high abundance of inorganic material and carbonates (75–97%) between 550 and
400 cm depth and high content of organic material (75–98%) between 400 cm and the top of the core.
The abundance of carbonate was constantly scarce throughout the sediment core (<5%).

Table 1. Radiocarbon ages of the Cosapilla 0016-B core from a peatland in the semi-arid Andes of
northern Chile. The modeled ages (mean and standard deviation) are the result of a probabilistic
age–depth model.

Lab Code Core Depth (cm) 14C Years BP Error Calibrated Age
(Calendar Year BP)

D-AMS-028556 48.5 modern —
D-AMS-028557 116.5 87 28 66 ± 28
D-AMS-028558 228.5 129 26 91 ± 26
D-AMS-028559 297.5 665 32 605 ± 32
D-AMS-028560 356.5 1316 23 1224 ± 23
D-AMS-028561 428.5 1571 22 1404 ± 22
D-AMS-028562 550 6912 25 7702 ± 38
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Figure 2. Bacon modeling routine output graph of age–depth model of Cosapilla 0016-B core based 
on radiocarbon dates. (A) Markov chain Monte Carlo iteration, prior (green curves)/posterior (grey 
histograms) distributions of accumulation rate and memory R of Cosapilla 0016-B core, (B) calibrated 
radiocarbon dates (blue), and age–depth model (dotted grey lines indicate more likely calendar ages; 
grey dashed lines show 95% confidence intervals, and blue curve shows single “best” model based 
on the weighted mean age for each depth). 

 

Figure 2. Bacon modeling routine output graph of age–depth model of Cosapilla 0016-B core based
on radiocarbon dates. (A) Markov chain Monte Carlo iteration, prior (green curves)/posterior (grey
histograms) distributions of accumulation rate and memory R of Cosapilla 0016-B core, (B) calibrated
radiocarbon dates (blue), and age–depth model (dotted grey lines indicate more likely calendar ages;
grey dashed lines show 95% confidence intervals, and blue curve shows single “best” model based on
the weighted mean age for each depth).
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peatland vegetation (Figures 4 and 5). Overall, Poaceae was the most dominant taxa, making up 
nearly 80% of the pollen assemblage and reflecting the dominance of grasslands in the area over time. 
The second most abundant pollen types were Asteraceae (Asteroideae and Gnaphaliae) and 
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found in the region and its pollen was present in low frequencies. The peatland vegetation was 
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Figure 3. Percentage and concentration of carbonates, inorganics, and organics of Cosapilla 0016-B core
from a peatland in the semi-arid Andes of northern Chile, including calibrated radiocarbon dates.

3.2. Microfossil Analysis

Pollen concentration was variable throughout the core, as well as pollen richness, as we identified
only 24 distinct pollen types. Pollen preservation was highest at the base of the core, between 550
and 428 cm in depth, with a mean concentration of 57,574.37 grains/cc3. In contrast, the upper core
section showed a mean pollen concentration of 22,248.59 grains/cc3, with a peak of at 325 cm of
146,525 grains/cm3. A cluster analysis identified five major zones within the sequence; Z1 and Z2
had a predominance of grassland taxa, whereas Z3—Z5 comprised a higher proportion of peatland
vegetation (Figures 4 and 5). Overall, Poaceae was the most dominant taxa, making up nearly 80% of
the pollen assemblage and reflecting the dominance of grasslands in the area over time. The second
most abundant pollen types were Asteraceae (Asteroideae and Gnaphaliae) and Baccharis-type, with
abundances ranging between 5% and 60%. Polylepis is the only native tree taxon found in the region
and its pollen was present in low frequencies. The peatland vegetation was characterized by the
presence of Apium, Cyperaceae, Eleochaeris, Gentiana, Myriophyllum, and Plantago. Other pollen types
included Amaranthaceae, Caryophyllaceae, Ephedra, and Fabaceae. Disturbance taxa included Trifolium.
Extra-regional taxa included Alnus, Podocarpus, Psichotria, Ulmaceae, Lauraceae, Melastomataceae,
Moraceae, Piperaceae, Sisymbrium, and Smilax. Proxy data suggested five distinct past vegetation
communities (Figure 4).

