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Abstract: Compared to traditional laboratory methods, spectroscopic techniques (e.g., near infrared,
hyperspectral imaging) provide analysts with an innovative and improved understanding of complex
issues by determining several chemical compounds and metabolites at once, allowing for the collection
of the sample “fingerprint”. These techniques have the potential to deliver high-throughput options
for the analysis of the chemical composition of grapes in the laboratory, the vineyard and before
or during harvest, to provide better insights of the chemistry, nutrition and physiology of grapes.
Faster computers, the development of software and portable easy to use spectrophotometers and
data analytical methods allow for the development of innovative applications of these techniques for
the analyses of grape composition.
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1. Introduction

Rapid analytical methods have the potential to deliver high-throughput options in both research
and real-life applications. Vibrational spectroscopy techniques (near infrared (NIR), mid infrared
(MIR)) are well known to successfully represent the “fingerprint” of the sample analysed [1–6]. These
techniques could be implemented to simplify analytical methods and decrease cost and time of
analysis [1–6]. State of the art technology, instrumentation (e.g., hand-held, portable), software and
data mining methods are the key drivers for the increased adaptation/utilisation of these methods in
research and development (R&D) for high-throughput applications in crops and in the vineyard.

The use of visible (VIS) and NIR spectroscopy has been evaluated as a laboratory method to
measure grape compositional parameters extensively in the literature [1–6]. The main objective
of the laboratory applications was on the accurate determination of sugars and colour (e.g., total
anthocyanins) in grapes, mainly for commercial purposes [1,2]. This approach has been implemented
by the wine industry through the collection of the spectra of homogenised grape samples with
commercial laboratory spectrophotometers [2–6]. Nowadays, the measurement of grape composition
has moved from the laboratory to the vineyard where researchers have demonstrated alternative
sample presentation modes combined with adaptable and portable instruments that allowed for a
more cost-effective analysis of grapes at the vineyard and the weighbridge (Figure 1). In the last
decade an increased interest in NIR applications has been boosted by numerous factors including the
availability of handheld, portable and miniaturised instruments and hyperspectral (HYPER) cameras
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and developments in data analytical methods [2–6]. More recently, the use of HYPER systems has also
allowed for the spatiotemporal collection of data with more opportunities to analyse different aspects
of grape and plant composition, nutrition, and physiology in the vine and vineyard.
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Figure 1. Evolution on the measurement of grape composition from the laboratory to the vineyard
towards high-throughput analysis.

The last 20 years have seen an increase in innovative applications of these techniques for the
analyses of grape composition moving from the laboratory to the vineyard. This review summarises
and discusses the potential of NIR spectroscopy coupled with HYPER imaging for the analysis of grape
composition (e.g., single grapes, whole or intact bunch) in the vineyard as a high-throughput method.

2. In Vineyard Applications (Single Berries, Whole Bunch)

The chemical composition of grapes varies across the vineyard as result of soil variability (e.g.,
nutrients and water), fertilization, climate and other environmental conditions. This variability creates
opportunities to either exploit the inherent variations to produce different wines with different qualities
or to apply precision viticultural methods to minimise the variability to optimise inputs and ultimately
the output (improve wine quality) [2–6]. The combination of VIS and NIR spectroscopy has been
widely reported as a laboratory technique to evaluate grape compositional parameters [1–6].

Schaare and collaborators [2] have reported the utilisation of VIS-NIR spectroscopy to evaluate
the chemical composition of grapes during machine harvesting and on the use of this information to
generate spatial distribution maps associated with quality to improve viticultural practices [2]. The
authors described the use of a commercial VIS and NIR instrument to quantify the total soluble solids
(TSS) in Sauvignon Blanc grapes in motion on a conveyor belt. The TSS content of the individual berries
was predicted with the author’s models yielding a coefficient of determination (R2) of 0.83 and a root
mean square standard error of prediction (RMSEP) of 1.10 ◦Brix, respectively [2]. The same authors also
developed a partial least squares (PLS) discriminant (DA) regression to differentiate the composition of
the grapes based on the VIS-NIR spectra of the grapes as they progressed on the conveyor belt [2].

