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Abstract: High-throughput technologies have been used to generate a large amount of omics data.
In the past, single-level analysis has been extensively conducted where the omics measurements at
different levels, including mRNA, microRNA, CNV and DNA methylation, are analyzed separately.
As the molecular complexity of disease etiology exists at all different levels, integrative analysis
offers an effective way to borrow strength across multi-level omics data and can be more powerful
than single level analysis. In this article, we focus on reviewing existing multi-omics integration
studies by paying special attention to variable selection methods. We first summarize published
reviews on integrating multi-level omics data. Next, after a brief overview on variable selection
methods, we review existing supervised, semi-supervised and unsupervised integrative analyses
within parallel and hierarchical integration studies, respectively. The strength and limitations of
the methods are discussed in detail. No existing integration method can dominate the rest. The
computation aspects are also investigated. The review concludes with possible limitations and future
directions for multi-level omics data integration.

Keywords: integrative analysis; multi-level omics data; parallel and hierarchical integration;
Penalization; Bayesian variable selection

1. Introduction

The advancement of high-throughput technologies has generated unprecedented amount and
types of omics data. Comprehensive molecular profiling has been conducted to profile biological
samples on different layers of genomic activities including mRNA, microRNA, CNV and DNA
methylation [1–3]. The emergence of the multi-omics data has brought new challenges to the
development of statistical methods for integration.

Traditionally, omics data analysis has been conducted as a single-level manner where joint analysis
of omics data from more than one level has not been considered. A representative example is gene
expression analysis when microarrays have dominated in the early 2000s. That is perhaps the first
time that the development of statistics methods for high dimensional data has been systematically
driven by the need of analyzing data from the real world. Consider a data matrix where the columns
correspond to variables (i.e., gene expressions) and rows correspond to samples. This data matrix is of
the “large data dimensionality, small sample size” nature as in the microarray studies, the number of
gene expressions is usually much larger than the sample size. With a clinical outcome such as cancer
status or patients’ survival, the central question cancer researchers ask is: “How to select a subset of
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important gene expressions that is associated with the clinical outcome?” Statistically, omics features,
such as gene expressions, are treated as variables in the model. It can be recast as a variable selection
problem, where a small set of informative variables needs to be identified out of a large number (or
dimension) of candidates. LASSO is one of the most popular variable selection methods for analyzing
high dimensional data [4]. It has been developed to select important features while continuously
shrinking the regression coefficients of the features to zero. More specifically, when the coefficient is
shrunk to 0, the corresponding feature is not included in the selected model. Thus, variable selection
has been conducted simultaneously with parameter estimation. The phenomena of 0′s in the estimated
coefficients is termed as sparsity in variable selection literatures.

The development of variable selection methods with applications to high-dimensional data
especially from biological studies has been one of the most popular research topics in statistics in the
past two decades. The unique advantages of variable selection lie in its interpretability (since merely a
small number of genes or other omics features will be included in the model) and well-established
statistical theories including the oracle properties under high dimensionality [5–7]. Moreover, other
popular statistical methods for analyzing large scale omics data, such as dimension reduction, can also
be viewed and recast as a variable selection method when the sparse counterpart is of interest. For
example, principal component analysis (PCA) is a well-known dimension reduction method. Sparse
PCA overcomes the drawback of PCA and can be formulated as a variable selection problem [8].
Recently, as the multi-level omics data has become available, a paradigm shift from single level
omics data analysis to multi-omics data integration has been observed in the development of variable
selection methods, which poses new challenges to computation as generally complicated optimization
techniques are involved. We believe that conducting a review on integration methods that have focused
on variable selection will provide a novel and fresh perspective to investigate integrative analysis.

The term integration (or integrative, integrated) analysis has been used extensively to mainly
describe studies that integrate multiple sources of data in the following two aspects: (1) integrating
the same type of omics data across different studies and (2) integrating different types of omics data
for the same cohort of samples. For example, meta-analysis combining summary statistics from
multiple GWAS studies, and joint analysis of multiple datasets with different cohorts of samples and
overlapping omics features based on homogeneous and heterogeneous assumptions (Zhao et al. [9])
are both of the first case. Here we focus on the second scenario. Note that Richardson et al. [10]
also refer (1) and (2) as horizontal data integration and vertical data integration. Here we follow the
terms for convenience of description and show them in Figure 1. More discussions on Figure 1 will be
provided in following sections.

There are multiple reviews on vertical integrative methods for multi-level data, including both
comprehensive reviews [10–17] and those focusing particularly on a specific type of integration method,
such as clustering analysis [18–21]. While the comprehensive reviews are invaluable for gaining an
overall picture of multi-level omics data integration analysis, a common limitation is the lack of an
accurate and unifying framework to summarize integration methods, which seems inevitable given
the diversity of large amount of methodological work in this area. On the other hand, reviews with
emphasis on a particular type of integration method provide an important addition to the summary of
existing multi-level omics integrative analysis [18–25].

This review significantly differs and advances from existing ones. We use the integration strategy
as the main criterion to categorize representative multi-dimensional data integration studies, with
an emphasis on the variable selection methods developed in these studies. We believe such an
arrangement will shed new insight in understanding this area from the angle of variable selection
which is one of the most popular tools for integrative analysis. As discussed in this introduction,
variable selection has played a key role in analyzing single-level omics data which is usually of high
dimensionality. Multi-omics data is the aggregation of single-level omics data. Therefore, integrative
analysis on multi-omics data generally demands variable selection techniques. It is worth noting
that there are published literatures on summarizing based on the statistical methods in integrative
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analysis. For example, [18,20,21] are focused on reviewing clustering methods, and Ickstadt et al. [22]
weighs more on Bayesian methods. This article distinguishes itself from yet complements published
multi-omics integration reviews by prioritizing the role of variable selection according to the structure
of integration studies. For convenience, we summarize existing reviews on integrating multi-level
omics data in Table 1. We also acknowledge that our review is methodologically oriented. Please refer
to Hasin et al. [12], Rendleman et al. [24] and studies alike for reviews focusing on biological and other
aspects of multi-omics data integration.High-Throughput 2019, 8 FOR PEER REVIEW  3 
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Table 1. Reviews on Integrating Multi-level Omics Data (a partial list).

Reference Type Description

Richardson et al. [10] Comprehensive

Review statistical methods for both vertical integration and horizontal
integration. Introduce different types of genomic data (DNA,

Epigenetic marks, RNA and protein), genomics data resources and
annotation databases.

Bersanelli et al. [11] Comprehensive

Review mathematical and methodological aspects of data integration
methods, with the following four categories (1) network-free
non-Bayesian, (2) network-free Bayesian, (3) network-based

non-Bayesian and (4) network-based Bayesian.

Hasin et al. [12] Comprehensive

Different from the studies with emphasis on statistical integration
methods, this review focuses on biological perspectives, i.e., the

genome first approach, the phenotype first approach and the
environment first approach.

Huang et al. [13] Comprehensive
This review summarizes published integration studies, especially the

matrix factorization methods, Bayesian methods, network based
methods and multiple kernel learning methods.

Li et al. [14] Comprehensive

Review the integration of multi-view biological data from the machine
learning perspective. Reviewed methods include Bayesian models and

networks, ensemble learning, multi-modal deep learning and
multi-modal matrix/tensor factorization.

Pucher et al. [15] Comprehensive (with case
study)

Review three methods, sCCA, NMF and MALA and assess the
performance on pairwise integration of omics data. Examine the

consistence among results identified by different methods.

