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Abstract: (1) Background: To test the accuracy of a fully automated stroke tissue estimation algorithm
(FASTER) to predict final lesion volumes in an independent dataset in patients with acute stroke;
(2) Methods: Tissue-at-risk prediction was performed in 31 stroke patients presenting with a proximal
middle cerebral artery occlusion. FDA-cleared perfusion software using the AHA recommendation
for the Tmax threshold delay was tested against a prediction algorithm trained on an independent
perfusion software using artificial intelligence (FASTER). Following our endovascular strategy to
consequently achieve TICI 3 outcome, we compared patients with complete reperfusion (TICI 3) vs.
no reperfusion (TICI 0) after mechanical thrombectomy. Final infarct volume was determined on
a routine follow-up MRI or CT at 90 days after the stroke; (3) Results: Compared to the reference
standard (infarct volume after 90 days), the decision forest algorithm overestimated the final infarct
volume in patients without reperfusion. Underestimation was observed if patients were completely
reperfused. In cases where the FDA-cleared segmentation was not interpretable due to improper
definitions of the arterial input function, the decision forest provided reliable results; (4) Conclusions:
The prediction accuracy of automated tissue estimation depends on (i) success of reperfusion,
(ii) infarct size, and (iii) software-related factors introduced by the training sample. A principal
advantage of machine learning algorithms is their improved robustness to artifacts in comparison to
solely threshold-based model-dependent software. Validation on independent datasets remains a
crucial condition for clinical implementations of decision support systems in stroke imaging.
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1. Introduction

Defining infarction core and penumbra is relevant to determine the management
plan of patients with acute ischemic stroke. Multiple factors influence the evolution and
final extent of ischemic lesions, such as the location of the thrombus [1,2], preexisting
vascular pathology [3], and the state of collateral circulation [4,5], as well as other patient-
related factors [6,7], which necessitate moving from a universal time window towards an
individualized approach in management. This is reflected in the current guidelines for
stroke management by the American Stroke Association, as selected patients may be eligible
for invasive stroke therapy in an extended time window (6—24 h from last seen normal).
The guidelines also incorporate collateral flow status in clinical decision-making [8].

Perfusion imaging identifies hypoperfused brain tissue that is potentially salvageable if
revascularization can be achieved within 24 h [9]. An ADC threshold of <620 x 10~® mm?2/s
is currently recommended as a marker for the infarct core [10-12], and a Tmax of >6 s is used as
a predictor of severely hypoperfused tissues [13,14]. However, defining the infarct core based
on DWI remains a matter of controversy [15], as multiple studies have shown the presence
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of reversible diffusion restriction [12,16-20]. The dependency of the deconvolution method
on the arterial input function (AIF) renders Tmax susceptible to even minor changes in the
shape of AIF, making it one of the limitations of this perfusion parameter [21].
Quantitative analysis using a fixed threshold of a single parameter is widely used
clinically. However, due to the complexity of the stroke pathophysiology, with multiple
factors affecting the outcome, and increasing availability of advanced stroke therapy, a
multiparametric approach could be more useful. Currently, a reliable method able to
precisely determine the core and penumbra is lacking. In the last years, many attempts
were made to find a mathematical solution that could predict the fate of ischemic tissue
and gain better results using the perfusion data in the acute stage of patients with vascular
occlusion. Deep learning algorithms have been introduced to predict the salvageable tissue
in patients who receive mechanical thrombectomy and i.v. thrombolysis [22]. Supervised
decision forests (a subform of random forest classifiers) [23] have been suggested to predict
tissue fate based on multiparametric MRI sequences including perfusion data [24]. Fully
automated stroke tissue estimation using random forest classifiers (FASTER) [24,25] is a
fully automated algorithm that predicts tissue fate, from images in the acute stage, based
on supervised learning. When applied to 19 test cases with thrombolysis in cerebral
infarction (TICI) grading of 1-2 a, the predicted tissue-at-risk volume was positively
correlated with the final lesion volume. Prediction of tissue damage in cases with persistent
occlusion or full recanalization has not yet been analyzed. From a clinical point of view, this
dichotomization is of relevance, since growing evidence suggests that complete perfusion
(TICI 3) rather than incomplete revascularization (TICI 0) may provide remarkable benefit
in outcomes [26,27], while from the view of medical image analysis, major challenges arise
for predicting the outcome from multiple factors that influence tissue survival and guide
eligibility for reperfusion regimens. In this study, we report the precision of FASTER against
a threshold-based perfusion analysis in patients without vs. immediate full recanalization.