Gonzalez–Caballero and co-workers investigated the capability of NIR spectroscopy to monitor
grape ripeness associated with bunch orientation and position, with the objective to optimise
harvesting [7,8]. These authors used a handheld instrument with a range of 1600 to 2400 nm,
to distinguish clusters of cv. Pedro Ximénez and Cabernet Sauvignon [7,8]. The authors observed that the
NIR spectra of the grape samples was dependent on the position and orientation of each individual
bunch [7,8]. Therefore, NIR spectroscopy enabled analysts to distinguish between the fruits ripening
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stages, early, middle, and late in addition to categorising the grapes based on their TSS content using
PLS-DA regression (correct classification rates ranged between 79% and 88%). The authors concluded
that NIR spectroscopy in the 1600–2400 nm range was useful for the vineyard-based monitoring of
the grape development process, which could allow for the selective harvesting of fruit to produce
different styles of wine [7,8]. In an earlier study, the same researchers reported the application of NIR
spectroscopy to monitor variations in the internal compositional properties of Vitis vinifera L. during
development and at maturity [7,8]. The authors reported that NIR combined with two regression
techniques both modified PLS (MPLS) and LOCAL regression allowed for the analysis of grapes in
clusters. The information generated by the author’s models was demonstrated to quantify changes in
the TSS, pH, tartaric acid (TA), malic acid (MA) and potassium (K) content of the fruit, with comparable
results to the more traditional means of monitoring [7,8].

Recently, Wample and collaborators described the combination of global positioning and
information systems (GPS and GIS) with NIR spectroscopy to quantify both the anthocyanins
(Antho) and TSS content in wine grapes at two separate vineyards in California [9]. The researchers
demonstrated that the application of such technologies could allow wineries to produce two wines
of different quality, rather than a single blended wine, which improved the overall income of the
winery [9].

Fourier transform (FT) NIR spectroscopy was evaluated by Aleixandre-Tudo and co-authors for
the “on-line” analysis of grapes either when the fruits were being transferred via conveyor belt or at a
“static” sampling system [10]. The authors reported RMSEP and residual predictive deviation (RPD)
values of 12% and 2.37, 12.3% and 3.37, 7.8% and 3.2, 16.7% and 2.84 for tannins (TAN) (mg g−1), Antho
(mg g−1) on a fresh weight basis, total phenols (TPhenol), and colour density (AU), respectively [10].
Moreover, the authors findings demonstrated the ability of NIR spectroscopy to monitor TPhenol
composition of grape samples on a conveyor belt, which could ultimately allow the development of an
automated online analytical system [10].

Ferrer–Gallego and collaborators described the application of NIR spectroscopy to quantify
TPhenol compounds in Vitis vinifera L. cv. Graciano [11,12]. The authors measured TPhenol content in
whole berries and grape skins at different stages of maturation [11]. The studies calibration models
demonstrated their effectiveness in measuring the fruits flavonols (variation between the standard
HPLC method and the NIR approach was 7.8% and 10.7%) in whole grapes and skins. The authors
highlighted that the best models were found by collecting the spectra of the intact grapes using a
fibre-optic probe, which the authors attributed to the probe versatility, which removed the necessity
for sample manipulation prior to individual readings [11,12]. This study also highlighted the potential
of the process to provide a rapid cost-effective method of analysis [11]. In a similar study, the same
authors reported that NIR spectroscopy possess good potential as a means of predicting multiple
sensory parameters (sourness, astringency, tannic intensity, dryness, and hardness), colour and aroma
intensity in both grape seed and skin samples [11,12]. These researchers demonstrated how the NIR
spectroscopy analysis results were comparable to those determined by a conventional sensory panel of
winemakers. The reported externally validated difference between the classical sensory panel and the
NIR method’s findings being 4.5% for hardness and 8.7% for colour in the case of seeds and for skins
9.8% for tannic intensity and 13.7% for astringency [11,12].

Barnaba and colleagues evaluated the use of an acousto-optic tunable filter near infrared
(AOTF–NIR) instrument to monitor the ripening of Sangiovese grapes sourced from four separate
Italian vineyards over three consecutive seasons [13]. The authors used PLS regression to predict
several parameters such as TSS (◦Brix), total sugars (g L−1), glucose (g L−1), fructose (g L−1), density
(g mL−1), TA (g L−1), tartaric acid (g L−1), pH, MA (g L−1), gluconic acid (g L−1), yeast assimilable
nitrogen (mg L−1), Antho (mg L−1) and TPhenol (mg L−1) [13]. Barnaba and co-authors concluded
that AOTF–NIR spectroscopy was useful for the direct infield determination of both Sangiovese grape
quality and the fruits ripening profile, which would be of benefit to the viticulture industry. Torchio
and collaborators also investigated the feasibility of predicting the extractable phenolic content of intact
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grape seed samples using FT-NIR spectroscopy [14]. Their calibration models were shown to be capable
of quantitative analysis of the samples’ total flavonoids, pro-anthocyanidins, galloylation percentage
as well as their low molecular weight flavanols, such as catechin, epicatechin and procyanidin [14].