Yu et al. [16] Comprehensive

This study first summarizes data resources (genomics, transcriptome,
epigenomics, metagenomics and interactome) and data structure

(vector, matrix, tensor and high-order cube). Methods are reviewed
mainly following the bottom-up integration and top-down integration.

Zeng et al. [17] Comprehensive

The statistical learning methods are overviewed from the following
aspects: exploratory analysis, clustering methods, network learning,

regression based learning and biological knowledge enrichment
learning.

Rappoport et al. [18] Clustering (with case study)
Review studies conducting joint clustering of multi-level omics data.

Comprehensively assess the performance of nine clustering methods on
ten types of cancer from TCGA.

Tini et al. [19] Unsupervised integration
(with case study)

Evaluation of five unsupervised integration methods on BXD, Platelet,
BRCA data sets, as well as simulated data. Investigate the influences of
parameter tuning, complexity of integration (noise level) and feature

selection on the performance of integrative analysis.

Chalise et al. [20] Clustering (with case study) Investigate the performance of seven clustering methods on single-level
data and three clustering methods on multi-level data.

Wang et al. [21] Clustering

Discuss the clustering methods in three major groups: direct integrative
clustering, clustering of clusters and regulatory integrative clustering.

This study is among the first to review integrative clustering with prior
biological information such as regulatory structure, pathway and

network information.

Ickstadt et al. [22] Bayesian
Review integrative Bayesian methods for gene prioritization, subgroup
identification via Bayesian clustering analysis, omics feature selection

and network learning.

Meng et al. [23] Dimension Reduction (with
case study)

Review dimension reduction methods for integration and examine
visualization and interpretation of simultaneous exploratory analyses

of multiple data sets based on dimension reduction.

Rendleman et al. [24] Proteogenomics
This study is not another review on the statistical integrative methods.

Instead, it discusses integration with an emphasis on the mass
spectrometry-based proteomics data.

Yan et al. [25] Graph- and kernel-based (with
case study)

Graph- and kernel- based integrative methods have been systematically
reviewed and compared using GAW 19 data and TCGA Ovarian and
Breast cancer data in this study. Kernel-based methods are generally
more computationally expensive. They lead to more complicated but
better models than those obtained from the graph-based integrative

methods.

Wu et al. [present review] Variable Selection based
This review investigates existing multi-omics integrating studies from
the variable selection point of view. This new perspective sheds fresh

insight on integrative analysis.

The rest of this article is organized as follows. We describe the variable selection methods,
including penalization and Bayesian variable selection that have been extensively adopted for
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integrative analysis. Then, we discuss the integrative analyses that have been performed in
the supervised, semi-supervised and unsupervised manner, within both parallel and hierarchical
integration studies. The strength and limitations of the reviewed methods have been discussed. We
have also investigated the computational algorithms of variable selection methods in multi-omics
integration. Finally, we conclude with discussions and possible extensions.

2. Statistical Methods in Integrative Analysis

Most of the statistics methods for the vertical integration of multi-dimensional omics data are
model based and can be characterized as regression analysis (supervised) or exploratory analysis
(unsupervised), depending on whether the aim of study is prediction under phenotype traits (such
as disease phenotype, cancer status and cancer survival) or not (Richardson et al. [10]). In both types
of analysis, separating noisy signals from important ones plays a crucial role. In regression analysis,
identifying the subset of relevant omics features from a large number of candidates leads to improved
prediction and better interpretation of the selected model. On the other hand, in the exploratory
analysis, even without an explicit clinical outcome, such as disease phenotype or patients’ survival,
sparse identification of loading vectors is still appealing. For example, canonical correlation analysis
(CCA) is an ideal dimension reduction method to integrate a pair of omics datasets (Meng et al. [23]). A
sparse version is essential for CCA applicable for high dimension low sample size scenario (Witten et
al. [26]). In principal component analysis based study, such as JIVE (Lock et al. [27]), sparse estimation
on variable loadings has been pursued to achieve better interpretation and understanding of the
multi-level omics integration results.

Therefore, we take an alternative route to summarize the model based methods from the
perspective of variable selection, which has not been conducted in published reviews on integrative
analysis. It will shed new insight on how the multi-omics data motivate methodological development
in integration studies. We acknowledge that there exists a diversity of integrative methods, including
non-model based methods (Richardson et al. [10]) as well as graph/network based methods (Yan et
al. [25]). In this paper, we focus on reviewing integrated studies performed by using variable selection
methods. A brief overview of the methods is provided below.

2.1. Penalized Variable Selection

Penalization or regularization, is perhaps the most popular framework to select important omics
features in multi-dimensional integration studies. Consider disease outcome Y, where Y can be a
continuous disease phenotype, categorical cancer status or survival of patients. X is the design matrix
denoting the p-dimensional genomics features such as SNPs, DNA methylation and gene expressions,
among other omics measurements for n subjects. A central task in analyzing the “large p, small n”
or high dimensional genomics data is to identify important features that are associated with disease
phenotype, from a large set of candidate features. The modelling can be formulated as follows:

β̂ = argminβ{L(β; Y, X) + pen(β; λ)} (1)

where L(•) is the loss function measuring the lack of fit of the model and pen(•) is the penalty
function controlling the sparsity of the model through the data-dependent tuning parameter λ. The
penalty function imposes shrinkage on the coefficient vector β corresponding to the high dimensional
genomics features. β j is the coefficient corresponding to the jth omics feature. Variable selection can be
achieved (β j = 0) simultaneously with penalized estimation. LASSO is of the form of “least square
loss+ L1 norm”, that is,

∣∣|Y− Xβ||22 + λ|β| , where λ|β| = λ ∑
p
j=1

∣∣β j
∣∣. It is among the family of baseline

penalization methods such as adaptive LASSO [6], SCAD [5] and MCP [28]. Popular choices of the
penalty functions in multi-omics integration studies, as shown by our review, include LASSO [4],
elastic net [29] ( λ1

∣∣|β||22 + λ2|β| ) and fused LASSO [30] ( λ1 ∑
p
j=1

∣∣β j
∣∣+ λ2 ∑

p
j=2

∣∣∣β j − β j−1

∣∣∣), among
many other penalty functions. For more detailed and comprehensive review on variable selection and
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its applications in bioinformatics studies, please refer to Ma and Huang [31], Fan and Lv [7] and Wu
and Ma [32].

2.2. Bayesian Variable Selection

Bayesian variable selection is a classical statistical method for analyzing high dimensional data.
It can be classified into the four categories (1) adaptive shrinkage, (2) indicator model selection, (3)
stochastic search variable selection and (4) model space approach [33]. With the cancer genomics data,
Bayesian methods have found new applications [22], especially for the adaptive shrinkage [34–36] and
indicator model selection method (including stochastic search variable selection), such as [37–39].

