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Abstract: In the need to characterise the genomic landscape of cancers and to establish novel
biomarkers and therapeutic targets, studies have largely focused on the identification of driver
mutations within the protein-coding gene regions, where the most pathogenic alterations are known
to occur. However, the noncoding genome is significantly larger than its protein-coding counterpart,
and evidence reveals that regulatory sequences also harbour functional mutations that significantly
affect the regulation of genes and pathways implicated in cancer. Due to the sheer number of
noncoding mutations (NCMs) and the limited knowledge of regulatory element functionality in cancer
genomes, differentiating pathogenic mutations from background passenger noise is particularly
challenging technically and computationally. Here we review various up-to-date high-throughput
sequencing data/studies and in silico methods that can be employed to interrogate the noncoding
genome. We aim to provide an overview of available data resources as well as computational and
molecular techniques that can help and guide the search for functional NCMs in cancer genomes.
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1. Introduction

Cancer is potentiated with the accumulation of mutations, some of which are inherited in the
germline, but the vast majority arise in somatic cells [1]. These variations include single nucleotide
substitutions, insertions and deletions (INDELS) and copy number alterations and translocations.
Despite these changes, only a very small number of them are believed to be pathogenic (i.e., driver
mutations), with the majority being passenger mutations (i.e., alterations not directly implicated in
tumour development). The identification of driver mutations in genes is essential in unravelling key
molecular events that occur in cancer cells, and also providing candidate biomarkers for therapeutic
intervention [2]. A huge body of whole-exome sequencing (WES) projects such as The Cancer Genome
Atlas (TCGA), which capture the exon coding regions of the genome, have substantially advanced the
understanding of coding mutations in cancer, with key driver genes and mutations established across
many cancer types. This has led to a wave of targeted precision medicine in various cancers, including
chronic myelogenous leukaemia [3], breast [4], lung cancers [5,6] and melanomas [7–9].

However, coding sequences make up less than 2% of the human genome, with the other 98%
comprising noncoding DNA. Our understanding of noncoding mutations (NCMs) and their functional
consequences in cancer development and progression is still very limited mainly due to the lack of
effective tools to study them. The recent emergence of comprehensive regulatory annotation from
the Encyclopedia of DNA Elements (ENCODE) project [10], Roadmap Epigenomics Consortium [11]
and the FANTOM5 project [12] have revolutionised our understanding of noncoding sequences,
providing powerful resources for annotating noncoding regulatory elements and variations across
tissue and cell types. The availability of large-scale whole genome sequencing (WGS) projects,
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such as those by the International Cancer Genome Consortium (ICGC), and other noncoding data sets
such as chromatin immunoprecipitation and sequencing techniques (ChIP-seq) and noncoding RNA
sequencing (RNA-seq), has further provided a plethora of genomic data and noncoding elements across
cancer types, allowing for in-depth investigation and systematic search for functional NCMs. There is
much evidence to suggest that recurrent mutations within the noncoding elements are functionally
important [2]. To identify those noncoding drivers will undoubtfully further enrich our understanding
of molecular pathogenesis of many cancers and provide novel targets for diagnostics and therapeutics.

Amongst the effort of searching for functional NCMs, there have been many studies that have
employed and integrated various regulatory annotation and genome-scale sequencing tools across
cancer types. Many computational algorithms and pipelines have also been developed to perform
the data analyses and identify/prioritise functional NCMs. Here we review recent high-throughput
studies and technologies used to study NCMs in cancer.

2. Regulatory Regions of the Noncoding Genome and Functional Effects

Noncoding regions can be broadly split into cis-regulatory regions and noncoding RNAs
(ncRNA) [2]. Cis-regulatory regions comprise promoters and distal elements (promoters, enhancers
and insulators) (Figure 1), and regulate transcriptional activity and complex spatial and temporal
gene expression following the binding of transcription factors [2,13]. NcRNAs comprise microRNAs
(miRNAs), other small noncoding RNA species and long-noncoding RNAs (lncRNA, >200 bp), which
regulate the stability, post-transcription or translation of protein-coding genes [14,15]. NCMs can occur
in any part of these regions and have been identified throughout the genome. Untranslated regions
(5’ and 3’) are also an important class of regulatory elements that harbour driver mutations implicated
in tumourigenesis [16–20]. 5’ UTR regions play a significant role in controlling translation initiation,
thus important mutations here can impact the initiation complex and expression downstream. 3’ UTR
regions comprise binding sites for regulatory proteins and miRNAs. miRNA binding decreases
gene expression by inhibiting translation or degradation of the transcript, thus disruption of these
binding sites can lead to oncogenic expression [14]. Mutations within intronic regions can also have
fundamental implications in tumourigenesis, directly affecting splicing events and leading to malignant
transcript isoforms [21].
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Figure 1. The distribution of regulatory and coding regions along a gene. Driver mutations can be
found in both coding and noncoding regions. Mutations within the enhancer regions (dark blue) may
create binding motifs for regulatory factors that can promote or inhibit gene expression. Similarly,
mutations within the promoter regions can affect binding sites that regulate transcription. Coding
mutations (within purple region) can have many functional affects. For example, the alteration of
amino acids can disrupt protein folding. Mutations within UTR regions can have numerous affects,
such as disrupting miRNA targeting. Moreover, mutations located within intronic regions are likely to
affect splicing and gene expression, whilst mutations located in intergenic regions may affect genes up-
or downstream of their location.

NCMs also reside in intergenic regions. Weinhold et al. previously reported that intergenic regions
harboured the highest mutational burden in a WGS study of 863 tumour genomes [22]. Mutations
residing here can impact genes locally and distally, but can be difficult to functionally interpret [23].