Muganu and collaborators employed a non-destructive AOTF-NIR instrument to investigate the
impact of soil management practices (e.g., tillage, natural vegetation) on vine growth and composition
of Canaiolo nero and Trebbiano giallo grapes over two consecutive vintage sessions (2010–11) [15]. The
NIR data was used to predict TSS, pH, TA, Antho and TPhenol content of the grape samples [15].
The researchers emphasised that AOTF-NIR spectroscopy coupled with multivariate data analysis
demonstrated great potential as a means of rapidly assessing grape quality, which, along with vine
characteristics, was influenced by soil management practices [15].

Wenzhong and collaborators developed a method to monitor the deterioration of grapes using
FT-MIR spectroscopy together with chemometrics by predicting volatiles compounds directly in the
whole grapes measured by spectroscopy (e.g., deteriorated vs. fresh) [16]. The authors established
that the rate at which volatiles were released from the grapes was greatest for samples that had just
started to deteriorate based on their IR spectra [16]. The authors proposed that the study could allow
for the development of a rapid, non-destructive, low cost sensor to establish the quality of fruits
in large storage facilities. Boido and collaborators investigated the ability of NIR spectroscopy and
chemometrics to quantify several glycosylated aroma compounds in Tannat grape samples [17]. The
authors demonstrated that NIR spectroscopy may be applied as screening tool for the rapid analysis of
the fruits glycosylated compounds and would contribute to improve management decisions at the
vineyard and the winery [17]. Yang and collaborators also reported the combination of UV-VIS-NIR
spectroscopy with PLS-DA as a promising method for the non-destructive classification of grape seed
varieties (210–1100 nm) [18].

Rolle and co-workers used FT-NIR spectra and texture parameters to quantify both the TPhenol
content and extractability (EXPHENOL) of intact Cabernet Sauvignon grape seeds [19]. The TPhenol
content was predicted with a standard error prediction (SEP) of less than 8%, using FT-NIR
spectroscopy [19]. The study inferred that the rapid analytical methods could be utilised during
winemaking to rapidly monitor the seeds phenolic maturity [19]. A study by Lv and collaborators
reported the ability of VIS and NIR spectroscopy to categorise grape ripeness [20]. These experiments
proved the ability of NIR spectroscopy combined with different chemometric method to monitor
grape maturity [20]. Validation of the results showed that the combination of linear discriminant
analysis (LDA) with principal component analysis PCA and PLS achieved classification accuracy of
100% [20]. The researchers concluded that VIS and NIR spectroscopy has significant potential as a
rapid identification technique to monitor the natural variation in grape composition through ripeness
and at harvest [20].

Urraca and collaborators demonstrated the viability of the combination of a portable FT-NIR
instruments and chemometrics to successfully determine the TSS of grape berries through the
comparison of laboratory and in field measurements [21]. The RMSEP = 1.68 ◦Brix, and SEP = 1.67
◦Brix developed with the NIR spectra collected in the vineyard were sufficiently like those obtained
using a laboratory instrument (RMSEP = 1.42 ◦Brix, SEP = 1.40 ◦Brix) [21]. The authors concluded that a
protocol can be defined for in vineyard assessment of TSS grapes by NIR spectral analyser [21]. Xiao and
co-workers also compared the findings of a benchtop FT-NIR and portable grating scanning instrument
measuring TSS content in Ruby seedless grape berries [22]. These authors determined that a modified
piecewise direct standardization (PDS) transfer method could be generated to transfer the calibration
between the benchtop FT-NIR spectrometer and the portable grating scanning spectrometer, with
this linear interpolation-PDS removing the difficulty caused by the instruments resolution difference,
and would ultimately allow portable scanning instrument to perform better than a more traditional
wavelengths-reserved method [22].

Heredia and co-workers used a portable NIR instrument (908–1676 nm) to access the capability of
similar portable instruments to determine the levels of extractable phenolic compounds of red grapes
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(Vitis vinifera L.), through the collection of the spectra of whole grapes and skins at harvest in two
vintages (2016 and 2017) [23]. However, the authors highlighted that some issues can influence the
ability of the NIR instrument to measure grape composition in the “in vineyard” for EXPHENOL [23].
These authors emphasised the importance of considering environmental, plant physiological, and other
conditions that can hamper the robustness of the models used to predict EXPHENOL content [23].