The DCA analysis of Cosapilla records resulted in four ordination axes (Figure 6). The first two
axes had eigenvalues of 0.36 and 0.19, respectively. Pollen assemblages were divided based on pollen
zones identified by the Cluster Analysis. Samples from pollen zones Z1 and Z5 showed a distinct
separation in space, as they rarely overlapped with the other pollen zones, indicating that the species
composition is unique. In contrast, pollen zones Z2, Z3, and Z4 showed a larger overlap among each,
other indicating that they share the same taxa.
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Figure 6. Detrended correspondence analysis (DCA) of pollen zones of Cosapilla 0016-B core from a
peatland in the semi-arid Andes of northern Chile.

3.2.1. Pollen Zone Z1 (550–435 cm; 7737–1460 calendar year BP)

Poaceae pollen is by far the most abundant taxon, reaching up to 80%. Asteraceae and
Baccharis-type are considerably less common, with abundances lower than 20%. Other pollen
taxa including peatland vegetation are rare or infrequent. Microcharcoal particles, particularly
herbaceous, are extremely abundant through the entire pollen zone (woody = 38.261 particles/cm3,
herbaceous = 64,014.86 particles/cm3). This zone suggests moderate humidity and presence of
vegetation characteristic of the puna.
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3.2.2. Pollen Zone Z2 (350–435 cm; 1460–1250 calendar year BP)

Poaceae is the most abundant pollen taxon as it reaches up to 60%. In contrast, pollen taxa
characteristic of shrubland vegetation (Asteraceae and Baccharis-type) are less common (~20%). Other
high-Andean pollen elements, in particular Arenaria (<10%), are also present at very low abundances.
Eleochaeris pollen fluctuates throughout the zone (~10–80%), but its presence signals the establishment
of the Andean peatland. Microcharcoal particles fluctuate towards a decrease at the base of the pollen
zone (woody = 7941.1 particles/cm3, herbaceous = 18,596.2 particles/cm3). This zone represents the
transition from relatively humid grasslands to increasingly dry puna.

3.2.3. Pollen Zone Z3 (150–350 cm; 1250–125 calendar year BP)

Poaceae (5–80%) and Asteraceae (up to 40%) exhibit the highest values. Pollen of Baccharis-type
is abundant (up to 40%) at the base but decreases in abundance (<20%) towards the end of the
pollen zone. Other local pollen taxa include Arenaria, Caryophyllaceae, Euphorbiaceae, Ephedra, and
Solanaceae. Pollen of Trifolium increases in abundance towards the end of the pollen zone (up to ~15%).
Eleocharis is the dominant taxon of the peatland, reaching values up to 65%. Microcharcoal particles are
comparatively more abundant (woody = 8095.68 particles/cm3, herbaceous = 15,377.54 particles/cm3),
particularly near 500 calendar year BP. This zone marks a transition from dominant grasslands to a
peatland, likely in relation to increased regional humidity.

3.2.4. Pollen Zone Z4 (30–150 cm; 125–0 calendar year BP)

Poaceae pollen is the most abundant taxon, reaching up to 55%. This zone is also characterized
by the abundance of Asteraceae (~5–30%), Baccharis-type (~5–40%), and Eleocharis (20–70%) pollen.
Polylepis pollen is in general very low (<5%) and is absent in the record from 30 to 75 cm in depth.
Asteraceae pollen is the most abundant at the base of the zone but it decreases over time, while Poaceae
becomes more abundant.

The remaining local flora include herbaceous and shrub taxa characteristic of the puna belt
(4000 m a.s.l) [39]. Amaranthaceae (including Gomphrena), Caryophyllaceae, Euphorbiaceae, Ephedra,
and Nototriche are common elements of the puna vegetation. Trifolium pollen is very abundant in
the zone, reaching 15% in abundance. The peatland vegetation is characterized by the dominance
of Eleocharis (up to 80%). Microcharcoal particles, both woody and herbaceous, are found in low
abundances (woody = 2438.06 particles/cm3, herbaceous = 6147.76 particles/cm3). The richness of
taxa found in this zone seems to be a consequence of a healthy peatland environment as well as
adequate taphonomic conditions for the preservation of pollen.