High-Throughput 2019, 8, 1 3 of 22

NCMs in intergenic and other regions can also affect gene regulatory factors including the epigenetic
changes involved in chromatin conformation, DNA accessibility and acetylation and methylation
of N-terminal histone tails [24]. Trans-regulatory regions are also of noteworthy importance as they
encode for transcription factors which bind to and regulate the activity of cis-elements [25]. In this
review we primarily focus on NCMs in cis-regulatory regions, particularly promoters and enhancers,
and various sequencing and computational techniques implemented to identify them.

Mode of Action for NCMs

The mode of action of NCMs is incredibly complex. In addition to the alterations described
above, NCMs can be broadly classified into gain and loss of function. In promoter and enhancer
regions gain-of-function mutations result in the creation of TF-binding sites, which can lead to
downstream oncogenic transcriptional activity as previously reported in both promoter [26] and
enhancer regions [27,28] (Figure 2A). Loss of function mutations results in the loss of TF-binding sites
leading to transcriptional inhibition of downstream genes. We summarise some of the functional
effects of NCMs in Figure 2.
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Figure 2. Functional effects of noncoding mutations (NCMs). (A) Mutations within promoter
(e.g., TERT) and enhancer regions (e.g., TAL1) can create transcription factor (TF) binding motifs
in a gain-of-function manner allowing the binding of transcriptional activators leading to oncogenic
transcription and gene expression [26–28]. (B) Alternatively, mutations within regulatory regions can
create the loss of transcription factor binding sites, leading to transcriptional repression. (C) miRNA
binding within the 3’ UTR control gene expression, by inhibiting translation or marking transcripts for
degradation. Mutations that disrupt these binding sites can lead to oncogenic expression (e.g., NFKBIE
and NOTCH1 genes) [16,17]. (D) Mutations within the 5’ UTR can alter the secondary and tertiary
structures, as well as trans-acting RNA binding protein sites. These alterations can affect translation
efficiency and mRNA stability (such as observed in BRCA1 and CDKN2A genes) [18,29].
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3. Noncoding Genomic Variations and Mutations Identified across Large-Scale Cancer Studies

Many high-throughput platforms have been used to uncover important mutations within
the noncoding genome of many cancers. Whole genome sequencing (WGS) has been used to
comprehensively study a plethora of genomic alterations, elucidating the whole mutational landscape
of cancer. WGS approaches can be additionally integrated with more targeted methods to help
guide the interpretation of the simple somatic mutation (SSM) data, such as the use of WES and
targeted sequencing to study mutations within/near promoter regions. Moreover, ChIP-seq can
be incorporated to capture enhancer regulatory regions and transcription factor (TF) binding sites.
Further epigenome-centric approaches comprise the use of chromosome conformation capture
technologies Chromatin Interaction Analysis Paired End-Tag Sequencing (ChIA-PET) and Hi-C,
which demonstrate the 3D organisation of the genome in high-resolution uncovering the true chromatin
interactions with their target genes [30,31]. Importantly, many studies incorporate the use of matched
expression data, to explore the impact of cis-regulatory mutations on proximal located coding
genes, thus adding an informative layer to increase the detection of mutation functional significance.
Also, RNA-seq data can be used to infer genes with allele imbalance (AI), further providing evidence
that potential cis-acting genomic lesions have occurred within the regulatory sequences of AI targeted
genes. We summarise the most commonly used study designs for the identification of functional
NCMs in Figure 3. Various noncoding mutation studies are also summarised and listed in Table 1.
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Table 1. Noncoding mutation studies across cancer types.

Cancer
Subtype Study Source Samples Targeted

Seq WGS WES EXP Chromatin
Capture ChIP-Seq DNase-Seq SNP-Arrays ChIA-PET FAIRE-Seq Copy

Number
Clinical

Data Resource Identifier Mutated Regions

Melanoma Horn et al.,
2013, Science.

169 cell lines
77 primary
melanoma
tumours

√
- - Promoter

Melanoma
Shain, et al

2015, Nature
Genetics.

20 desmoplastic
melanomas +

matched
normal samples

√ √ √ √ √ Exome and targeted
sequencing: Raw
Microarray data

dbGaP Accession:
phs000977.v1.p1.
GEO: GSE55150

Promoter

Breast Rheinbay et al.,
2017, Nature.

360 primary
breast cancer

patients +
normal

√ √ √ √
Sequencing data:

dbGAP Accession:
phs001250.v1.p1.

TCGA
Promoter

Breast
Nik-Zainal
et al., 2016,

Nature.

560 breast
cancer patients

√ √
Raw sequencing data: EGA: Accession

EGAS00001001178 Promoter

PDAC Feigin et al.,
2017, EMBO.

308 PDAC
patients

√ √ √ WGS, Expression array,
and clinical data:

ICGC AU datasets
release 18 (Feb2015) Promoter

T-ALL Mansour et al.,
2014,

2 cell lines, 8
T-ALL patients

√ √ √
ChIp-seq data GEO: GSE59657 Super-Enhancer

T-ALL Science. Hu et
al, 2017, Blood.

31 T-ALL
patients

√ √ √
Sequencing data:

EGA Accession:
EGAS00001001858
EGAS00001002172

Intronic, Enhancer,
Promoter

CLL Puente, et al.,
2015, Nature.

452 CLL
patients +
54 MBL

√ √ √ √ √ √ √ √ Sequencing, expression
and genotyping array data:

EGA Accession:
EGAS00000000092 UTR, Enhancer

Colorectal
Orlando et al.,
2018, Nature

Genetics.