Costa and co-authors reported the use of VIS-NIR reflectance spectroscopy as an effective tool for
the non-destructive assessment of grape quality. The authors collected the spectra of the berries of
both Shiraz and Cabernet Sauvignon grape varieties using a portable instrument (450 to 1800 nm) [24].
Robust calibrations for TSS and Antho content were reported using principal component regression
(PCR), PLS, and multiple linear regression (MLR) regression models (R2 >= 0.90); however, lower
prediction statistics were reported for flavonoids (R2>= 0.70) [24]. The authors also reported the use of
PLS-DA to classify grapes according to the degree of maturity (classification rate > 92%) [24].

Pan and collaborators evaluated the potential of VIS-NIR spectroscopy to measure TSS and
TPhenol in Manicure Finger and Ugni Blanc cultivars [25]. CIELAB, TSS, and TPhenol calibrations were
developed using PLS regression. The authors reported that the developed models exhibited accuracies
in the range of 77% to 94%, and concluded that the technique showed significant promise to the modern
fruit and vegetable industry, particularly considering that efficient sorting and labour saving such
non-destructive technologies would provide. In addition, classification models were developed to
monitor time of storage (classification rates >0.77) [25].

3. Hyperspectral Imaging

Hernandez–Hierro and co-workers used VIS-NIR HYPER imaging to monitor total skin phenolic
concentration, TSS, TA, and pH [26]. Calibration models for different grape varieties were developed,
with the authors highlighting that the procedure demonstrated a great potential as a screening tool
for the quality of intact whole grapes [26]. Liu and co-workers also evaluated hyperspectral images
were to determine Antho content of Cabernet Sauvignon grown in China’s Shaanxi province [27]. The
researchers collected NIR HYPER images (900–1700 nm) of grape samples and reported an R2 of
0.91 and RMSEP of 0.38 for the prediction of TSS content using the back-propagation neural network
(BPNN) model [27].

A recent study by Gutierrez and collaborators described the use of HYPER imaging to quantify
TSS and Antho content in wine grapes in the vineyard [28]. Spectra of Tempranillo (La Rioja, Spain)
samples were collected using HYPER images under daylight with a VIS-NIR HYPER camera (400–1000
nm) [28]. Regression models for TSS yield a R2 of 0.91 and RMSE of 1.36 ◦Brix with a R2 of 0.92 for the
prediction of external samples—RMSE of 1.27 ◦Brix [28]. For Antho concentration, a R2 of 0.72 and
RMSE of 0.28 mg g−1 berry and 0.83 for prediction and RMSE of 0.21 mg g−1 berry was reported by
these authors [28].

Zhang and co-authors collected NIR HYPER images during the ripening of grape samples to
predict phenolic content [29]. Several algorithms were used, such as PCR, PLS, and support vector
regression (SVR), to predict the TPhenol content in both grape berry and seed samples based on NIR
HYPER images [29]. The authors, reported R2 and RMSEP values of 0.89 and 0.11 g L−1 for (+)-catechin
equivalents (CE) for TAN in skins, 0.91 and 0.17 (g L−1 CE) for total iron-reactive phenolics (TIRP) in
skins, 0.87 and 0.14 (g L−1 M3G) for Antho in skins, 0.92 and 0.24 (g L−1 CE) for TAN in seeds, and 0.87
and 0.51 (g L−1 CE) for TIRP in seeds, respectively [29]. Figure 2 summarises the main wavelengths in
the visible and near infrared relevant to the prediction of chemical compounds in grapes, as reported
by different authors.
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other authors.

4. Innovative applications

Volatile compounds in white Albarino grapes (DO Rias Baixas, Spain), analysed by gas
chromatography-mass spectrometry (GC-MS) and with UV-VIS-NIR spectroscopy, was reported
by Ripoll and collaborators [30]. Calibration models between the two methods where developed using
PLS regression and were reported for the prediction of 2-hexenal, 1-hexanol, 2-hexanol, benzaldehyde,
phenyl-ethanal, cis pyran linalool oxide and 2-phenyl-ethanol [30], with the authors highlighting that
the PLS calibration models yielded a R2 greater than 0.85 volatile compounds measured in grape
samples [30].