Tibshirani [4] has examined LASSO from a Bayesian perspective. The LASSO estimate can be
viewed as the posterior estimate when independent and identical Laplace prior has been imposed on
regression coefficient β j (j = 1, . . . , p):

p
(

β j
∣∣τ) = 1

2τ
e−|β j |/τ (2)

with τ = 1/λ. Bayesian LASSO ([34]) has been proposed by specifying a conditional Laplace prior on
β j

p
(

β j

∣∣∣σ2
)
=

λ

2
√

σ2
e−λ|β j |/

√
σ2

(3)

Conditioning on σ2 guarantees unimodality of the posterior distribution [34]. As LASSO belongs
to the family of shrinkage estimate induced by Lq norm under q = 1, the other shrinkage estimates
from this family can also be interpreted as Bayesian estimates with different priors, which significantly
enriches the adaptive shrinkage methods for Bayesian variable selection. The rational of specifying
the prior has also been carried over to other LASSO type of penalization methods, including fused
LASSO, group LASSO and elastic net (Kyung et al. [40]). One disadvantage of Bayesian LASSO is that
the penalized estimate cannot achieve 0 exactly, which has been overcome in multiple studies through,
for instance, introducing spike-and-slab priors ([41–43]) which have the following form:

β j|γj
ind
∼ γj = φ0

(
β j
)
+

(
1− γj

)
= φ1

(
β j
)
, j = 1, . . . , p (4)

where γj ∈ {0, 1}, = φ0
(

β j
)

denotes a spike distribution for zero coefficients corresponding to
unimportant effects and = φ1

(
β j
)

denotes a slab distribution for large effects. Note that there are other
priors of a similar two-component form, such as the two-component g prior [44]. They can also be
used for variable selection purposes.

Indicator model selection, on the other hand, conducts variable selection based on a mixture prior
density with a latent indicator vector θ ∈ {0, 1}p. Whether or not the jth predictor is included in the
model is corresponding to θj = 1 and θj = 0, respectively. For example, with the spike-and-slab prior,
β j can be set as 0 in the spike component, which is corresponding to θj = 0. The indicator prior can be
modified to incorporate informative biological information, such as gene set, pathways and networks,
in the selection procedure [45–47].

Remarks on Other Variable Selection Methods: Here we focus on penalization and Bayesian
variable selection since the two have been the primary variable selection methods adopted for
multi-level omics studies reviewed in this paper. In addition, there exists a diversity of variable
selection methods that are also applicable in the integrative analysis. For example, popular machine
learning techniques include random forest and boosting. In random forest, the variable importance
measure can be adopted to conduct variable selection [48]. Boosting is a strong learner based on
an ensemble of multiple weak learners, such as individual gene expression, CNV and other omics
features. Within the linear regression setting, boosting selects variables having the largest correlation
with residuals corresponding to the current active set of selected predictors (the weak learners) and
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move its coefficient accordingly. The prediction power has improved significantly in boosting through
aggregating multiple weak learners [49].

Remarks on Connections among Integrative Analysis, Variable Selection and Unsupervised
Analysis: Variable selection has been widely adopted for analyzing the single level omics data where
the dimensionality of omics features is generally much larger than the sample size. Identification of a
subset of important features usually leads to (1) better interpretability and (2) improved prediction
using the selected model. The two are also critical for the success of integrative analysis of multi-omics
data. This fact at least partially explains why variable selection is among one of the most powerful
and popular tools for data integration. Even for integration studies that do not use feature selection
explicitly, as we discuss in following sections, a screening procedure is generally adopted to reduce
number of features before integration.

The formulation of variable selection problems also shed insight on the interaction between itself
and integrative analysis. Penalization has the form of “unpenalized loss function + penalty function”,
where the unpenalized loss function is characterized by the nature of integration and the penalty
function determines how the selection is conducted. With the loss function, the choice of penalty
functions is not always arbitrary. For example, the least absolute deviation loss has L1 form, so penalty
functions based on L1 norm, such as LASSO and fused LASSO, are computationally convenient.
Penalty functions involving quadratic terms, such as network-constrained penalty [50], work well
with quadratic loss function [51] but they need to be approximated by a surrogate in the form of L1
norm to reduce computational cost [52]. Therefore, for integrative analysis, the nature of integration
does have an impact on the way that the variable selection is conducted.

Unsupervised techniques, such as PCA, CCA, PLS and clustering analysis, can be viewed as
optimization problems with different objective functions. For example, principal component analysis
can be reformulated as a ridge regression with the normalized regression coefficients denoting PC
loadings. The objective function is in a least square form measuring the approximation loss involving
the PCs [8]. Besides, CCA and PLS investigate the relation between two groups of variables by
maximizing the correlation and covariance between the two sets of variables, respectively, where the
loadings are optimization variables of interest [53,54]. In addition, K-means clustering is a popular
method for conducting clustering analysis and can be viewed as minimization over within-cluster
sum of squares (WCSS). Overall, the characteristics of these unsupervised methods are reflected in the
corresponding loss (or objective) functions.

For even dealing with single level high dimensional omics data, the sparse properties of the
unsupervised methods are attractive. Sparse unsupervised techniques have already been developed
for single-level omics data analysis and their connections to penalization are well-established. For
example, Zou et al. [8] has shown the equivalence between sparse PCA and regularization, which
uses elastic net to yield modified principal component with sparse loading vectors. Witten and
Tibshirani [55] has developed the sparse K-means and sparse hierarchical clustering using LASSO
to conduct feature selection in clustering. Besides, Witten and Tibshirani [26] and Lê Cao et al. [56],
among many other studies, have investigated sparse CCA and sparse PLS as a penalization problem,
respectively. The importance of variable selection naturally carries over from single platform based
analysis to multi-omics integration studies. Extensive sparse unsupervised techniques have been
developed and applied for analyzing multi-level omics data.

Overall, the optimization criterion, which is formulated as “unpenalized loss function + penalty
function” provides a new perspective of investigating integrative analysis, especially the interactions
between integrating multi-omics data and omics feature selection. Based on this formulation, Figure 2
shows a taxonomy of variable selection in terms of the supervised, unsupervised and semi-supervised
manner in multi-omics data integration studies. We acknowledge that such a summary can hardly be
exhaustive even for integration studies themselves. So “ . . . ” denotes that there are other studies not
on the list.
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3. Multi-Omics Data Integration

The high dimensionality of multi-level omics data is two folded. First, each type of omics
measurement (such as mRNA expression, copy number variation, DNA methylation and miRNA) is
high-dimensional itself. When conducting integrative analysis, the data aggregated from different
levels are of even higher dimension. Among the high dimensional omics features, only a small subset
of them have important implications [57]. Consequently, variable selection plays a critical role in the
search of such a subset of features for integrating the multi-omics data.

A seemingly straightforward integration strategy, which turns out to be surprisingly effective
sometimes, is to treat omics measurements from different platform equally and perform integration in
a parallel fashion. As the omics measurements profiled on different platforms are interconnected (for
example, the cis-regulation effect), a popular trend nowadays is to incorporate the regulatory effect
by conducting hierarchical integration. Most of the integrated analysis (via variable selection) can be
grouped according to the two strategies.

3.1. Parallel Integration

If an outcome variable is available, traditional single-level analysis investigates the association
between individual molecular levels and a phenotype of interest separately. Parallel integration treats
each type of omics measurements equally. Supervised integration with parallel assumptions can be
viewed as a direct extension from single-omics data analysis to integrative analysis, where important
associations between multi-level omics measurements and the same outcome, such as cancer survival,
have been identified simultaneously in a joint model. The scheme of parallel integration is shown in
Figure 1. Below we first review parallel integrated analysis in cancer prognostic studies.