19,023
promoter

fragments from
cell lines

√ √ √ √ √ Hi-C, CHi-C, ChIP-seq
sequencing: TF ChIP-seq:

Survival data:

EGA:
EGAS00001001946

GEO: GSE49402
GEO: GSE33113,

GSE39582

Enhancer

B-cell
Lymphoma

Koues et al.,
2015, Cell

Purified
malignant

B-cells from 18
FL patients

√ √ √ All data: RNA-seq, Array,
ChIP and FAIRE-seq:

NCBI Gene
Expression Omnibus:

GSE62246
Enhancer

DLBCL
Arthur et al,
2018, Nature

Comm

153 DLBCL
tumour/norm

pairs

√ √ √ √ √ √ 146 WGS sequence data:
1001 WES sequence

validation data:

EGA: Accession
EGAS00001002936
EGAS00001002606

3’UTR

Liver
Fujimoto et al.,
2016, Nature

Genetics

300 Liver
Cancer Patients

√ √ √ Sequencing data:
Mutation data:

EGA. Accession:
EGAD00001001881,
EGAD00001001880,
EGAS00001000671,

ICGC database
release 18 (Feb 2015)

Promoter/Enhancer

Notes: List of noncoding mutation studies across cancer types, as well as the samples and high-throughput techniques used. Single nucleotide polymorphism array (SNP-array).
Diffuse large B cell lymphoma (DLBCL). Pancreatic ductal adenocarcinoma (PDAC). T cell acute lymphoblastic leukaemia (T-ALL).
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Figure 3. Study designs commonly used to identify functional NCMs in cancer. (A) Cells are generally
taken from tumour and matched normal samples (biopsy, surgical resection and blood). (B) Various
high-throughput techniques are used to identify somatic mutations. Whole-genome sequencing (WGS)
enables the identification of common and rare variants genome-wide. Whole-exome sequencing (WES)
can be used to identify mutations within exon coding regions, or more targeted methods such as
chromatin immunoprecipitation sequencing (ChIP-seq) can be utilised to identify variants within
regulatory regions. (C) Somatic mutations identified from high-throughput techniques can be further
annotated and filtered depending on their regulatory location using data repositories such as ENCODE.
(D) Computational algorithms are used to predict and filter potential driver/important mutations.
Recurrent mutational analysis identifies regulatory regions that are enriched for mutations across
the region in many patients. Hotspot (or cluster) analysis looks for mutations located within close
proximity to each other. Functional scoring analysis uses a combination of annotation methods to
score putative functional mutations providing significance values for each mutation. (E) Studies also
integrate other layers of information, such as the use of in silico transcription factor (TF) repositories
to identify the gain or loss of TF binding motifs. Matching expression data enables the analysis of
mutant effects in patients on proximal gene expression compared to wild type (WT). Furthermore,
corresponding clinical data enables the interrogation of survival based on mutation presence and gene
expression. (F) Variants that pass these steps generally undergo reporter assays/CRISPR-Cas9-based
functional validation to further determine the biological significance.



High-Throughput 2019, 8, 1 7 of 22

3.1. Whole-Genome Centric Approaches

3.1.1. Whole-Genome Scans Using WGS

The most common method of scanning the whole genome for important NCMs is the use of
‘hotspot’ (or cluster) analysis, which is a method of identifying genomic loci enriched for mutations
within short distances of each other, in comparison to the background mutational burden (masking
coding regions). This reduction in dimensionality increases the statistical power with the rise in
mutation frequency per sequence window [30]. In a small genome-wide study, Hu et al., used WGS data
from 31 Chinese children with T cell acute lymphoblastic leukaemia (T-ALL) [32]. They implemented
three systematic approaches. First, a hotspot method was implemented to identify highly mutated
genomic loci within 21 base pairs (bp). Second, annotated regulatory regions derived from Ensemble
resources were searched for mutation enrichment. This restrictive method increased the power to
potentially detect NCMs with functional attributes. Lastly, TF binding sites overlapping mutations
were analysed to identify the gain or loss of TFs between mutant and WT regions. By doing so,
recurrent NCMs within T-ALL oncogenes LMO1, LMO2 and TAL1, were identified. Also, LMO1 and
TAL1 were significantly associated with increases in gene expression changes, with insertions nearby
of TAL1 and LMO1 creating MYB binding sites in a number of patients [32].

3.1.2. Recurrently Mutated Noncoding Clusters

A Recent study has utilised WGS data to identify NCMs within aberrant somatic hypermutation
(aSHM) regions of genes, caused by the enzyme activation-induced cytidine deaminase (AID). AID is
encoded by the gene AIDA, and induces mutations, changing a C:G match to a U:G mismatch and
is implicated in many lymphoid cancers particularly in the development of B cell lymphomas [17].
Using diffuse large B cell lymphoma (DLBCL) tumour–normal matched sample pairs from 153 patients,
Arthur et al., incorporated the use of two algorithms to identify NCMs within these aSHM regions [17].
The first algorithm identified regions of enriched SSM density in comparison to the background
(excluding coding regions) and the second inferred the presence of peak regions of elevated local
mutation rates. This combined strategy identified recurrent mutations in the 3’ UTR region of the
NFKBIZ gene and was further validated in 13.9% of 338 additional DLBCL cases with targeted
sequencing. In addition, within these 338 cases, Arthur et al., also used matching RNA-seq raw data
reads to infer allelic imbalance (AI), using Samtools ‘mpileup’ [33] to quantify the number of reads
supporting the reference and alternative allele for each variant. AI in NFKBIZ was identified towards
the mutant allele, and further experimentally validated using droplet digital polymerase chain reaction
(ddPCR) in two cell lines [17].