The content of amino acids (AA) in intact Grenache grape samples was evaluated by Tardaguila
and co-authors using VIS and NIR spectroscopy during ripeness [31]. The best calibration models
(R2 approx. 0.60) were reported for asparagine (SEP: 0.45 mg N L−1), tyrosine (SEP: 0.33 mg N L−1)
and proline (SEP: 17.5 mg N L−1), for lysine (SEP: 0.44 mg N L−1), tyrosine (SEP: 0.26 mg N L−1), and
proline (SEP: 15.54 mg N L−1) using different NIR wavelength ranges using different calibration and
validation data sets, respectively [31]. In addition, the authors reported calibration models for TSS
(R2 approx. 0.90, SEP approx. 1.60 ◦Brix, and RPD approx. 3.79) [31]. Rustioni and collaborators
investigated the spectral properties of the epicuticular waxes of Vitis vinifera L. grape berries during
ripening [32]. This experiment demonstrated that berry waxes have specific reflectance properties
which are useful to monitor grape ripeness and maturity at harvest based on their wax content [32].

In recent years, bushfires became more frequent and intensive in viticulture regions around the
world, causing contamination in grapes and wines with smoke-derived compounds (smoke taint)
(e.g., USA, Australia) [33]. The lack of available practical in-field tools for the detection of smoke
contamination or taint in berries prompted Fuentes and collaborators to investigate the application of a
portable NIR system to monitor smoke-taint related volatile compounds in berries [33]. The researchers
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reported that pattern recognition allowed analysts to measure smoke taint compounds in berries with
a correlation coefficient of >0.90 [33].

Table 1 showed examples of validation statistics reported by several authors on the prediction
of chemical parameters in grape samples sourced from different varieties (e.g., clusters, bunches,
single berries).

Table 1. Examples of validation statistics reported by several authors on the prediction of chemical
parameters in grape samples sourced from different varieties (e.g., clusters, bunches, single berries).

Parameter/Variable N RMSEP & or SEP # Reference

TSS (ºBrix) 114 1.011 & [34]
Anthocyanins (mg/berry) 0.618 &

Total Phenolics (au/berry) 0.749 &

Aspartic acid 89 0.36–0.46 # [31]
Glutamic acid 92 0.29–0.46 #

Asparagine 90 0.36–0.66 #

Lysine 80 0.57–0.62 #

TSS (%) Clusters and different varieties 0.976–1.575
Total phenolics (g/kg) 0.164–0.185 [25]

TSS >900 1.39–1.66 [24]
Anthocyanins 16.60–18.31

Yellow flavonoids 17.08–18.61

Note: TSS: Total soluble solids; RMSEP: Root mean standard error of prediction; SEP: Standard error of prediction;
N: Number of samples. &: RMSEP: root mean square of the standard error of prediction; #: SEP: standard error
of prediction.

5. Summary and Future Challenges

Developments in handheld and portable instrumentation, fibre optics and hyperspectral imaging
prompted the rapid evolution of the application of these technologies for the analysis of grape
composition. Concomitantly, increasing computer power, easy to use software, algorithms, internet of
things and data bases boosted the incorporation of these techniques into the food/wine industry.

Still some issues appeared to be recurrent in most of the reported applications. The most
common/significant of these issues being the lack of information or knowledge of the standard error
(SE) of the laboratory/reference method used to develop and test the calibrations models. Another is the
preference of the cross validation approach to validate models rather than the use of an independent set
of samples (e.g., different harvests or vintages). The introduction of modern data analysis techniques
together with NIR spectroscopy can be used to monitor and quantify specific characteristics and
properties in grapes and other tissues. However, correct utilisation of the process requires continuous
validation and updating of the calibration models (e.g., environmental conditions, samples from
different and diverse origin, appropriate spectral pre-processing) to ensure the development of a robust
methodology, regrettably this critical step can be somewhat ignored or underestimated.

Savings in cost, time required to analyse the sample and the environmentally friendly nature of
NIR spectroscopy makes it a very attractive technique. Developments in instrumentation, hardware
and software will further position NIR as very useful tool to quantify several bioactive compounds and
metabolites in fruits. With the increased availability of hand-held and portable instrumentation, the use
of vibrational spectroscopy can and has been extended to in field and high-throughput methodologies
for fruit metabolite analysis. Since the early 1980s, this technique has shown to be an efficient and
robust alternative for the quantification and identification of metabolites and other compounds in
fruits; however, some barriers exist to its widespread use. The nonexistence of academic education
and formal training in NIR spectroscopy and the lack of integration of associated disciplines such as
data mining and multivariate data analysis has prevented the timely implementation of these methods
and technologies.
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