3.1.1. Supervised Parallel Integration

A comprehensive study is the integration of TCGA data in Zhao et al. [58], where four types of
genomic measurements, mRNA expression, copy number variations, DNA methylation and microRNA,
plus the clinical data, have been integrated in a parallel manner for four types of cancers (AML, BRCA,
GBM and LUSC) collected by TCGA. LASSO, PCA and PLS (Partial Least Square) have been adopted
to assess the prediction performance of parallel integration under survival outcomes. Denote Y as the
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cancer prognosis. Let T be the event time and CT be the corresponding censoring times, then we observe
Y = (min(T,CT), I(T ≤ CT)). With the cancer outcome, the model is Y ∼ C+ X1 + X2 + X3 + X4, where
Xm denotes the mth level n× pm omics measurements (m = 1, 2, 3, 4) and C is the n× q dimensional
clinical and environmental covariates. Simple models combining less omics-levels have also been
considered. Although no substantial improvement in prediction has been observed through integration,
the higher C-statistics (thus better predictive power) of mRNA expression compared to other omics
measurements does indicate its importance. Such a pattern is sensible since mRNA expression has
the most direct influence on cancer outcomes and other omics measurements’ effects on the clinical
outcomes are mediated by gene expressions.

Jiang et al. [59] has conducted effective integration of multi-dimensional measurements on TCGA
melanoma data. Elastic net, sparse PCA and sparse PLS approaches have been used to first extract
important features from each type of omics dataset. Then the additive model can describe contributions
from both clinical variables and all types of omics data under survival response. The most relevant
variables (signals) are selected from all possible platforms. Results show that the improved prediction
(corresponding to higher C-statistics) is due to the integrated multidimensional omics profiles in
melanoma. In particular, methylations are included in the models with the highest predictive power
under all the three approaches (Elastic net, SPCA and SPLS).

coxPath Mankoo et al. [60] has developed coxPath, a multivariate regularized Cox regression
model, to combine mRNA, microRNA, CNV and DNA methylation data from TCGA ovarian cancer.
As another successful application of variable selection methods in integration studies, coxPath
is based on a predictor-corrector path-following algorithm for Cox proportional hazards model
with LASSO penalty (Park and Hastie [61]). Important molecular features are identified from
both single level data and integrated data, under progression free survival and overall survival,
respectively. Before conducting feature selection, coxPath reduces the dimensionality of the omics
data by using the pairwise association between mRNA expression and the other three types of omics
measurements. Although this screening strategy can be viewed as an attempt to utilize the regulatory
information among multi-level data, regularized selection of omics features has been carried out in a
parallel fashion.

Remarks: The parallel assumption significantly simplifies the modelling of multi-level omics
data, so integration in cancer prognostic studies can be carried out using existing popular variable
selection methods such as LASSO and elastic net. As penalization methods can efficiently handle
moderately high dimensional data, all the three studies perform prescreening on the original dataset
to bring down the number of omics features subject to penalized selection. A supervised screening
using marginal Cox regression has been adopted in [58,59] and a correlation based approach has been
adopted in [60]. In the recent decades, the development of variable selection methods for ultra-high
dimensional data has attracted much attention [62] and tailored methods for ultrahigh dimensional
data under prognostic studies are available [63,64]. It is of much interest and significance to extend
such a framework to the multi-dimensional omics data.

3.1.2. Unsupervised/Semi-Supervised Parallel Integration

While the parallel integration strategy has been adopted in the above prognostic studies with
patients’ survival as the clinical endpoint, it also plays an important role when the clinical outcome is
not available or not of main interest, such as in unsupervised clustering studies. The penalized loss
(or likelihood) function can be constructed based on the approximation loss between the projected
multi-omics data matrix and the original data matrix.

When integrating omics data from two platforms, for instance, gene expression and CNVs,
a natural goal is conducting canonical correlation analysis (CCA) to seek linear combinations
of highly correlated GEs and CNVs for a better understanding of disease etiology, where the
maximum correlation between two projected omics measurements is of particular interest. Such
a correlation-based integration is tightly connected to covariance-based integration (Lê Cao et al. [56])
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and co-inertia based integration (Meng et al. [65]). Another line of unsupervised integration studies
is based on low rank approximation to the original omics data matrix, such as JIVE. Note that the
connection between these two types of data projection methods has been pointed out in Witten et
al. [66], among many other studies. Although a distinct boundary between the two does not exist, for
convenience, we still group the unsupervised integration studies into the two categories.

Correlation, Covariance and Co-Inertia Based Integration

PMD Penalized Matrix Decomposition, a framework to compute a low rank approximation for
a matrix, has been proposed in Witten et al. [66] to integrate two types of omics data measured on
the same set of subjects. PMD leads to penalized CCA when the matrix is a cross-product matrix
between the two data types (gene expression and copy number variation). While the L1 penalty is
imposed on the canonical variate for genes, to better describe the contiguous regions of CNVs, a fused
LASSO penalty is adopted for the canonical variate corresponding to CNVs. A meaningful set of
genes that have expressions correlated with a set of CNVs has been identified. Witten et al. [66] has
pointed out that PMD can also lead to sparse PCA under proper choices of the penalty on matrix
structure. The connections among multiple work on sPCA through the bicondvexity formulation have
also been demonstrated.

Extensions of PMD The sparse CCA that is developed in the PMD framework has been generalized
in the following two aspects (Witten and Tibshirani [26]). First, with a clinical outcome (such as patients’
survival), a sparse supervised CCA (sparse sCCA) is formulated to seek linear combinations of omics
data (from two platforms) that are highly correlated while being associated with the outcome. Second,
omics data from more than two platforms can be integrated via the sparse multiple CCA (sparse
mCCA). Connections between the two aspects can be established by treating outcome as the data from
the third platform in sparse mCCA. Gross and Tibshirani [67] has investigated another formulation
of sparse sCCA, which is termed as collaborative regression or Collre, by considering the objective
function based on the prediction performance of response with respect to the data from two platforms,
as well as how different the two predictions are. Convex penalty functions such as LASSO and
fused LASSO are added to define the penalized collaborative regression. The ultimate goal is to
discover signals that are common to the multi-dimensional data and relevant to the response. Other
extensions of PMD include the canonical variate regression (CVR) [68], where the CCA criterion for
the identification of canonical variates and regression criterion in terms of predictive modelling are
unified with the CVR framework.

sPLS Lê Cao et al. [56] has provided a sparse partially least square (sPLS) approach to conduct
simultaneous integration and variable selection on pair-wise omics datasets. Based on connection
between the singular value decomposition (SVD) and PLS loadings, Lê Cao et al. [56] has developed
the sPLS algorithm using SVD computation and an iterative PLS algorithm. L1 penalty has been
imposed to achieve sparse estimates on loading vectors corresponding to the two omics datasets. A
comprehensive comparison among sPLS, sparse CCA with elastic net penalty (CCA-EN) and Co-Inertia
Analysis (CIA) on a cross-platform study has demonstrated comparable performance of the first two
approaches, as well as their superiority over the CIA in terms of selecting relevant information [69].

PCIA Co-inertia analysis (CIA) is a multivariate statistical technique originated from ecological
studies [70]. It can be considered as a generalization of CCA and PLS. Co-inertia is a global measure
that quantifies the level of co-variability between two heterogeneous datasets. CIA explores the
maximum co-variability between the two datasets and thus can be extended to pairwise omics data
integration. Meng et al. [65] has generalized CIA to integrate multiple omics data. Penalized co-inertia
analysis [71] has been developed to achieve sparsity and better interpretation of the results in CIA.
LASSO and network-constrained penalty have been imposed separately. In particular, the network
penalty helps incorporate prior biological information in penalized identification of sparse loadings.
PCIA unravels sensible variables for cancer etiology when integrating the gene expression and protein
abundance data from the NCI-60 cell line data.
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Remarks: Reviewing integration studies from the variable selection point of view allows us to
summarize correlation, covariance and co-inertia based methods in the same category. As we have
discussed, the nature of integration characterizes the un-regularized loss function in the optimization
criterion. These studies investigate the relationship among multi-level omics data and the resulting
loss functions share similar formulation.

