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Abstract: The binding of drugs to nucleic acids, proteins, lipids, amino acids, and other biological
receptors is necessary for the transportation of drugs. However, various side effects may also
originate if the bound drug molecules are not dissociated from the carrier, especially with the aid of
non-toxic agents. The sequestration of small drug molecules bound to biomolecules is thus central to
counter issues related to drug overdose and drug detoxification. In this article, we aim to present
several methods used for the dissociation of small drug molecules bound to different biological and
biomimicking assemblies under in vitro experimental conditions. To this effect, the application of
various molecular assemblies, like micelles, mixed micelles, molecular containers, like β-cyclodextrin,
cucurbit[7]uril hydrate, etc., has been discussed. Herein, we also try to shed light on the driving
forces underlying such sequestration processes through spectroscopic and calorimetric techniques.

Keywords: drug sequestration; self-assemblies; host–guest chemistry; steady-state spectroscopy;
isothermal titration calorimetry

1. Introduction

The study of the interaction between small molecules and biomolecules, like proteins,
DNA, RNA, lipids membranes, etc. forms a key area of research in which a comprehensive
understanding of such interactions lays the foundation for the requisite understanding
toward the development of new drugs to counter various lethal diseases [1–3]. Various
research groups have, over the years, investigated the interactions of small molecules
with proteins, DNA, RNA, etc. by using experimental techniques based on spectroscopy,
calorimetry, polarimetry, and so on [4–10]. In recent times, a significant body of compu-
tational or theoretical research endeavors has also been dedicated toward a better under-
standing of the interaction phenomena [11–17]. The increasing growth of attention, within
the scientific community, to this field of research is not surprising because the site-specific
targeted delivery of drug molecules and their excretion from the human body via a benign
mechanism pose very crucial research questions toward the successful implementation
of the therapeutic actions of a drug. The issue related to the excretion of drugs becomes
even more pertinent with the view of the possibility of overdose, which may in turn lead
to detrimental effects on various biomolecular assemblies within the human body [18–20].
In this context, it may be noted that in the last few years, the evolution in the field of
nanomedicine has promised developments of smart systems aiming at in vivo functional-
ity. However, it is important to realize that a large part of the promise developed in this
area still relies on rational reasoning rather than concrete experimental evidence, thereby
inviting further research to this effect [21,22]. Under real in vivo conditions, nanocarriers
or nano-assemblies should first arrive at the site of interest, such as target organs/tissues,
and then have the possibility of sequestering small drug molecules bound to biomolecules.
However, nanocarriers or nano-assemblies themselves will always encounter issues related
to nano-bio interactions. Therefore, the targeting ability becomes critical for these kinds
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of concepts [21,22]. Naturally, the validation of such concepts still promises ample room
for rigorous experiments. However, given the intrinsic complexities associated with the
in vivo studies on such effects, it is often beneficial to explore the concerned interactions in
an in vitro experimental setup to extract the initial guidelines. The key motivation of the
present article is to review the application of various molecular assemblies in the sequestra-
tion of drugs bound to different biological assemblies, like DNA, RNA, proteins, etc., and
biomimicking assemblies, like lipid membranes. Herein, we summarize the experimental
data showing the extraction of bound drugs using self-assembled molecular aggregates,
like micelles, mixed micelles, reverse micelles, liposomes, niosomes, etc., as well as using
molecular receptors, like cyclodextrins, and cucurbit[n]urils. We feel that the results of the
sequestration of bound-drug molecules from a variety of biological/biomimicking recep-
tors could be helpful not only in forming a comprehensive understanding of this important
phenomenon but also in furnishing a relevant database for optimizing the accompanying
experimental conditions.