Pan-cancer studies provide an effective strategy to integrate cancer genome data and identify
common NCMs and regulatory elements across different cancer subtypes. For example, Melton et al.,
profiled WGS data from 436 patients across eight cancers [34]. Focusing on the DNase I Hypersensitivity
sites (DHS) or TF binding peaks from RegulomeDB resources [35], they identified eight recurrently
mutated genomic loci in proximity to cancer-associated genes, such as GNAS, INPP4B and MAP2K2,
following a statistical enrichment model. However, the regulatory impact of these eight regions was
not validated; therefore their regulatory implications have yet to be deciphered. Consistent with
earlier pan-cancer studies [22,36], mutational hotspots were also identified near TERT and PLEKHS1
genes in this study. More recently, a pan-cancer study by Zhang et al., [20] studied the functional
consequences of NCMs within 930 tumour–normal matched whole genomes across 22 cancers with the
integration of transcriptomics and transcriptional interaction maps. To identify recurrently mutated
loci, they used a hotspot analysis to search for mutations within 50 bp of one another genome-wide,
identifying 193 somatic expression quantitative trait loci (eQTLs) regulating 196 genes. Three of
which were experimentally validated (DAAM1, MTG2 and HYI). Furthermore, Zhang et al., studied
the convergence of these noncoding mutations and previously documented coding mutations on
network pathways. Aggregating all affected genes and analysing with the Network-Based Stratification
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algorithm (a method of integrating somatic cancer genomes with gene networks) [37] they identified
four subtypes of interest.

3.2. Targeted and Integrative Approaches

3.2.1. Promoter-Centric

Thus far, the most notable example of noncoding variations in cancer is from the identification
of driver mutations in the promoter regions of the telomerase reverse transcriptase (TERT) gene.
TERT promoter mutations were first described in melanoma [38,39]. Since then they have also been
described in gliomas and a subset of tumours in tissues with low rates of self-renewal, such as
hepatocellular and urothelial carcinomas [40]. Importantly, TERT has been clinically correlated with
poor survival in clear-cell renal carcinomas [26], gliomas [41], bladder [42] and thyroid cancers [36],
demonstrating the potential of NCMs as clinical biomarkers and therapeutic targets [43].

In a recent melanoma study, Shain et al., implemented a combination of low depth WGS (13×) and
WES (89×) sequencing of 20 desmoplastic melanomas with matched normal DNA. Integrating these
high-throughput techniques they identified recurrent promoter mutations in NFKBIE [43]. This was
further validated by targeted sequencing (216×) of 293 genes in 42 neoplastic and non-neoplastic
formalin-fixed paraffin-embedded primary desmoplastic melanomas [44].

Rheinbay et al., 2017 developed an adapted exome assay to capture not only the exome, but also
the promoter elements and additional regulatory elements such as enhancer regions. This was
followed by next generation sequencing at a median depth of 80× in 360 primary breast tumours
and corresponding normal counterparts. They identified mutations in breast cancers within regions
of high alipoprotein B messenger RNA-editing enzyme catalytic (APOBEC), a region of conserved
cytidine deaminases and a large source of mutations in cancer [45,46]. A SignatureAnalyser tool [47]
was firstly used to remove these mutations with high APOBEC probability from their analysis. Next,
to identify recurrent mutations, Rheinbay et al., developed an analytical pipeline (MutSigNC), which
takes into consideration patient-specific mutation rates, sequence coverage and mutation clustering.
This pipeline then compared this mutation data to the background variant burden of other promoter
regions, taking into consideration factors such as GC-rich sequences and chromatin states which
specifically affect promoter elements [46]. Nine genes with promoter associated mutations were
identified, three of which (FOXA1, RMP and NEAT1) were significantly associated with gene activity
in luciferase reporter assay experiments. They further confirmed 97% of mutations in promoter regions
by deeply resequencing targeted regions in 47 patients, with at least 1,000× coverage.

Similarly, Nik-Zainal et al., used whole-genome data from 560 breast cancers and normal
counterparts to identify recurrent mutations in coding and noncoding genomes [45]. The noncoding
analysis involved the partitioning of the genome into separate regulatory elements and gene features.
Elements were then analysed independently for mutation rates using a negative binominal regression
approach to determine the variation of mutations across each element compared to the background
distributions. Paradoxically to later studies [46], APOBEC regions were not removed from the initial
analysis, subsequently recurrent mutations were identified within the APOBEC regions in the promoter
of PLEKHS1 and TBC1D12. Nik-Zainal et al., suggested that these mutated loci were therefore regions
of hypermutability rather than driver mutations [45].

Feigin et al., described a Genomic Enrichment Computational Clustering Operation (GECCO)
to uncover recurrent regulatory mutations in the cis-regulatory regions of 308 pancreatic ductal
adenocarcinoma PDAC patient with WGS data and matched expression data [43]. To firstly filter WGS
data, the algorithm tool Funseq2 was utilised [48]. This uses a weighted scoring system to filter and
prioritise somatic NCMs. Subsequent mutations were further filtered to keep those mutations, with the
most likely functional impact, overlapping TF binding peak annotations obtained from ENCODE
ChIP-seq experiments in 72 cancer cell lines [10]. Using permutation testing, GECCO calculates the
mutation rate in each regulatory region and associates with proximal gene expression and pathway
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analysis. A total of 16 genes with significant NCMs in PDAC patients were identified. Pathway
analysis of these genes, using The Database for Annotation, Visualisation and Integrated Discovery
(DAVID) resources [49], uncovered currently known PDAC pathways such as cell adhesion and Wnt
signalling [43]. Furthermore, Feigin et al., used patient-matched expression-array data and identify
low expression levels of the Protein Tyrosine Phosphatase Receptor Type N2 (PTPRN2) gene, which is
also associated with poor overall survival [43]. However, the majority of the significantly mutated
regulatory regions (PTPRN2 not included in significantly mutated list) were not associated with gene
expression changes, suggesting possible other roles yet to be established for these genomic loci.