This subsection provides additional support to our remarks on the connections among feature
selection, data integration and unsupervised analysis. The co-inertial analysis (CIA) examines the
concordance between two sets of data in an unsupervised manner and can be adopted for omics data
integration readily. So feature selection is not a necessary step for data integration and unsupervised
analysis. However, as shown in Lê Cao et al. [69], choosing the subset of important features (or
loadings) does improve integration performance, which connects the sparse version of unsupervised
methods to variable selection and omics data integration.

Low Rank Approximation Based Integration

iCluster Shen et al. [72] has developed a penalized latent regression model, iCluster, for the joint
modelling of multiple types of omics data in order to determine a single cluster assignment, instead
of clustering each data type separately first and then conducting a post hoc manual integration. The
K-means clustering has been reformulated as a Gaussian latent variable model and the connection
of corresponding MLE to the PCA solution has been demonstrated. iCluster adopts the Gaussian
latent variable framework and incorporates multi-platform data for integrative clustering and tumor
subtype discovery. The model decomposes as X = WF + E, where X is the p× n omics measurement
matrix for all the M levels. W, F and E are p× k projection matrix, k× n cluster indicator matrix
and p× n error matrix, respectively. Furthermore, Shen et al. [73] has systematically investigated the
penalized EM algorithm for iCluster with LASSO, Elastic net and fused LASSO penalty functions
to accommodate different natures of the omics data and identify important genomic features that
contribute to clustering.

iCluster+ A number of improvements has been made to iCluster to further accommodate the
disparate nature of omics measurements. iCluster+ (Mo et al. [74]) incorporates a diversity of data
types, including binary mutation status, multicategory copy number states (gain/normal/loss), count
sequencing data and continuous data, and adopts tailored modelling strategies such as logistic
regression, multi-logit regression, Poisson regression and standard linear regression, correspondingly.
L1 penalty has then been considered for penalized estimation to pursue sparse identification
of loadings.

iClusterBayes Recently, Mo et al. [75] has developed iClusterBayes, a fully Bayesian latent variable
model for iCluster+. iClusterBayes incorporates the binary indicator prior in the iCluster framework
for Bayesian variable selection and further generalizes to models with binary data and count data via
Metropolis-Hasting algorithm. One limitation for both iCluster and iCluster+ is computation cost.
Meng et al. [76] has proposed moCluster to speed up computation by first conducting a multiblock
multivariate analysis which is then followed by an ordinary clustering analysis.

Joint Factor Analysis iCluster framework assumes a consistent clustering structure across
multi-level omics data, which may not hold for some cases. Ray et al. [77] has proposed a Bayesian joint
factor model to decompose the multi-level omics data matrix into a common component across all data
types, a data-specific component and the residual noise. Both the common (Wc) and data-specific (Ws)

factors have been assigned a shared set of factor loadings F as X = (Wc + Ws)F + E, where the sparsity
in factor loadings F has been induced by the student-t sparseness promoting prior (Tipping [78]) and
the sparsity in the feature space has been imposed by a beta-binomial process ([79–81]) on the factor
scores Wc and Ws. Two sets of joint analysis (GE and CNV, GE and DNA Methylation) on TCGA
ovarian cancer have identified potential key drivers for ovarian cancer.

JIVE The Joint and Individual Variation Explained (JIVE) model (Lock et al. [27]) partitions the
variations of the multi-omics data into the sum of three components: (1) a low rank approximation
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accounting for common variations among omics data from all platforms, (2) low rank approximations
for platform-specific structural variations and (3) residual noise. Compared to the Bayesian joint factor
analysis (Ray et al. [77]), JIVE considers an alternative decomposition model as X = WcFc + WsFs + E,
where two different loading factors, Fc and Fs, have been modelled for common factor (Wc) and
platform-specific factor (Ws), respectively. JIVE uses L1 penalty to encourage sparsity in both joint
and individual patterns. Coined within the PCA framework, the common and platform-specific
variations are not related in JIVE, which results in superior distinction between cancer subtypes
(and other biological categories) over correlation and covariance based integrative methods when
analyzing TCGA GBM gene expression and miRNA data. JIVE has been extended to JIC, joint and
individual clustering analysis [82], to simultaneously conduct joint and omics-specific clustering on
gene expression and miRNA levels on TCGA breast cancer.

Remarks: JIVE models global and omic-type-specific components simultaneously. Lock and
Dunson [83] extends the modelling strategy within a Bayesian framework to discover global clustering
pattern across all levels of omics data and omics-specific clusters for each level of data. This approach,
termed as Bayesian consensus clustering (BCC), determines the overall clustering through a random
consensus clustering of the omics-type-specific clusters. The complexity of MCMC algorithm of BCC
is in O(NMK) where N, M and K are sample size, number of data sources (platforms) and number
of clusters, respectively. Therefore, BCC is computationally scalable especially for a large number of
sample size and clusters. Extensions of BCC to the sparse version can be made by following Tadesse et
al. [84].

Sparse methods, including variable selection and the sparse version of dimension reduction, are
crucial for the clustering of high dimensional data [85]. However, not all the integrative clustering
methods can perform clustering and variable selection at the same time, including BCC and MDI [86].
A major concern is the difficulty in implementation [87]. Instead, a subset of omics features from
different platforms has been prescreened for subsequent integrative clustering analysis, such as in
Kormaksson et al. [88] where the mixture model based clustering has been adopted.

3.2. Hierarchical Integration

On the contrary to parallel integration, hierarchical integration incorporates the prior knowledge
of regulatory relationship among different platforms of omics data in the integration procedure and
thus the integration methods are developed to more closely reflect the nature of multidimensional
data. The integration scheme is shown in Figure 1.

3.2.1. Supervised Hierarchical Integration

iBAG A Bayesian framework for the integrative Bayesian analysis of genomics data (iBAG)
has been proposed in Wang et al. [89]. At the level of mechanistic model, gene expression has
been decomposed into two components, one component directly regulated by its regulator DNA
methylation and the other component influenced by other mechanisms. The associations between
patients’ survival and the two components of gene expressions have been modelled in the clinical
model. The conditional Laplace prior in Bayesian LASSO (Park and Casella [34]) has been adopted for
Bayesian regularization and variable selection, and Gibbs sampling has been conducted to identify
multiple relevant methylation-regulated genes associated with patients’ survival.

LRMs Zhu et al. [90] has developed linear regulatory modules (LRMs) to describe the regulation
among different platforms of omics data. Through penalized singular value decomposition, the
incorporation of regulatory relationship between sets of GEs by sets of regulators significantly differs
from existing approaches. Moreover, the regulated GEs, residual GEs and residual regulators are all
included in the clinical outcome model and important markers have been identified by penalization.
Using DNA methylation and CNVs as the sets of regulators, LRMs leads to improved prediction
performance in terms of C-statistics, compared to other methods including the ones ignoring the
regulatory information.
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ARMI Assisted Robust Marker Identification [91] is a robust variable selection method to integrate
gene expression and its regulators while considering their regulatory relationship. The robust least
absolute deviation (LAD) loss is adopted to accommodate heavy-tailed distribution of the clinical
outcome. In particular, ARMI is formulated based on two separate regularized regressions, one on
GEs and the other one on its regulators, for the response variable, as well as regularizing the difference
between the two (GE and regulators) coefficient vectors to promote similarity. While ARMI is related
to collaborative regression reviewed in parallel integration, it significantly differs due to the spirit of
hierarchical integration and robust penalized identification.