2. Materials and Methods
2.1. Ethical Statement

This is a retrospective study of patients from the Bernese Stroke Registry, a prospec-
tively collected database approved by the review board of the University Hospital of Bern
and the local ethical committee (Kantonale Ethikkommision Bern, Switzerland).

2.2. Patients and Inclusion Criteria

Patients who underwent treatment for acute ischemic stroke were retrospectively
identified from the stroke unit registry at the Inselspital, University of Bern. Inclusion
criteria were (i) patients over 18 years with acute ischemic stroke who underwent a brain
MRI exam in the acute phase, (ii) ischemic lesion (s) on DWI and PWI, (iii) proximal
occlusion of the middle cerebral artery (M1 or M2 segments), (iv) endovascular therapy
with a resulting TICI score of 0 or 3, and (v) follow-up imaging after 3 months. Patients
were included if imaging data were complete, including the raw perfusion data saved in
the Picture archiving and communication system (PACS), and were not used to train the
FASTER algorithm.

Patients were stratified according to TICI score [28]: (1) TICI score 3 (complete reper-
fusion) vs. (2) TICI score 0 (no reperfusion).

2.3. Imaging Protocol

The institutional clinical acute MRI stroke protocol was performed either on a 1.5T
system (Siemens Magentom Avanto and Siemens Magnetom Aera, Siemens medical solu-
tion) or a 3T system (Siemens Magnetom Verio, Siemens, healthcare, Erlangen, Germany).
The protocol includes the following sequences: a whole-brain DWI (slice thickness 5 mm),
an axial FLAIR sequence (slice thickness 5 mm), TOF-MRA (slice thickness 0.5 mm), and
an SWI (slice thickness 1.6 mm). After the application of i.v. Gadobutrol (Gadovist; Bayer
Healthcare, Berlin, Germany ) in an antecubital vein with 5 mL/s injection rate a standard
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dynamic susceptibility contrast (DSC), MRI perfusion (slice thickness 5 mm) was acquired
as well as a contrast-enhanced T1-weighted sequence (slice thickness 5 mm). Finally,
a contrast-enhanced MR angiography of the head and neck vessels was acquired after
injection of a second bolus of Gadobutrol with a 3 mL/s injection rate.

A similar MRI protocol was performed after 3 months. In 6 patients, a CT exam was
performed on follow-up instead of the MRI, which was performed on a 128 multidetector
CT, slice thickness 3 mm (Siemens Definition Edge). For this work, the prediction was
based on the diffusion weighted images, the apparent diffusion coefficient images, and the
dynamic susceptibility perfusion imaging, whereas the lesion volume was determined in
the follow-up examination of the FLAIR or non-enhanced CT.

2.4. Data Processing

Perfusion postprocessing was performed using Olea Sphere v2.3, which is an FDA-
cleared automated multivendor processing software for medical imaging, developed
by Olea Medical. The following postprocessing steps were performed automatically:
(1) motion correction, (2) segmentation of non-cerebral tissue, (3) automatic identification
of arterial input function (AIF) and venous reference, and finally, the different perfusion
parameters were generated. For each case, oscillation index Singular Value Decomposition
(0SVD) was performed to generate TTP, MTT, rBV, rBF, Tmax, corrected rBV, and K2 maps.

2.5. Manual Segmentation of Hypoperfusion

After processing perfusion parameters, manual segmentation of the lesions with
delayed perfusion was performed in the analysis module of Olea, which allows drawing
constraints of the volume of interest. The segmentation was performed on a slice-by-slice
basis in regions with a Tmax delay of >6 s to calculate the penumbra volume. These
constraints were defined as ground truth for penumbra. This step was performed by a
medical master’s student under the supervision of a board-certified neuroradiologist with
more than 10 years of experience.