3.2.2. Active Enhancer Centric

NCMs have been observed in regions other than promoters, for example in T-ALL. A heterozygous
12 bp insertion was found in an intergenic region, creating a MYB-TF-binding site that results
in a super-enhancer upstream of the TAL1 oncogene [27]. Here, Mansour and colleagues used
high-throughput techniques to mark increased acetylation of the histone H3 lysine 27 (H3K27ac)—a
form of epigenetic change—which differentiates active enhancers from inactive/poised enhancer
elements and promoters [50]. These protein-DNA interactions can be identified on a genome-wide scale
using ChIP techniques, followed by sequencing of the underlying DNA (ChIP-seq) [27,51]. Sequencing
of this enriched DNA allows the identification of potential enhancer associated sequence variants,
using variant calling packages such as Samtools [52], Varscan2 [53] and MuTect2 [54], and customised
pipelines to further filter out low quality variants. Mansour et al., identified a 12b insertion near the
TAL1 oncogene creating an active enhancer with open chromatin conformation de novo. This enables
transcription factors (TFs) to access and bind enhancer DNA motifs and regulate transcription [55].
Using in silico TF binding resources (UniProbe) [56] of previous experiments, they were able to predict
a MYB binding site overlapping the insertion. This was further experimentally tested using MYB
antibody ChIP-seq, validating the binding of MYB monoallelically to the mutant allele and driving
TAL1 expression [27].

Using similar techniques, Mansour and colleagues integrated a combination of ChIP-seq (H3K27ac
marks) to enrich enhancer DNA with bioinformatics in 102 tumour cells [51]. Abraham et al., developed
their own pipeline to identify short enhancer associated insertions using multiple alignment approaches
in the underlying enriched DNA. Focusing on the functional significance of an 8-bp heterozygous
insertion at the LMO2 locus in the T-ALL cell line MOLT4, they identified TF binding and enhancer
activity, driving heterozygous expression of LMO2. These findings were further reported in two more
T-ALL cell lines, six paediatric and nine adult T-ALL patients [57]. Focusing on enhancer regions
significantly reduces the noncoding genome search space and enables the identification of noncoding
variants with potential functional activity at the gene control level [51].

In another study, using a combination of WGS and WES data, mutations in enhancer regions
near the PAX5 gene, a transcription factor implicated in B cell differentiation, was identified in
chronic lymphocytic leukaemia (CLL) patients and diffuse large B cell, follicular and mantle-cell
lymphomas [16]. In addition, Puente et al., used circularised chromosome conformation capture
sequencing (4C-seq), a high through-put technique looking at genome-wide DNA contacts with a
single genomic locus of interest [31]. This technique revealed the 3-dimensional (3D) interaction
frequencies of the PAX5 enhancer with the surrounding regions and demonstrated that the PAX5
enhancer has contact with regions up to 330kb away [16]. To further confirm the transcriptional
regulation abilities of this mutated enhancer region on nearby genes, Puente et al., interrogated
RNA-seq data of genes located within 1Mb of the enhancer region. This demonstrated significantly
increased expression of the PAX5 gene only out of all 15 nearby genes, suggesting NCMs within the
enhancer region transcriptionally regulate PAX5 [16]. Utilising additional powerful high-throughput
methods such as Hi-C, would overcome this method by facilitating the direct identification of NCMs
and their target genes on a genome-wide scale [21]. However, it is sometimes unfeasible and expensive
to experimentally validate all predicted interactions [58].
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3.2.3. Genome-Wide Chromosome Conformation

Most recently, Orlando et al., employed Hi-C data to decipher the spatial organisation of
chromosomes and the regulation of NCMs in cis-regulatory elements on target gene expression.
Hi-C on 19,023 promoter fragments in colorectal cancer cell lines was used alongside WGS data [59].
To identify functional NCMs in cis-regulatory elements, they analysed the transcriptional effects
of NCMs identified in regulatory regions with Hi-C and matching RNA-seq data. Interactions
were minimised to 1Mb from TSSs. By doing so they uncovered a recurrently mutated regulatory
element interacting with the ETV1 promoter. Matched gene expression data identified transcription
upregulation, also correlating with poor survival in colorectal patients [59]. In an earlier study, using a
combination of high-throughput techniques, Koues et al., investigated the transformation of normal
germinal centre B cells to malignant follicular lymphoma (FL) B cells using an epigenome-centric
approach [60]. A combination of formaldehyde assisted isolation of regulatory elements FAIRE-seq:
a technique used to identify DNA segments that actively regulate transcription, ChIP-seq enrichment
of active enhancers, and expression data, uncovered enhancers enriched with somatic mutations which
disrupt TF-binding and subsequently target gene expression changes [60].

ChIA-PET is a high-throughput combination technique which incorporates both a chromatin
immunoprecipitation technique and a chromosome capture (3C) technology, allowing for the analysis of
both protein-DNA complexes and long-range interactions, genome-wide [21,61]. In a large-scale project
investigating 300 liver cancers in a Japanese population, Fujimoto et al., used annotation resources from
ENCODE to identify highly mutated regions overlapping DHS and ChIP-seq TF-binding sites [62],
which uncovered mutations within four CCCTC-binding factor (CTCF) regions. ChIA-PET was then
used and validated one of these CTCF-binding regions as an enhancer region located upstream of the
PRKCA gene and downstream of APOH [62]. NCMs within this enhancer were significantly correlated
with gene expression changes and luciferase reporter activity [62].

Outcomes from the use of high-throughput techniques are continuously expanding the catalogue
of candidate NCMs. The use of integrated and more targeted approaches also greatly narrows down
the search space to the most likely functional regions of the noncoding genome and increases statistical
power in the identification of important NCMs. Despite this, the use of high-throughput techniques
did not come without caveats.