Besides the above hierarchical integration studies, the strategy has also demonstrated effectiveness
in investigating the association among (epi)genetic associations.

remMap To examine the alternations of RNA transcript levels due to CNVs, Peng et al. [92] model
the dependence of GEs on CNVs (both are of high-dimensionality) via sparse multivariate linear
regressions. Motivated by the existence of master predictors (CNVs) that regulates multiple GEs and
correlations among the predictors, remMap utilizes a combination of L1 and L2 norms as the penalty
functions to select the master predictors while promoting the network structure. An indicator matrix
of prior knowledge has been incorporated in penalized selection to avoid shrinkage on established
regulatory relationship between the predictor (CNV) and multiple responses (GEs). In the analysis of
breast cancer data, a trans-hub region has been identified.

Robust Network A newly developed robust network-based methods for integrating (epi)genetic
data (Wu et al. [93]) has been motivated from the following observations in data analysis. First, many
GEs have shown heavy-tailed distributions and non-robust (such as least square based) methods may
yield biased estimation. Second, the effect of cis-acting regulation of CNV on GEs can be non-linear.
Wu et al. [93] accommodates the heavy-tailed distribution through LAD loss function and the nonlinear
cis-acting regulation through a partially linear modelling approach. In addition, a network-constrained
penalty term has been included for the correlation among CNVs. The computation has been efficiently
achieved by coupling iterative MM step with coordinate descent framework. A case study on the
TCGA melanoma data has revealed the superior performance in both prediction and identification.

3.2.2. Unsupervised Hierarchical Integration

While the hierarchical modelling strategy has demonstrated effectiveness in the supervised
integrative analysis where an outcome (such as patients’ survival and epigenetic measurements) is of
interest, it also gains popularity in unsupervised integration, especially the clustering analysis.

Assisted Clustering Hidalgo and Ma et al. [94] has proposed a two-stage framework to conduct
integrative clustering analysis on gene expressions. First, important GE-CNV relationship has been
identified through elastic net where the correlations among regulators (such as CNVs) can be properly
accounted for. Then, the assisted NCut measure incorporating weight matrices corresponding to
both original and regulated GEs is adopted to cluster GEs. Such a two stage framework has been
extended in Hidalgo and Ma [95] for the simultaneous clustering of multilayer omics measurements.
Specifically, a three-layer Protein-GE-CNV structure has been of main interest. At the first stage, elastic
net has been adopted to identify sparse regulatory relationship between GEs and CNVs and between
Proteins and GEs. Next, a multilayer NCut (MuNCut) criterion has been proposed to incorporate
both within platform and across platform information for the clustering of all the three types of omics
measurements simultaneously. Case studies in both work have demonstrated the advantage of assisted
clustering strategy.

GST-iCluster Group structured tight iCluster has been developed in Kim et al. [96] to improve the
variable selection performance of iCluster [72]. Feature modules defined according to gene symbol
annotation consist of multi-level omics features, which have been incorporated into the penalized
identification of cluster assignment in iCluster framework. The overlapping group LASSO penalty has
been adopted to account for the overlapping features in different modules. In addition, for a given
sample, if all the latent variables are 0, the sample is discarded from clustering to encourage tight
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clusters. While the overlapping group LASSO helps incorporate regulatory flows among different
levels of omics data in clustering, the tight clustering improves interpretation and reproducibility of
clustering analysis.

IS-K means Huo and Tseng [97] has developed an integrative sparse K-means approach with
overlapping group LASSO to perform omics feature selection and cancer subtype identification. The
formulation of feature group is flexible, which can be the ones from multi-level omics data (such as
mRNA, CNV and Methylation) with the same cis-regulatory information or from the pathway-guided
clustering scenario. Within the sparse K-means framework, the overlapping group LASSO has been
reformulated as a constrained optimization problem, which can be efficiently solved via ADMM (Boyd
et al. [98]). Applications on multi-omics data from breast cancer and leukemia demonstrate improved
performance in terms of identification and functional annotation of important omics profiles, as well
as accuracy of clustering analysis and cancer subtype discovery.

Remarks: In GST-iCluster and IS-K means, the feature module that consists of multi-level omics
profiles has been defined to incorporate prior knowledge of regulatory mechanism in penalized
identification. Assisted clustering adopts a two-stage strategy to first identify regulatory mechanism
and then conduct clustering analysis based on modified Ncut measure. The two types of integrative
clustering strategies differ significantly in how the regulation among multi-tier omics measurements
are incorporated. However, both utilize variable selection as a powerful tool to include the regulatory
information. It is worth noting that as long as appropriate similarity measures can be generated,
penalization approach is not necessarily the only way to seek for regulation among different levels
of omics data in assisted clustering [99,100]. Nevertheless, this approach has been shown to be very
effective to describe sparse regulation in multiple studies.

3.3. Other Methods for Integrating Multi-Omics Data

So far, we have mainly concentrated on studies using variable selection methods to conduct
omics data integration. Other statistical methods have also been developed for such a task. For
example, Yan et al. [25] has carried out a comprehensive comparison of classification algorithms for
integrating multi-level omics data. Multiple kernel- and graph-based methods have been included,
such as support vector machine (SVM), relevance vector machine, Ada-boost relevance machine and
Bayesian networks. These techniques have deeply rooted in variable selection although they are not
explicitly interpreted as selecting important omics features. Among them, SVM can be viewed as a
penalization method with hinge loss plus the ridge penalty [101].

We acknowledge that there are integration studies where variable selection techniques are not
adopted. Since they are not of the main interest of this review, we do not include them here.

3.4. Computation Algorithms

Efficient and reliable computational algorithms are the key to the success of multi-omics
integration studies. For penalized variable selection methods, coordinate descent (CD) is one of
the primary computational frameworks for high dimensional data, where the penalized loss function
is optimized with respect to one predictor, that is, the omics feature, at a time until convergence. First
order methods, including gradient-, sub gradient- and proximal- gradient based methods, can be
readily coupled with CD to solve a large family of optimization problems, including both robust
and non-robust loss functions with convex and more complicated penalty functions [90–93]. Besides,
ADMM (Boyd et al. [98] has been another major computational framework for high dimensional data.
It has rooted in the dual ascent and augmented Lagrangian methods from convex optimization, yet
combines the strength of both. ADMM can handle multiple constraints in optimization, which is of
great importance in integrating multi-level omics data as the complex data structure and the way
of conducting integration can be modelled by imposing constraints to the objective function [68,97].
In addition, EM algorithm plays an important role in traditional clustering analysis, such as the
K-means clustering since whether a sample belongs to a certain cluster can be treated as a missing data
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problem. With the multi-omics data, penalized EM algorithms have been developed to perform both
clustering analysis and variable selection. Representative studies include iCluster [72] and its follow-up
studies [73] and [74]. MCMC has been the main algorithm for conducting Bayesian integrative analysis.
Ideally, full conditional distributions can be derived based on proper choices of prior distributions.
Then a Gibbs sampler can be constructed for fast computation. For example, in Bayesian LASSO, the
conditional Laplace prior on regression coefficient is critical for formulating the Gibbs sampler while
inducing sparsity [34]. Metropolis Hastings sampling can be adopted if the full conditional update is
not available.