2.6. Manual Segmentation of Final Infarct Volume

The final infarct volume was defined based on follow-up MRI (FLAIR), or follow-up
CT. The 3D slicer® v4.5.1-1, which is an open-source software for 3D visualization and
imaging postprocessing, was used for this task. Final infarct volumes were delineated
manually by a board-certified neuroradiologist on a slice-by-slice basis in the editor module
using draw and paint tools, and the calculated volume was defined as the ground truth for
the infarct core (Figure 1). The obtained delineated volumes were reviewed by a second
experienced observer in stroke imaging.

Figure 1. Example of a 61-year-old male patient with occlusion of the right MCA, and a TICI
0 score after therapy. Tmax image showing the critical hypoperfusion (>6 s) (a). The estimated
infarction prediction by FASTER is superimposed on the T2 image (b). Follow-up CT showing the
final infarction (c).
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2.7. Postprocessing with FASTER

The perfusion maps, calculated using oSVD deconvolution and generated by Olea in
the acute phase, were analyzed using FASTER, which provided an estimation of the final
infarct volume in the case of either complete (TICI 3) or no reperfusion (TICI 0), as well as
estimation of the penumbra in the acute situation.

2.8. Data Comparison

The results generated by FASTER were compared to the manually segmented areas
on the follow-up images:

1. Infarct core volume: The predicted infarct volume at baseline using FASTER was
compared to the final infarct volume on follow-up imaging (MRI or CT) calculated
with the slicer.

2. Penumbral volume: The estimated penumbral volume by FASTER was compared to
the manually delineated volume by Olea using the linear threshold of Tmax (>6 s).

We have actively waived metrics that are relevant for image analysis, such as Dice
score coefficient and Hausdorff distance, and focused on the clinically relevant metrics
only, i.e., the volume of tissue damage and the mismatch between core and penumbra,
since they constitute outcomes of clinical trials.

2.9. Statistics

For statistical analysis, R statistical software v3.32 was used to obtain the following
results: (1) statistical distribution of volumes, split according to TICI scores; (2) statistical
volume difference between manually delineated volumes and automatically estimated
volumes by FASTER using a Bland Altman plot; and (3) linear correlation between the two
datasets using the Pearson correlation coefficient.

3. Results

Thirty-one patients (13 female) with an acute ischemic stroke that underwent mechan-
ical thrombectomy with available baseline multimodal MRI imaging and follow-up MRI or
CT at 3 months were anonymized and included in the study. The age range was between
32-86 years (Median 70, IQR 60-75).

Complete reperfusion (TICI 3) was achieved in 26 (83.8%) patients, while no perfusion
(TICI 0) was reported in five patients (16.1%). A three months follow-up was available in
all patients, 6 (19.3%) with a CT, and 25 (80.6%) with brain MRI. Table 1 summarizes the
patient demographics.

Table 1. Demographics and infarction core and penumbra volumes.

Time to Time to Time Time to Infarction Final
Imag- iv. to Thrombec- Follow- Core Infarction Penumbra Penumbra
Number Age Gender NIHSS mag Throm- DSA tomy /i.a. TICI U FASTER Ground FASTER Tmax >
ng bolysis . Thrombolysis p 3 Truth (cm®) 6s (cm®)
(min) 4 (min) N (cm?) 3
(min) (min) (cm?)
1 61 m 22 120 - 283 295 0 CT 303.1 270.7 248.9 273.1
2 79 m 19 76 - 150 215 0 CT 420.6 192.9 270.0 312.8
3 64 f 11 180 - 239 313 0 FLAIR 86.8 749 96.5 78.6
4 86 f 7 172 180 245 - 0 CT 31.6 2.3 4.2 46.1
5 54 f 0 217 230 450 - 0 FLAIR 31.3 0.5 34.7 26.9
6 56 m 22 149 - 211 268 3 T2 2.7 84.5 48.3 N/A
7 69 f 22 240 - 360 390 3 FLAIR 32.7 84.0 220.6 207.0
8 32 m 14 250 - 310 370 3 CT 9.3 0.0 1235 147.9
9 70 m 15 105 150 192 252 3 FLAIR 0.4 30.6 4.7 N/A
10 73 m 10 114 150 188 253 3 T2 1.6 0.7 218.1 192.7
11 61 f 15 123 152 154 330 3 T2 6.8 15.2 206.5 164.4
12 67 m 15 168 200 260 290 3 T2 17.7 9.8 219.7 1924
13 86 m 11 110 140 183 200 3 T2 0.1 0.8 117.6 89.9
14 72 m 21 100 135 194 205 3 FLAIR 45.6 64.4 157.2 146.8
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Table 1. Cont.