4. High-Throughput Methods and Underlying Challenges

Discovering functional or driver mutations, especially in the noncoding genome where recurrent
mutations are at a lower frequency, requires high-throughput technology with deep sequencing
coverage, paired-end reads and large cohorts to establish statistical significance, contributing to the
expense of studies [30]. This is particularly true for WGS, as the accuracy of mutation calling primarily
relies on sequencing depth [63]. As previously mentioned, this can be overcome by high-depth targeted
sequencing of regulatory regions of interest [46]. The alignment of WGS data to reference genomes
can prove troublesome, as the human genome is riddled with repetitive and redundant regions.
Thus, aligning short reads (usually 75–150 bp) to the whole genome accurately is a computationally
extensive and difficult task with a large amount of alignment uncertainties and errors often occurring,
which can lead to mutation calling faults [64–66]. Furthermore, accurately identifying somatic variants
and rearrangements using WGS remains an open challenge facing the cancer bioinformatics community,
as recent studies indicate that existing approaches overlap only ~20% [67]. With all this in mind,
the ICGC-TCGA DREAM Genomic Mutation Calling Challenge has been initiated to identify the most
accurate mutation detection algorithms, and establish state-of-the-art analytical pipelines [66,68]. It is
therefore recommended that using an ensemble of pipelines or consensus calls of multiple algorithms
can greatly improve mutation detection accuracy [65,69]. We summarise high-throughput technologies
and their associated pros and caveats in Table 2.
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Table 2. List of high-throughput techniques, their functions and corresponding pros and caveats.

High-throughput Technology Function Pros Caveats Ref

WGS Identify mutations genome wide

• The ability to identify NCMs in all regions
(not only regulatory regions).

• The potential identification of novel
mutations implicated in cancer.

• Accuracy relies on sequencing depth
• The alignment of short reads across

repetitive regions.
• Large volume of data to process.

[63,70]

WES Identify mutations within exon regions.

• Cheaper method of sequencing the
protein-coding regions of the genome.

• Well optimised for the identification of SNVs.

• Can be limited to exonic regions.
• Coverage is not as uniform as WGS. [70]

ChIP-seq Targeted approach to identify NCMs in putative
functional regulatory regions.

• Can identify putative active and repressed
regulatory regions.

• Can be used for the identification of
TF binding.

• Only a snap shot in time of global chromatin
accessibility, which continually changes.

• Requires large amounts of tissue to obtain
purified cells.

• Technically challenging to carry out.
[71]

DNase-seq The identification of DNase I hypersensitivity site,
mapping open chromatic genome wide.

• No prior knowledge of histone modifications
or TFBS need to be known.

• Requires a large number of cells.
• Requires further ChIP analysis or functional

assay to determine the function of the
regulatory region identified.

[72,73]

ATAC-seq
Mapping chromatin accessibility genome-wide

using a Tn5 transposase which inserts adaptors into
regions of open chromatin

• Quick processing method • Results are sensitive to variations in
cell numbers. [74,75]

FAIRE-seq Allows the identification of nucleosome depleted
regions, mapping regions of open chromatin.

• Able to detect chromatin accessibility in a
relatively low number of cells.

• Cheap and easy method to perform.

• High background noise levels, making data
interpretation computationally challenging.

• Results are dependent on fixation efficiency. [75,76]

RNA-seq Measure of gene expression.

• Can be used to identify allele
specific imbalance. • Requires high read coverage to detect AI.

[77,78]

4C-seq Identification of long-range DNA contacts with a
single genomic locus of interest.

• Highly reproducible data.
• Ideal for analysing a known loci of interest.

• Local interactions will be missed from the
region of interest.

• Unable to detect interactions on a
global level.

• Requires a large number of cells.
[79]

Hi-C-seq Identification of long-range chromatin interactions
on a global level.

• An unbiased method
• Ideal for looking at changes within TAD

regions and supra-TAD
chromatin organisation.

• Low resolution can be prone to high levels
of noise.

• Requires a large number of cells.
• Not ideal for the identification of

individual loci.
[31]

ChIA-PET
A combination of ChIP and 3C techniques allowing
the analysis of both protein-DNA complexes and

long-range interactions, genome wide.

• Identifies both the DNA and protein present
at a given loci.

• Limited by the specificity and purity of the
antibodies used. [31,61]

Note: Transcription factor binding sites (TBFS).
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ChIP-seq techniques not only provide a global snap-shot of chromatin accessibility, TF binding
and histone remodelling modifications, to study the regulation of gene expression, it also provides
a targeted approach to identify NCMs within putative functional regulatory regions. However,
such techniques require large amounts of tissue to produce purified cells, which for some cancers such
as those in the pancreas, are challenging to obtain surgically due to the asymptomatic progression of
the disease. Thus, patients tend to present with inoperable disease. Also, some cancerous tissues like
in the pancreas usually have low levels of tumour cellularity, with the presence of a large amount of
non-tumour cells such as stromal and immune cells. With the high cell mortality rate as well as DNA
degradation during the sample pre-processing stage, it is often very challenging to obtain enough
purified cells and tumour DNA for ChIP [71]. Thus, organoid models are required to make sure
enough tumour cells are available, adding another layer of complexity for ChIP-seq studies, especially
for many solid cancers. Experimentally, ChIP-seq is more technically challenging in comparison to
DNA methylation assays and RNA-seq for example, and as a consequence of this, the subsequent raw
ChIP-reads require substantial quality control due to frequent poor quality [24]. Moreover, the peak
signals are often quite noisy, requiring further recalibration and careful interpretation. Most ChIP-seq
data available to date is cell line-specific, such as those provided by ENCODE and Epigenome
Roadmap. From our own ongoing analysis, we have found that mutations called in cell lines often
do not correspond to patient somatic mutations from WGS data. This is likely due to the disparity
between histone modifications in cell line cultures, which can alter with media changes and increases
in cell passaging comparative to in vivo settings [70,72].

Allele specific imbalance is an effective approach to detect the effect of genetic variation on
gene expression in individual genomes [80]. This is typically achieved using raw RNA-seq reads to
quantify reads in the reference and alternative allele and infer RNA genotypes of heterozygous SNPs.
AI can then be used to locate cis-acting variants genome-wide and correlate with gene expression
changes. Allele specific approaches are a powerful method of functionally annotating individual
genomes, in particular for identifying rare cis-regulatory variants on a large scale [81]. However,
methods are sensitive to technical issues with the processing of RNA-seq data such as thresholding,
read depth/mapping and variant calling methods [77,78,82]. Furthermore, to detect AI at low
frequency requires sufficient high read coverage, which for standard RNA-seq experiment (30–60 M
reads) is limited. AI can also be inferred using targeted high-throughput techniques such as ChIP-seq
and DNase-seq methods. Data sets from all technique approaches in the same cell line or individual
can be combined to increase statistical power in the detection of AI [82].