Generally, a screening procedure is needed to conduct penalized selection for ultra-high
dimensional data. Omics data integration has brought a unique challenge on computational methods
due to the presence of multi-platform heterogeneous omics data and the demand for more complicated
and tailored methods. To conduct the integration methods on a much larger scale, ADMM is promising
due to its nature as a distributed optimization method. Besides, variational Bayesian methods have
been proposed as a powerful alternative of MCMC to perform fast computation for large scale
datasets [102,103].

Remarks on the Choices of Variable Selection Methods for Multi-Omics Data Integration:
Although variable selection methods have been extensively developed for integrating multi-level
omics data, their connections with integration studies have not been thoroughly examined. As pointed
out by one of the reviewers, “It is not necessarily immediately apparent even to those using the methods
that variable selection plays a dominant role.” In this review, we have made it clear. The formulation
of “unpenalized loss function + penalty function” offers a new angle of investigating integrative
analysis from the variable selection point of view. The nature of integration studies characterizes the
loss function, which may pose certain constraints on choosing penalty functions. For example, to
robustly model the association between disease phenotype and omics features, robust loss functions,
such as LAD function, have been considered. Then penalty functions of the L1 form is preferred for
computational conveniences [91,93].

The choices of penalty functions are also dependent on the omics data structure. To account
for more complex data structures such as spatial dependence, network structure and other types of
structural sparsity among features, penalty functions beyond the baselines have been developed and
adopted. For example, fused LASSO has been proposed to accommodate the strong spatial correlation
along genomic ordering in CNV [30] and has been adopted in multiple integration studies [26,66,67,73].
Elastic net has also been adopted for highly correlated features [73]. The network-constrained penalty,
in both L1 and quadratic forms, have been adopted to describe correlation among omics features with
LAD and least square type of loss functions, respectively. Penalized estimation can also be conducted
in an unsupervised and semi-supervised manner, where sparse loadings are of great interest in the low
rank approximation to the original multi-omics data matrices.

We summarize existing penalization methods in Table 2 to provide some insights on their
applications in integrating multi-level omics data.
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Table 2. Published multi-omics Integration studies using penalization methods (a partial list).

Method Formulation Data Package

Sparse CCA [66] PMD + L1 penalty
PMD + fused LASSO comparative genomic hybridization (CGH) data PMA

Sparse mCCA [26] CCA criteria +
LAASO/fused LASSO DLBCL copy number variation data PMA

Sparse sCCA [26] Modified CCA criteria +
LASSO/fused LASSO

DLBCL data with gene expression and copy number
variation data PMA

Sparse PLS [56] Approximate loss (F
norm) + LASSO Liver toxicity data, arabidopsis data, wine yeast data mixOmics

CollRe [67]

Multiple least square loss
+ L1

penalty/ridge/fused
LASSO

Neoadjuvant breast cancer data with gene
expression and CNV N/A

PCIA [71] Co-inertia-based loss +
LASSO/network penalty

NCI-60 cancer cell lines gene expression and protein
abundance data PCIA

iCluster [72]
Complete data

loglikelihood + L1
penalty

Lung cancer gene expression and copy number data iCluster

iCluster [73]

Complete data
loglikelihood + L1

penalty/fused
LASSO/Elastic Net

Breast cancer DNA methylation and gene expression
data iCluster

iCluster+ [74]
Complete data

loglikelihood + L1
penalty

(1) CCLE data with copy number variation, gene
expression and mutation

(2) TCGA CRC data with DNA copy number
promoter methylation and mRNA expression

iClusterPlus

JIVE [27] Approximation loss + L1
penalty TCGA GBM data with gene expression and miRNA r.JIVE

LRM [90] Approximation Loss (F
norm) + L1 penalty TCGA Github *

ARMI [91] Multiple LAD loss + L1
penalty

(1) TCGA SKCM gene expression and CNV
(2) TCGA LUAD gene expression and CNV Github *

remMap [92] Least square loss + L1
penalty + L2 penalty

Breast cancer with RNA transcript level and DNA
copy numbers remMap

Robust network [93]
Semiparametric LAD
loss + MCP + group

MCP + network penalty

TCGA cutaneous melanoma gene expression and
CNV Github *

GST-iCluster [96]

Complete data
loglikelihood + L1

penalty + approximated
sparse overlapping

group LASSO

(1) TCGA breast cancer mRNA, methylation and
CNV

(2) TCGA breast cancer mRNA and miRNA
GSTiCluster

IS K-means [97] BCSS + L1 penalty

(1) TCGA breast cancer mRNA, CNV and
methylation

(2) METABRIC breast cancer mRNA and CNV
(3) Three leukemia transcriptomic datasets

IS-Kmeans

Note: * The corresponding authors’ Github webpage.

3.5. Examples

So far, we have attempted to make the connections between integrative analysis and variable
selection clear. In this section, we describe three case studies of integrating multi-omics data as shown
in Table 3. Paying special attention to variable selection methods results in some interesting findings.

Rappoport et al. [18] have performed a systematic assessment of a broad spectrum of multi-omics
clustering methods on ten types of cancer from TCGA. The multi-omics features of interest are mRNA
expression, miRNA expression and DNA methylation. A total of nine methods, including several
variable selection methods, have been compared in terms of prediction, enrichment of clinical labels
and computational time. MCCA [26], multiple canonical correlation analysis, which is a penalization
method, has the best prediction performance under prognosis. The rMKL-LPP [104], regularized
multiple kernel learning for dimension reduction with locality preserving projections, leads to the
largest number of significantly enriched clinical parameters over all ten types of cancers. Although
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feature selection is not explicitly involved in this method, the regularization (or penalization) has been
widely adopted for variable selection methods, as we point out in Section 3.3. The runtime of nine
methods on ten multi-omics dataset shows there is no significant difference between methods with
and without feature selection properties. Especially, MCCA has the second shortest runtime, very
close to spectral clustering which is the least time consuming.

To examine the integration of omics profiles from two platforms, Pucher et al. [25] has compared
the performance of sCCA [26], NMF [105] and MALA [106] on both simulated data and the TCGA
BRCA GE and DNA methylation data. Feature selection has been conducted in all the three approaches,
however, with different manners. sCCA achieves the selection of important features (canonical weights)
through regularization and MALA carries out gene feature selection through a combinatorial approach.
NMF selects the important omics features into the multi-dimensional modules (md-modules) via the
weight threshold. In all the three approaches, a cutoff to determine the number of selected variables is
used. Overall, sCCA has the best identification performance and is the most computationally fast. This
study indicates the advantage of using regularization (or penalization) as a tool for feature selection.

Tini et al. [19] has conducted integration using five unsupervised methods. It has shown that
variable selection does not necessarily lead to improved accuracy in integrating multi-level omics data,
especially for JIVE, although some method, such as MCCA, does benefit from such a procedure. They
observe that Similarity Network Fusion (SNF) [107] is the most robust method as more omics features
are integrated. Note that the other four methods are not robust. We have provided a detailed discussion
on robustness of integration methods in the section of discussion. It is interesting to reexamine the
influence of feature selection when the integration methods are robust.

In Section 2, we have made remarks on the connections among integrative analysis, unsupervised
analysis and feature selection. Here we further demonstrate the connections. All the three case studies
have focused on unsupervised integration. Feature selection is not a built-in component for some of
the methods. Therefore, feature selection itself is not necessarily a must for integrating multi-omics
data. However, it has been observed that sparse unsupervised methods, such as MCCA and sCCA, do
benefit from feature selection which has been achieved mainly through regularization (or penalization).
In a broad sense, prescreening of omics features before integration is feature selection, which is adopted
before performing almost all the integrative analyses.