Time to Time to Time Time to Infarction Final
Imag- iv. to Thrombec- Follow- Core Infarction Penumbra Penumbra
Number Age Gender NIHSS mag Throm- DSA tomy /i.a. TICI U FASTER Ground FASTER Tmax >
(rlx:lli ) bolysis (miny  Thrombolysis P (cm®) Truth (cm®) 65 (cm®)
(min) (min) (cm®)

15 73 f 6 114 160 201 227 3 T2 0.3 2.8 50.3 0.5

16 45 m 14 85 - 195 207 3 T2 23.5 26.2 1214 149.0
17 59 f 15 102 - 222 235 3 T2 9.2 25.3 217.4 170.1
18 55 m 19 83 - 150 194 3 T2 35.6 160.4 1735 199.0
19 58 m 14 748 - 840 860 3 T2 18.3 125 254.6 233.5
20 70 f 6 260 - 343 503 3 T2 0.0 16.3 21.1 46.4
21 51 m 13 104 - 166 180 3 T2 5.7 21.1 102.1 103.6
22 72 m 13 107 - 190 204 3 FLAIR 1.2 6.6 255.3 272.1
23 76 m 13 83 140 157 200 3 T2 31 10.6 130.0 95.3
24 85 f 16 - - * * 3 FLAIR 134 53 253.6 220.6
25 76 m 15 217 250 279 281 3 CT 23.4 35.5 95.1 141.9
26 78 m 11 103 - 158 164 3 FLAIR 2.2 55.8 256.8 225.6
27 63 m 3 76 - 171 190 3 FLAIR 3.4 63.4 113.2 112.6
28 84 f 15 148 - 195 222 3 CT 8.4 174 169.8 152.8
29 63 f 11 127 - 153 219 3 FLAIR 49 6.8 1175 95.2
30 71 f 24 - - * * 3 FLAIR 40.2 51.8 282.4 250.5
31 74 f 13 96 - 127 176 3 FLAIR 0.5 1.6 181.3 139.9

* Unknown symptom onset.

3.1. Infarct Core

The final infarct volume (ground truth) calculated on the follow-up imaging ranged
from 0-270,659 mm? (Median 17,394 mm?, IQR 5950-59,600). The volume difference
between FASTER and the manual segmentation varied between —30,749 mm? (larger
volumes detected by FASTER) and +81,764 mm? (smaller volumes detected by FASTER),
with a mean difference of +5398 mm3. Except for two outliers (patient 18 with a difference of
+124,819 mm? and patient 2 with a difference of —227,682 mm?) (Figure 2), the differences
tended to increase with increasing the mean infarct volume (true volume); the Pearson
correlation coefficient was R = 0.8045 with a p-value < 0.001. The linear correlation approves
to be statistically significant (Figure 3).
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Figure 2. Bland Altmann plot for the differences between the predicted volumes of FASTER and the
manually segmented final infarction volumes.
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Figure 3. Linear correlation curve of the manually defined (x-axis) and automatically predicted
(y-axis) final infarction volumes.

Subgroup analysis shows that in cases with TICI 0, FASTER, as well as Tmax, esti-
mates larger final infarction volumes compared to the ground truth; however, the mean
overestimation of the final infarction volume by Tmax was greater than FASTER (average
difference for Tmax = 39,227 mm? and for FASTER = 31,284 mm? ). The volume difference
tends to be higher in cases with high NIHSS for both FASTER and Tmax (assuming that the
penumbra equals the infarction core in cases of no perfusion). The case with the highest
volume difference in both Tmax and FASTER was a patient with NIHSS of 19. However, in
relation to the final infarction volume, the volume difference (between ground truth and
estimation) appears to be higher in cases with lower NIHSS for both the FASTER and Olea
estimation (Figure 4). There was no relation found between volume difference and time to
recanalization.

# NIHSS Il FASTER Tmax

30

225

15

NIHSS

7.5

Figure 4. Graph showing the relation between NIHSS (black line) and the percentage of volume
difference (volume difference between the estimated volume and the true infarction volume in
relation to the true infarction volume).
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In cases with TICI 3, FASTER provides smaller infarct volumes (Figure 5).