We believe the best practise is to integrate WGS with other high-throughput technologies such
as WES, targeted sequencing, expression data (RNA-seq and expression arrays), epigenetic markers
(ChIP-seq) and chromosome spatial organisation (chromosome capture technologies) to guide the use
of WGS mutation data and narrow down the search space to regions of most functional impact [51],
followed by functional validation in cell lines. Here we suggest an integrative workflow to identify
functional NCMs based on multiomics data, shown in Figure 4.
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Figure 4. Integration of high-throughput data flowchart. This uses WGS data for SSM mutation
data parallel to more targeted methods such as ChIP-seq to enrich the active enhancer regulatory
regions for example. ChIP-seq data is used to guide the interpretation of WGS SSM data, identifying
mutations within regions with putative regulatory effects. In silico functional scoring methods such as
IW-scoring can then be used to annotate and rank mutations by their putative functional importance.
TF repositories can also be utilised for de novo binding motifs overlapping mutated regions. In parallel
matched RNA-seq data can be used to analyse proximal gene expression and allele specific expression.
Together this should provide a list of top candidate variants to follow up with functional validation
techniques. European Genome-Phenome Archive (EGA), Gene Expression Omnibus (GEO).
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5. Computational Resources and Techniques

Due to the sheer number of NCMs identified in cancer genomes, computational algorithms are
often needed to annotate and score them first to select those that are most likely to be functional
or deleterious for downstream analyses. To systematically study these noncoding variants, careful
annotation is required, by determining the regulatory regions they map to and nearby/overlapping
genes. These regulatory features usually include TF binding sites, open chromatin, various histone
marked regions and TSS sites defined by ENCODE, Epigenome Roadmap and FANTOM5. Several
online tools have been developed to help with gene and regulatory annotation for NCMs. For example,
IW-scoring [83] developed annotation modules to provide information of all related regulatory regions
and nearby genes for queried NCMs. It also integrates Ensembl Regulatory Build annotation [84]
allowing for overlapping NCMs with predicted promoters and enhancers. Similarly, RegulomeDB [35]
uses data from various regulatory resources of ENCODE, along with TF ChIP-seq data from the NCBI
Sequence Read Archive [85], a large collection of eQTL data, as well as TF binding prediction by
DNase footprints and positional weight matrices (PWMs), such as TRANSFAC [86], JASPAR [87]
and UniPROBE [56], providing a comprehensive integrated approach to annotate regulatory variants
(Table 3). In the last few years many computational algorithms have been developed to predict the
functional consequences of noncoding variants. These methods often integrated available noncoding
annotation features mentioned above to produce a continuous or discrete score for each variant in
order to measure the likely functional impact of noncoding variants (shown in Table 3).

Table 3. List of computational resources and software to identify functional noncoding variants and
mutations in regulatory regions, prioritise NCMs and predict mutation enrichment in comparison to
background mutational burden.

Computational Analysis Methods Resources/Software Method References

Regulatory annotation resources
ENCODE ChIP-seq, DNase-seq,

ATAC-seq, Hi-C [10]

Roadmap Epigenomics ChIP-seq, DNA Methylation,
RNA-seq [11]

FANTOM Consortium CAGE [12]

Functional Scoring

CADD

Machine-learning algorithm

[88]
GWAVA [89]

FATHMM-MKL [90]
Genomiser [91]
DeepSEA Directly learn sequence codes

from ENCODE annotations
[92]

DelaSVM [93]
FitCons Selective pressure and divergence [94]

LINSIGHT [95]
FunSeq2

Weighted scoring system
[48]

Eigen [96]
IW-scoring [83]

Regulome DB Heuristic Scoring [35]

Rate based methods with incorporated
background mutation analysis

MutSigNC [46]
LARVA [97]

Note: Cap analysis of gene expression (CAGE).

However, the computational techniques employed to generate the scores varied. For example,
CADD [88], GWAVA [89], FATHMM-MKL [90] and Genomiser [91] use machine-learning algorithms
to develop classifiers integrating a range of annotations such as regulatory features, conservation
metrics, genic context and genome-wide properties to differentiate functional/deleterious from
non-functional/benign variants. Other methods such as DeepSEA [92] and DeltaSVM [93] directly
learned regulatory sequence motifs from ENCODEs large-scale chromatin profiling data, to enable
predictions of chromatin effects for variants. FitCons [94] and LINSIGHT [95] estimated the selective
pressure on the basis of patterns of polymorphism and divergence, and scored variants based on the
likelihood of deleterious fitness consequences. FunSeq2 [48], Eigen [96] and IW-Scoring developed
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weighted scoring approaches to combine the relative importance of various annotation features to
distinguish functional from non-functional variants [83]. RegulomeDB, on the other hand, employed
a heuristic scoring system based on functional confidence of a variant, with increased confidence
for variants located within functional locations [35]. The performances of these methods often vary
when different sets of variants with distinct features are scored, thus similar to somatic variant calling
strategies mentioned above, an ensemble approach or using a rank or consensus call of multiple
methods become a powerful approach summarising multiple predictive evidences, hence increasing
specificity and outperforming a single method. IW-Scoring is the first web portal to provide scores
of most available methods and to generate an ‘ensemble-like’ score with weights, demonstrating
stable performances and ranked consistently among the best performing methods for a diverse set of
noncoding variants tested [83].