3.2.5. Pollen Zone Z5 (0–30 cm; 0–4 calendar year BP)

This pollen zone is characterized by the abundance of Baccharis-type (up to 25%), Arenaria
(from 16 to 33%), Plantago (from 23 to 50%), and Urticaceae (from 3 to 48%). Both Asteraceae and
Poaceae exhibit varying percentages but Poaceae is more abundant at the base of the pollen zone.
Abundance of microcharcoal particles was the lowest of the paleorecord (woody = 2212.5 particles/cm3,
herbaceous = 5724.8 particles/cm3). This zone reflects the progressive desiccation that the modern
peatland in the sample location is currently experiencing.

4. Discussion

The pollen record indicates that grasslands primarily dominated the semi-arid Andean landscape
between 7700 and 1400 calendar year BP. This period was followed by a major turnover in the plant
community characterized by the emergence of a mixed grassland–shrub community and the formation
of a high-altitude peatland. A second major change in the landscape took place around 800 calendar
year BP, marked by the retraction of grasslands, the expansion of the peatland, and the appearance
of the exotic clover (Trifolium). Evidence of burning is documented throughout the record with two
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major peaks in fire activity, the largest between 7700 and 1400 calendar year BP and a second around
1200 calendar year BP.

The pollen assemblage shows that the high-Andean steppe was a dominant component of the
landscape during the middle Holocene, when arid climatic conditions prevailed in the Andean
Altiplano [28,54,56–61]. During this period, precipitation was much lower and variable than
today [62–64]. Similar conditions have been documented in Quebrada Puripica [64], Laguna
Miscanti [65,66], and Laguna del Negro Francisco [67] towards the south of the study area.

The formation of the Andean wetland occurred approximately around 1400 calendar year BP and
reached its maximum extension between 600 calendar year BP and modern times, as indicated by the
abundance of Eleocharis pollen and organic matter. The establishment of a permanently inundated
wetland coincides with an increase in moisture levels during the late Holocene, reported extensively in
South America, including the central Altiplano [57], northern and central Chile [67–71], and eastern
and northwestern Argentina [72,73].

In Cosapilla, the abundance of xerophytic shrubs fluctuates in time but experiences an increase
during 1400–1200 calendar year BP, 800–600 calendar year BP, and 400 calendar year BP–present times.
The increase of Asteraceae and Baccharis during these periods coincides with events of extreme aridity,
in particular the Little Ice Age recorded in the Sajama ice core [74–76]. An expansion of shrubs is
associated with drier conditions, linked with a decrease in moisture conditions and precipitation over
the Altiplano [77]. However, unlike other semi-arid sites in the puna [37,78], drought-resistant shrubs
have remained as a common component of the vegetation in Cosapilla.

Although tree taxa were rare, Polylepis, the only tree growing in the region, is present in the
paleo-record, albeit in very low frequencies. Moreover, despite the fact that a P. tarapacana woodland is
closely located to the peatland, pollen abundance was lower than 5%. Previous studies have shown
that Polylepis pollen tends to travel short distances and that it tends to concentrate within the forest [48].
Several palynological studies highlight the decline in abundance of Polylepis in the late Holocene
throughout the Andes, a trend that suggests intense deforestation due to increased burning and
firewood extraction [79,80]. The evidence recovered in this study, indicates that Polylepis pollen likely
represents a local signal, and that small woodlands were present on mountain slopes near the peatland
during the late Holocene, even at the time of increase in the demand for fuel and growing human
population. Analogous pollen records from the region show that Polylepis woodlands were a common
element of the vegetation, but they were unlikely to have covered large areas [36,37,78].

The paleorecord shows evidence of regional fire during the early and middle Holocene. Fire
activity in pollen zones Z1 and Z2 coincide with volcanic eruptions inferred from several tephra
layers and high concentrations of Fe in a sediment core from Lake Chungara [61,81]. This overlap
suggests that volcanic eruptions were one possible ignition source of regional fires and that charcoal
particles were locally transported to the site during events of volcanic eruption. The impact of
volcanic eruptions on vegetation is closely associated with the type and quantity of tephra deposited
on the surface [82]. The pollen assemblage shows minor fluctuations in time, indicating that the
amount of volcanic ash deposited in the site was not significant enough to induce mayor changes in
population dynamics and the reconfiguration of the vegetation community. The large abundance of
Poaceae and Asteraceae pollen before and after 7000 calendar year BP implies little disturbance on the
local vegetation community. However, it is important to note that the slow sedimentation rate until
1400 calendar year BP could have produced the accumulation of charcoal and the temporal variability
in sedimentation, challenging our ability to accurately discern the temporal fidelity of total charcoal
accumulation as a fire proxy. Thus, these results should be taken with consideration.