Table 3. Summary of case studies from published reviews (a partial list).

Reference Methods Compared Dataset Major Conclusion

Rappoport et al. [18]

K-means;
Spectral clustering;
LRAcluster [108]

PINS [109]
SNF [107,110]

rMKL-LPP [104]
MCCA [26]

MultiNMF [105,111–115]
iClusterBayes [75]

TCGA Cancer Data:
AML, BIC, COAD, GBM,

KIRC, LIHC, LUSC,
SKCM, OV and SARC

MCCA has the best prediction performance
under prognosis. rMKL-LPP outperforms

the rest methods in terms of the largest
number of significantly enriched clinical

labels in clusters. Multi-omics integration is
not always superior over single-level

analysis.

Tini et al. [19]

MCCA [26]
JIVE [27]

MCIA [65]
MFA [116]
SNF [107]

Murine liver (BXD),
Platelet reactivity and
breast cancer (BRCA).

For integrating more than two omics data,
MFA performs best on simulated data.

Integrating more omics data leads to noises
and SNF is the most robust method.

Pucher et al. [25]
sCCA [26]
NMF [105]

MALA [106]

The LUAD, the KIRC
and the COAD data sets

For pairwise integration of omics data,
sCCA has the best identification

performance and is most computationally
efficient. The consistency among results
identified from different methods is low.

4. Discussion

In this article, we have reviewed multi-level omics data integration studies conducted especially
through variable selection methods. Both supervised and unsupervised methods have been reviewed
within the parallel and integration studies, respectively. As there exists a diversity of methods
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for integrating multi-dimensional omics data, the reviewed studies are limited and not exhaustive.
Section 3.3 briefly summarizes integrative analyses not conducted using variable selection methods.
We also acknowledge that the penalization and Bayesian methods are not the only variable selection
methods. However, the two have proven to be successful in a large amount of integration studies.
Reviewing the integrative analyses based on variable selection methods will provide us a unique
perspective of summarizing published studies, which has not been done in existing reviews on omics
data integration.

Our overview on published reviews of integration studies clearly demonstrates that variable
selection methods have been extensively adopted and developed for multi-dimensional omics data
integration studies, and none of these reviews have systematically investigated data integration from
the variable selection point of view (Table 1). We have pointed out earlier that penalization methods
are usually applicable on a “moderately” high dimensional level, therefore, there is an urgent need
for ultra-high dimensional methods that can accommodate large scale omics data. Compared with
penalization methods for analyzing single platform data, the statistical theories and convergence
properties of the associated optimization algorithms have not been well established in integrative
analysis, which demands much more effort in future research.

This article, together with other reviews (Table 1) also show the popularity of clustering. In
integrative analysis, clustering is perhaps the most important tool to discover cancer subtypes, which
is the very first step for the delivery of personalized medicine to cancer patients. Our review clearly
indicates that, compared to the large amount of integrative clustering studies not relying on regulatory
information, hierarchical integration has not been extensively conducted due to the challenge in how to
efficiently incorporate such information when clustering multi-level omics measurements. Penalized
variable selection has been demonstrated as an effective way in clustering to incorporate rich biological
information essential for deciphering the complex biological mechanisms [94–97].

Our review suggests that the model based supervised integration methods have been
predominantly developed for identifying important main effect of multi-omics features. In omics
data analysis focusing on single level of omics measurements, such as mRNA expressions and
SNPs, interactions have significant implications beyond the main effects. A typical example is the
gene-environment interaction studies [117,118]. In G × E study, interactions between the genetic and
environmental factors shed fresh insight on how the genetic effect are mediated by environmental
exposures to affect disease risk [119]. The superiority of gene set based association analysis over
marginal analysis, as shown in [120–122], has motivated the development of multiple variable
selection methods for G × E interactions under parametric, semi-parametric and non-parametric
models recently [123–126]. It is appealing to conduct integrative G × E analysis to unravel the role
that interaction effects play in multi-level omics integration studies and how additional strength that
G × E interactions bring to integration. The missingness in environmental and clinical covariates
can be efficiently accommodated by the existing approach [127]. Such an endeavor will motivate the
development of novel variable selection methods for integrative G × E interactions.

Another major conclusion from the review is the need for a systematic development of robust
integration methods. In single level omics data analysis, the demand for robust penalization
methods arises as outliers and data contamination have been widely observed in predictors and
responses, in addition to model mis-specification ([32,128]). When integrating multi-dimensional omics
measurements, heterogeneous data aggregated from multiple sources poses even higher demand for
robustness. Non-robust variable selection methods, such as LASSO and its extensions, despite success,
may still have limitations. For instance, it has been pointed out that the JIVE estimates for both joint and
common structures are vulnerable to outliers [27]. Recently, robust JIVE has been proposed to overcome
this issue by using L1 norm to measure the low rank approximation error [129]. An interesting open
question is, does the equivalence between maximum correlation or covariance-based criterion and
low rank approximation criterion still hold to some extent for robust integration method? Overall,
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although there exists several robust integration method [91,93], more development in methodology is
still in urgent need.

In this review, we have focused on integration of multi-level omics data using variable selection
methods. We acknowledge that this is by no means exhaustive on studies and methods related to
integrative analysis. For example, metabolomics data integration is also an important component of
integrating multi-level omics data. Metabolomics is an increasingly popular area that analyzes the
large amount of metabolites from a system biology perspective. Integration of metabolomics data
with other omics data, including transcriptomic data and proteomics, demands tailored statistical
methodology [130–132]. Multivariate methods, such as PCA and PLS, have been adopted for
integrating metabolomics data [130]. Whether variable selection improves integration accuracy is
unclear and we postpone the investigation to future studies. In addition, new forms of data keep
emerging, which has led to novel integration techniques. For example, imaging data has attracted
much attention recently and has already been integrated with omics data [133,134]. Review of such
data and related methods is beyond the scope of this paper and thus not pursued.
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ADMM alternating direction method of multipliers
AML acute myeloid leukemia
ARMI assisted robust marker identification
AUC area under the curve
BRCA breast cancer dataset
BXD murine liver dataset
CCA canonical correlation analysis
CD coordinate descent
CIA co-inertia analysis
CNV copy number variation
COAD colon adenocarcinoma
EM expectation–maximization
GBM glioblastoma
GE gene expression
GWAS whole genome association study
JIVE the joint and individual variation explained
KIRC kidney renal clear cell carcinoma
LAD least absolute deviation
LASSO least absolute shrinkage and selection operator
LDA linear discriminant analysis
LIHC liver hepatocellular carcinoma
LPP locality preserving projections
LRMs linear regulatory modules
LUSC lung squamous cell carcinoma
MALA microarray logic analyzer
MCCA multiple canonical correlation analysis
MCIA multiple co-inertia analysis
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MCMC Markov chain Monte Carlo
MCP minimax concave penalty
MDI multiple dataset integration
MFA multiple factor analysis
NMF non-negative matrix factorization
OV ovarian cancer
PCA principle component analysis
PINS perturbation clustering for data integration and disease subtyping
PLS partial least squares
rMKL robust multiple kernel learning
SARC Sarcoma Alliance for Research through Collaboration
SCAD smoothly clipped absolute deviation
SKCM skin cutaneous melanoma
SNF similarity network fusion
SNP single nucleotide polymorphism
TCGA The Cancer Genome Atlas
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