Independent of these functional scoring and prediction methods, approaches can be employed
to assess whether a mutation or set of mutations have been observed at a higher frequency than
expected, also comparing to background mutation rates. The most effective approach is to consider
mutational heterogeneity [30,46]. The algorithm MutSigNC [46] for example, identifies recurrently
mutated promoters by taking into consideration patient specific mutation rates, replication timing and
patient-specific sequencing coverage when looking for mutation rates above expectation [46]. Similarly,
LARVA [97] incorporates background models by integrating a comprehensive set of noncoding
functional elements based on DHS sites and histone marks, whilst also considering replication rates
to increase the mutation rate accuracy [97]. Other methods have been developed to infer positive
selection, such as OncoDriveFML [98]. This algorithm analyses the pattern of somatic mutations
bias across tumours and estimates the accumulated functional impact in genomic region of interest,
compared to that expected by chance for the same number of mutations.

Noncoding mutations can also be further prioritised in regulatory elements with the identification
of TF binding sites overlapping mutated regions, using various prediction tools such as the ‘Find
Individual Motif Occurrences’ (FIMO). This works by scanning DNA sequences for TF binding motifs,
treating each motif independently and comparing to PWMs from experimental data resources such
as JASPAR [87] and HOCOMOCO [99] giving a log-likelihood ratio score for each position [100].
Other methods that are more suitable for large-scale genomic sequence data, e.g., implementing
ENOCDE ChIP-seq data; tools such as the Genetic Algorithm guided formation of spaced Dyads
coupled with Expectation Maximisation algorithm for Motif identification (rGADEM) [101], is a
powerful approach for the discovery of de novo sequences [102]. The identification of variants
that cause TF binding disruption or introduce de novo binding motif sites, offers another layer
of information and significance to the regulatory effects of mutations for further experimental
testing [102].

Despite the methods available, it is computationally challenging to predict the regulatory function
of NCMs, as we lack specific gold standard tools to do so [30]. Furthermore, prediction methods
are largely limited in their capacity to directly identify mutations in tumour development. However,
they are a powerful tool for prioritising potential candidates for follow up functional experiments [30].

6. Functional and Biological Validation of NCMs

Functional validation of NCMs and regulatory affects is a fundamental step in evaluating
the robustness of an in silico analysis pipeline. Multiple experimental methods can be used to
demonstrate functionality. Luciferase reporter assays are the most common technique used to
assess mutated enhancer regions, comparing WT and mutant sequence effects on gene expression
in transiently transfected cells [30]. Reporter assays can be combined with CRISPR/Cas9 genome
editing to knockin/knockout mutations from cis-regulatory regions. Site-directed mutagenesis and
oligonucleotide synthesis can also be used to obtain the mutated sequence. Traditional reporter assays
are low to medium-throughput techniques and are critical for functional validation, due to previous
reports documenting inconsistencies between luciferase assay results and prediction models [62].
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Several high-throughput strategies have been developed. Massively parallel reporter assays (MPRA)
and self-transcribing active regulatory region sequencing (STARR-seq) in particular have been widely
used [103]. Here we briefly summarise potential reporter-based methods used to validate promoter or
enhancer mutated regions in Table 4.

Table 4. Gene reporter-based assays.

Traditional Reporter
Based Assay Source of DNA Size of Test

DNA Fragment Analysis Detection Method

Luciferase/GFP based
reporter assays

DNA template from
arbitrary source to amplify

with designed primers
~1.5–2 kb Enhancer + promoter

Luciferase activity
(luminator) or GFP activity
(quantitative cytometry)

High-throughput
reporter assays

MPRA CRE-seq Microarray synthesis of
DNA sequences 200–300 bp Enhancer + promoter RNA-sequencing

STARR-seq Sheared DNA from
arbitrary sources 1–1.5 kb

Enhancer discovery (also
including intergenic and

intronic regions)
RNA-sequencing

Notes: Traditional reporter based arrays [104]. High-throughput reporter assays [105]. Green fluorescent
protein (GFP).

Furthermore, ChIP-PCR techniques can also be used, particularly when validating TF-binding.
However, additional assays are required after validating gene activation, to demonstrate the oncogenic
properties of the noncoding mutations. For example, to determine the differences in endogenous gene
expression, cell lines can undergo gene editing using CRISPR/Cas9 methods followed by quantitative
PCR (qPCR) or whole transcriptome profiling [30]. Further invasion, proliferation and viability assays
can be used to demonstrate the biological significance of mutations in these genome edited cell
lines [30]. For example, Zhang et al., used 3D collagen hydrogel matrix models and demonstrated that
NCMs resulting in the increase of DAAM1 correlated with cell motility [20].

7. Conclusions and Future Challenges

Thus far, published studies have focused on driver mutations residing in the coding genome.
Consequently, important therapeutic interventions to date are targeted directly towards these proteins.
Somatic mutations in the noncoding genome are currently reserved for research purposes [15].
However, regulatory regions are significantly correlated with the expression of protein coding genes,
warranting their importance for investigation in terms of tumourigenesis and novel biomarkers. In this
review we focus on the identification of driver or important somatic mutations within cis-regulatory
regions of the noncoding genome using high-throughput sequencing. We also discuss the in silico
methods of analysis and the challenges faced. We believe integrating targeted high-throughput
approaches to filtering WGS SSM data is the most efficient method of identifying and prioritising
functional noncoding mutations with important regulatory effects in cancer.

Genome sequencing has revolutionised cancer studies to date [106]. With the rapid evolution of
this field, and the development and improvement of chromosome capture technologies, the accuracy
of linking cis-regulatory regions with their target genes is quickly unravelling. Somatic mutations
identified within these elements can then be systematically and functionally tested in silico and
experimentally. Also, further network studies such as those undertaken by Zhang et al., will provide
a more integrated understanding of cis-regulatory associated mutations and their downstream
implications [20]. This would result in the identification of important mutations and fast forward
novel therapeutics to target the noncoding genome.
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