400,000 -

300,000 -

200,000 -

Volume (mm?®)

100,000 -

0-

FASTER Manual

Figure 5. Boxplot diagram of the comparison between the predicted final infarction volumes by
FASTER and the manually segmented final infarction volumes on follow-up imaging, divided
according to TICI score: TICI 0 (green) and TICI 3 (blue).

3.2. Penumbra

The calculated tissue at risk volume based on Tmax > 6 s (critical hypoperfusion)
ranged from 480-312,800 mm?3. (Median 149,040 mm?, IQR 95,340-206,970). Two patients
(P 6 and P 9) were excluded due to artifacts in the Tmax perfusion map, leading to the
inability to delineate the lesion. In these two patients, FASTER calculated the volume of
at-risk-tissue to be 48,327 mm? and 4695 mm?, respectively. The volume difference between
the volume estimated by FASTER and the threshold method vary between —49,820 mm?
(overestimation of FASTER) and 46,832 mm? (underestimation of FASTER). All results
lie inside the limits of agreement (Figure 6). There is no clear trend between the size of
the mean volume and the volume differences. The volume differences are distributed
uniformly between cases. The correlation between the two volumes (i.e., estimated by
FASTER and calculated by threshold method) is statistically significant with an overall
correlation value R = 0.9317 and p = < 0.001 (Figure 7). For both groups (TICI 0 and TICI 3),
FASTER overestimated the true penumbra volume compared to the conventional threshold
method (Figure 8). The volume difference tended to be higher in cases with high NIHSS.
The NIHSS of the patients with the highest volume difference was 19 and 22 (Figure 9).
Notably, the differences were higher in the patients with an NIH below 11 and beyond 15.

No relation was found between volume difference and time to recanalization.
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Figure 6. Bland Altmann plot for the differences in the volume of tissue at risk as estimated by
FASTER and calculated by the threshold method.
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Figure 7. Linear correlation curve of the penumbra between the threshold method (x-axis) and
FASTER (y-axis).
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Figure 8. Boxplot diagram of the comparison between the volumes of tissue at risk as estimated by
FASTER and the manual delineation based on the Tmax threshold, divided according to TICI score:
TICI 0 (green) and TICI 3 (blue).

25

18.75

12.5

NIHSS

6.25

0

Figure 9. Graph showing the relation between NIHSS (black line) and the absolute volume difference
of the penumbra (the difference between the estimated penumbra volume by FASTER and the volume
of Tmax > 6 s).

4. Discussion

The prediction accuracy of a decision forest was previously reported, in which the
final lesion volume predicted by FASTER in the case of a poor response to therapy was
significantly correlated with the final lesion volume. Since testing was restricted to cases
having TICI scores 1-2 a, we have now extended the analysis to cases with TICI scores
of 0 and 3. The results of our study indicate a trend towards overestimation of the final
infarct volume in TICI 0 versus a trend towards underestimation in cases with complete
reperfusion after therapy using FASTER.
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Both the final infarction and tissue-at-risk may differ according to response to revascu-
larization therapy [24], and the state of collaterals [29,30], which influenced the prediction
accuracy of FASTER. In cases with no reperfusion after mechanical thrombectomy (TICI 0),
FASTER, as expected, tended to overestimate the final infarction volume. In this study, we
followed a strategy that defined a “final” infarction as a time point where periprocedural
effects, inflammation, and tissue repair can be neglected as confounders, rather than to
compare the lesion size earlier during lesion evolution, since apparent lesion size in the
early acute phase is known to overestimate final lesion volume even in cases with complete
revascularization. In cases with complete reperfusion after mechanical thrombectomy
(TICI 3), FASTER tended to underestimate the true infarction volume, which tended to
be larger with higher lesion volumes. Since the perfusion maps were processed with
oSVD—a delay-sensitive approach—any delay in contrast bolus arrival (e.g., due to carotid
stenosis or impaired cardiac function) may lead to overestimation of the results. The mean
penumbra volume difference was found to be 7.8 mL; this volume appeared to be not
related to the size of the effective penumbra. In summary, the results achieved a good
accuracy, whereas precision was low. Improving the precision of detecting the infarction
core and penumbra is mandatory for improved decision support in the selection of patients
for reperfusion therapy beyond the defined treatment window. A principal advantage of
the automated method is its robustness to artifacts. Due to the susceptibility of the singular
value decomposition to noise and artifacts, the results of the perfusion parameters may
not be accurate or maps can be distorted so that no decision can be made even by the
experienced readers. In our series, FASTER allowed for predicting the tissue at risk in two
additional cases where the FDA-cleared software failed [31]. The superiority of automated
analysis could be subsequently demonstrated in further studies with arterial input function
detection failures [32].