Alternatively, the high frequency of wood and herbaceous charcoal could be the result of burning
of vegetation by human groups and enhanced by dry conditions. Human groups were present in the
highland Andes since approximately 12,000 calendar year BP and played a role in vegetation dynamics
in the region [81,83–85]. High-altitude human foragers were particularly mobile between the early
and middle Holocene, which could have produced a patchy distribution of temporary residential
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and logistical camps [86]. The high density of microcharcoal particles in pollen zones Z1 and Z2
may also suggest that hunter gatherers were using fire for hunting wild camelids (Vicugna vicugna
and Lama guanicoe), taruka deer (Hippocamelus antisensis), and lesser rheas (Rhea pennata). Although
archeological evidence from Hakenasa and other rock shelters in the region suggests decreased
occupation intensity during the middle Holocene as a possible response to increased regional
aridity [85–87], abundant wood and herbaceous charcoal particles during this period might suggest a
more conspicuous presence by human foragers. In this context, it should be noted that Cosapilla is
a large wetland in comparison with the Hakenasa surrounding. This suggests that Cosapilla could
have acted as an eco-refuge, as defined by Núñez et al. 2013 ([86], see also [71]), for the highlands of
Salar de Atacama; meaning that people looked for localized rich environments that contrasted with
depleted regional conditions [86]. Field archeological surveys in the study area are needed to test for
this alternative explanation.

Fire continues as a common element in the landscape during the Formative period later in the
Holocene, as hunter-gatherers were progressively replaced by camelid pastoralists [27,87]. Pastoralism
is an economic activity widely distributed in the Andean puna and herders traditionally use grasslands
and wetlands as grazing areas for domestic camelids (llamas and alpacas). Herders could have used
fire to actively manage pastures for their livestock (Figure 4). The abundance of Poaceae pollen and
herbaceous charcoal indicates that grasslands were intentionally burned to promote re-sprouting and
to encourage the development of more palatable foraging plants such as Festuca and Deyeuxia for
domestic camelids [83].

A major shift in pollen assemblage is observed around the middle Formative (~1300 calendar
year BP) and Late Intermediate period (~800 calendar year BP) (Figure 5). The pollen record shows
a decrease in grasslands, with an expansion of sclerophyllous vegetation (Asteraceae and Baccharis).
Because this shift is correlated to decreased burning, fire suppression could have played an important
role on vegetation dynamics. Modern experimental studies in the Argentinian Andes have shown
that fire suppression favors establishment of shrubs but limits regeneration of tussock grasses [88].
Carrilla et al. [89] also showed that despite fire reduced aboveground biomass of burned vegetation, it
promoted re-sprouting of tussock grasses. Other studies have shown, nevertheless, that burning has
a detrimental effect on the overall plant community and biomass productivity [90], suggesting that
long-term and comparative studies are needed to understand the magnitude of the effects of burning
on Andean ecosystems.

The most significant landscape-modification strategy employed by pastoralists over the last
2000 years was probably increasing the surface of peatlands and wetland as grazing areas. In fact,
indigenous groups may have also played an important role on the maintenance and expansion of the
Andean wetland in Cosapilla. Ethnographic evidence shows that Andean herders usually managed
bofedales by constructing and maintaining irrigated systems that increase water quantity and water
availability during the dry and cold season [91,92]. The establishment of the peatland took place during
the late Holocene Formative period, when the economy was mostly based on camelid pastoralism and
peatlands were important grazing areas, suggesting that herders actively engaged in the development
of the wetland in the study site.

