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Potential effects of a flavonoid, hesperidin on SARS-CoV-2 disease

To the Editor

The novel coronavirus, COVID-19 or severe 
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was first identified in China in December 
2019 [1].

SARS-CoV-2 uses the receptor angioten-
sin-converting enzyme 2 (ACE2) for infection by 
the transmembrane protease, serine 2 (TMPRSS2) 
on the surface of the host cell entry [2]. SARS-
CoV-2 is not only rapidly spreading but has be-
come a global pandemic that may challenge the 
economic, medical and public health of the world 
[3]. Following infection by SARS-CoV-2, cytokine 
storm is mediated by the release of large amounts 
of IFN-a, IL-1b, IL-6, IL-12, IL-18, IL-33, TNF-a, 
TGFb, etc. by immune effector cells [4, 5]. Various 
biological compounds such as of flavonoids, have 
been showed as anti-asthmatic [6, 7], therapeutic, 
antioxidant, antiviral and with other properties 
in nature [8, 9].  Anti-SARS coronavirus 3C-like 
protease effects of plant-derived phenolic com-
pounds were also reported [10]. Hesperidin is 
a common flavone glycoside found in citrus fruit 
such as lemons [11]. The virions load in hesperi-
din-treated Madin-Darby canine kidney (MDCK) 
cells were 148-fold less than that of the untreated 
MDCK cells infected by influenza virus. Hesperi-
din (100 μM) also decreased viral RNA level and 
enhanced antiviral state-associated genes expres-
sion in the uninfected A549 cells [12]. 

The inhibitory effect of hesperidin (0–25 mM) 
on influenza A virus (IAV) infected MDCK cells 
induced distinct reduction in IAV replication. 
Hesperidin had no cytotoxic effects on MDCK 
cells [13]. It is the compound that could target the 
binding interface between SARS-CoV-2 Spike and 

ACE2 human receptors [14]. It has been reported 
that hesperidin strongly binds to the active site of 
RNA dependent RNA polymerase (RdRp), which 
catalyzes SARS-CoV-2 RNA replication [15]. 

Hesperidin (2.0 mg/mL) significantly reduced 
expression of pro-inflammatory cytokines in hu-
man osteoarthritis (OA) chondrocytes [16]. 

The effects of hesperidin (5, 10, 50 and 
100 μM) on hydrogen peroxide (H2O2) induced ox-
idative stress damages to chondrocytes, downreg-
ulated the mRNA levels of COX-2, IL-1b, TNF-a, 
MMP-3, MMP-9, and upregulated IL-10, TIMP-1, 
SOX9 [17]. Treatment of Aeromonas hydroph-
ila-infected mice with hesperidin (250 mg/kg 
b.wt.), significantly suppressed inflammatory
response through reduction of reactive oxygen
species (ROS) production and adhesion mole-
cules expression, as well as an increase of CD4+/
CD8+ cell ratio [18]. Hesperidin (100 mg/kg.
b.w) also reduced lipid peroxidation and in-
flammatory mediators (IL-1 b and TNF-a), while
increased anti-inflammatory cytokines (IL-4 and
IL-10) in induced Parkinson’s disease in male
C57BL/6 mice [19].

Nitric oxide (NO) has the potential therapeu-
tic effects on acute respiratory distress syndrome 
in patients with COVID-19, and inhaled nitric 
oxide may become an alternate rescue therapy in 
patients with COVID-19 [20]. NO may inhibit the 
early stage in viral replication and could prevent 
viral spread, and recovery of patients [21]. Treat-
ment of bovine aortic endothelial cells (BAEC) 
with hesperedin (10 μM for 5 h) stimulated 
production of NO [22]. The effect of hesperidin 
(15 and 30 mg/kg) on cardiovascular remodeling 
in rats significantly reduced oxidative stress 
markers, TNF-a, TGF-b1, and enhanced plasma 
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nitric oxide metabolite (NOx) in l-NAME-induced 
hypertension in rats [23]. The results of a review 
of different studies in China showed that less than 
10% of smokers infected with COVID-19 [24]. The 
intermittent bursts of high NO concentration in 
cigarette smoke may be a protective mechanism 
against SARS-CoV-2 [25]. 

Hesperidin may be used as a promising drug 
candidate for the prevention and treatment of 
SARS-CoV-2 due to antiviral, anti-inflammatory 
and antioxidant properties. Furthermore, hesper-
idin interferes with viral entry through ACE2 re-
ceptors, release of NO into the blood stream and 
improved immune system.
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