Technical factors such as image resolution, supervised implementation of feature
extraction, and the initial training dataset may to some extent account for the differences
between the FASTER algorithm and manual segmentation. FASTER perfusion maps were
resampled to 2 mm isotropic resolution with linear interpolation; however, for the newer
version, the original scanner resolution was used without any modifications. FASTER
was trained on maps processed with block circulant decomposition using the Perfusion
Mismatch Analyzer (PMA) from the Acute Stroke Imaging Standardization Group (ASIST)
v3.4.0.6, but the testing cases in this study were processed by Olea v2.3. An additional
factor for the difference was the inclusion criteria of patients, which included only patients
with TICI 0 and TICI 3 only, and not all different responses to reperfusion therapy (TICI 0
to TICI 3). Clinical severity of stroke appears to be one of the factors that may influence
the results, as high core and penumbra volume difference was often found in high NIHSS,
and also a high percentage of volume difference for both FASTER and OLEA was found in
cases with lower NIHSS.

Methods based on thresholds of different perfusion parameters still form the basis
for decision support in different commercially available software [33] and are already
integrated into clinical practice. However, there are inaccuracies and limitations of such
methods, and there are already known significant differences between the commercially
available software and sequences, even if identical source data were used, with insuffi-
cient correlations of true values and a lack of standardization [34-38]. Therefore, different
attempts were made to move beyond the classical threshold-based methods to use semiau-
tomated or fully automated methods [39]; lately, different works have focused on using
deep learning methods to better differentiate the tissue at risk from the infarcted tissue,
and challenges were organized to motivate researchers to develop advanced algorithms for
evaluation of perfusion images in stroke patients [40,41], of which FASTER was one of the
top-performing algorithms [40]. Other various machine learning models have been used for
the prediction of tissue fate of processed perfusion parameters, but lately, different works
reported the value of using the raw perfusion data instead of the already post-processed
parameters, with good results [31,32,42—46]. Pinto et al. designed a fully automated deep
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learning method using both supervised and unsupervised learning to predict final stroke
lesions after 90 days from multiparametric MRI imaging [47]. Combining clinical infor-
mation with multimodal MRI images also reaches an improved performance [48]. Results
from the ISLES 2018 challenge have recently demonstrated that machine learning methods
may predict infarcted tissue from perfusion-CT with improved accuracy compared to
threshold-based methods used in clinical routine [46]. More recently, quantitative eval-
uation of deep learning derived MR perfusion maps yielded a strong agreement across
different threshold-based segmentation of Tmax perfusion maps for patient selections for
thrombectomy, rendering automated image analysis methods suitable for point of care
triage and decision support if a medical expert performs the second look [32].

Limitations

This is a retrospective study, with a limited number of patients from a single center
and single perfusion processing software. Another limitation is that we did not calculate
the interrater reliability, as the segmentation of the final infarction volume was performed
primarily by a single rater and reviewed by a second rater to check for correctness, which
showed a high interobserver agreement. The study focused on the evaluation of volumetric
estimation of tissue at risk and final infarction, which does not take into account the
topography of the lesion; therefore, the metrics as a dice similarity coefficient were not
calculated. We decided to focus the analysis on the volumetric estimates since those
estimates are most relevant for software solutions in decision support in strokes.

5. Conclusions

The volume estimation of FASTER for the infarction core and penumbra in predicting
tissue fate varies according to the response to reperfusion therapy, generally with good
accuracy, but with low precision. Both Tmax and FASTER overestimated the final infarction.
FASTER performed better in the determination of tissue fate in cases with artifacts in which
such determination is not possible using conventional methods. Using different processing
techniques may impact the results of prediction.
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