The posterior expansion of the peatland coincides with the arrival of the Inca to the region,
when climatic conditions were relatively stable. An increase in the area covered by the peatland
suggests that it could have been used as a grazing area for a large density of camelids (particularly
alpacas). This interpretation is supported by an increase in organic matter concentration, possible
related to higher levels of animal excreta. The most common peatland taxa, Eleocharis, is commonly
consumed by domestic camelids and livestock [93,94] and is able to tolerate high grazing pressures [95].
Furthermore, results suggest a shift in herding strategies, from managing pastures with abundance of
highly lignified and short tussock grasses, to managing wetlands characterized by the abundance of
moist and succulent herbs available throughout the entire year [96,97].
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The evidence of European conquest on the Andes is also present in the pollen record. After the
Spanish conquest, peatland pollen continues to be abundant and probably represents the continual
effort of the local population to maintain the wetland for grazing of domestic camelids and introduced
livestock. Pollen of the exotic clover (Trifolium) becomes abundant between 600 and 100 year BP,
possibly in relation to the translocation of sheep and cattle herds [7,98]. Currently, Andean pastoralists
keep mixed herds of native and exotic animals as a way to diversify their economy [99,100]. While the
native camelids might not be as profitable as sheep and cattle, they fair better during droughts and
frosts and require less supervision. The environmental impact of cattle and sheep is also considerably
higher than llamas and alpacas because the former uproot and trample vegetation and consume more
pasture than camelids [91]. It is quite possible that the intensification of livestock raising produced
overgrazing and soil erosion, facilitating the establishment of exotic weeds, including Trifolium [95,101].

In recent times, the Cosapilla peatland has experienced a mild retraction with an associated
expansion of grasslands and shrubs. The appearance of Plantago and an abrupt increase of Trifolium
could suggest a decrease of traditional management and a degradation of the peatland, favoring the
establishment of species resistant to trampling and increased herd browsing pressure. Currently, some
highland Andean wetlands located near the study area show clear signs of degradation due to climate
change and loss of human traditional management practices, which are inducing the reorganization of
plant communities. The overall trend suggests that during the last 2000 years, changes in vegetation
dynamics were affected by climatic events as much as anthropogenic disturbance [71,102].

Charcoal concentration decreased over time but it remained relatively frequent throughout the
record during colonial and republican times. The burning of vegetation by pastoralists can also
be related to scaring away predators (foxes and pumas) from camelid herds. This indicates that
burning persisted as a common practice, probably associated with camelid herding in the region.
Thus, it is likely that burning and grazing simultaneously shaped vegetation structure and plant cover
in the semi-arid highlands over millennial scales [89]. Unlike Cosapilla, other paleorecords have
shown a marked increase in fire intensity associated with land-use intensification after the European
conquest [5–7]. For example, in Huila (Ecuador) and Chachapoal Valley (Chile), an intensification of
burning took place during the Spanish settlement, probably in relation to land-clearing and land-use
intensification [103,104].

The paleoecology of Cosapilla does not evidence land use intensification or large-scale landscape
transformation during colonial times. This pattern indicates that the predominant form of land use
remained as extensive grazing, in which livestock (both camelids and introduced animals) were
fed on forage from natural grasslands and wetlands. Alternatively, it could be attributed to land
abandonment due to the demographic collapse and forced relocation of indigenous populations
during the colony [71,105–108]. The Altiplano of Tarapacá suffered a second population decline
associated with migration waves from the highlands to the coast from 1820 to 1960 [109]. The massive
migration was stimulated by economic growth and demand of human labor, but also by a persistent
decrease in precipitation in the Andean highlands [77,108].

5. Conclusions

The paleo-ecological record from the Cosapilla peatland in the semi-arid Andes of northern
Chile suggests that the environmental impact of anthropogenic activities has been significant over
the last several millennia. Throughout time, humans have increasingly managed and modified
this landscape, particularly with the emergence of an economic organization dependent on Andean
camelid pastoralism. Extensive pastoralism of domesticated camelid herds seems to have involved
fire to provide growth of palatable grass species, as much as the construction and management and
increase of available peatlands. Camelid pastoralism also expanded the coverture of peatlands and
changed the composition of plant communities towards hydrophytic vegetation and tussock grasses.
Evidence of the arrival of Europeans to the region is reflected by the appearance of the exotic clover
(Trifolium), probably connected to the translocation of exotic herding animals. The interaction between
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humans and increasing aridity favored the establishment of drought-tolerant vegetation and the
reconfiguration of ecological communities in the Andean highlands. Finally, the ongoing changes
in human management practices and climatic variability caused by anthropogenic global warming
are currently favoring the establishment of drought-tolerant vegetation, a deterioration of wetland
systems, and a new reorganization of the ecological communities in the Andes.
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