Micelles are self-assemblies of amphiphilic molecules having long hydrophobic tails
oriented toward the core and hydrophilic headgroups exposed toward the bulk water.
They are thermodynamically stable, nanoscopic dynamic structures typically formed in
the aqueous medium above a certain concentration (the critical micellar concentration,
CMC) and above a certain temperature (the critical micellar temperature (CMT) or the
Krafft temperature) [23–25]. The surfactant-assisted dissociation of a drug–DNA complex
was first reported by Muller and Crothers in 1968 [26]. Later in 2003, Westerlund and
co-workers showed that the rate of dissociation of DNA-bound cationic ligands is aug-
mented by the presence of surfactants in both monomeric and micellar forms [27]. They
studied the binding interaction of four cationic complexes with DNA, suggesting that
the intercalative mode of binding is operational. Further, a sodium dodecyl sulfate (SDS)
surfactant was employed to interact with the cationic complexes via strong electrostatic
forces in which the surfactants act as hydrophobic pockets for the sequestration of the
complexes. Negatively charged SDS micelles are assumed to not interact with the DNA
due to electrostatic repulsion [27]. Furthermore, the same group reported that an SDS
surfactant drastically accelerates the rate of the dissociation of Ruthenium complexes from
calf thymus DNA (ctDNA), with this process being entropically driven [28]. Guchhait
and co-workers reported that the interaction of the biological photosensitizer harmane
(HM) with herring sperm DNA (hsDNA) is governed by both intercalative and electrostatic
forces, and the bound drug was subsequently deintercalated using cationic surfactant
cetyltrimethyl ammonium bromide (CTAB) [29]. Patra et al. reported the anionic surfactant
SDS micelle-assisted deintercalation of the cationic dye phenosafranin from DNA [30].
Using Isothermal Titration Calorimetry (ITC), they showed that the overall deintercalation
process is enthalpically unfavorable but entropically favorable. The circular dichroism
(CD) spectra of SDS with DNA revealed that SDS micelles do not alter the native B-form
of DNA [30]. Kundu et al. explored the cationic CTAB micelle-assisted dissociation of
the 3-acetyl-4-oxo-6,7-dihydro-12H-indolo[2,3-a]-quinolizine (AODIQ) drug from ctDNA.
By using spectroscopic and molecular docking studies, they demonstrated that AODIQ
binds to DNA at the minor groove. CTAB electrostatically binds to the polyphosphate
backbone of DNA and behaves as a hydrophobic sink for DNA-bound drugs [31]. Apart
from cationic and anionic surfactants, Singh and co-workers reported the application of
a non-ionic surfactant, Triton-X 114, as a sequestrating agent for hs-DNA-bound safranin
O [32]. Below the CMC, Triton-X 114 is unable to extract the drug molecules from DNA,
but beyond its CMC, the surfactant is found to extract the DNA-intercalated safranin O. CD
spectroscopy further validated that the secondary structure of DNA is not influenced by
Triton-X 114 at both premicellar and micellar concentrations, thereby making the non-ionic
surfactant an effective drug-sequestrating probe [32]. Different drug-sequestrating agents
for various biomolecular/bio-replicating systems are tabulated in Table 1 [29–48].
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Table 1. Different sequestrating agents for different biological and biomimicking environments.

Serial
Number

Biological/Biomimicking
Environment Small Molecule/Drug Sequestrating Agent Reference(s)

1. Herring Sperm DNA Harmane CTAB [29]
2. Calf Thymus DNA Phenosafranin SDS [30]

3. Calf Thymus DNA 3-Acetyl-4-oxo-6,7-dihydro-12H-indolo-[2,3-a]-
quinolizine CTAB [31]

4. Herring Sperm DNA Safranin O Triton X-114 [32]
5. DNA Mitoxantrone SDS [33]
6. Heparin Mallard Blue SDS [34]
7. Herring Sperm DNA Norharmane DTAB, CTAB, TTAB [35]
8. DNA Ethidium Bromide P105, F127, and P123 with SDS [36,37]
9. DNA Epirubicin P123-SDS Mixed Micelles [38]

10. BSA Protein 9-(2-Caboxy-2-cyano)vinyl-julolidine CTAB-P123
Mixed Micelles [39]

11. Calf Thymus DNA Piperine Surface Active Ionic Liquid [40]
12. Calf Thymus DNA Doxorubicin Liposomes [41–43]
13. DMPC lipids Phenosafranin β-Cyclodextrin [44]
14. DMPG Lipids Nile Red β-Cyclodextrin [45]
15. EYPC Lipids Phenosafranin, ANS, Nile Red β-Cyclodextrin [46]
16. Liposomes Sanguinarine β-Cyclodextrin [47]
17. Torula Yeast RNA Cryptolepine Cucurbit[7]uril [48]

2. Sequestration of Drugs from Biomolecular Assemblies
2.1. Sequestration of Small Molecules from DNA Using Micelles

In this section, we will discuss the mechanism of the sequestration of Harmane
(HM) bound to herring sperm DNA, using the cationic surfactant CTAB [29]. Herein, the
detergent molecules conventionally act as the hydrophobic sink for the dissociated drugs.
Figure 1 depicts that in the presence of the cationic surfactant CTAB, the fluorescence
spectral characteristics of DNA-bound HM are qualitatively reversed in comparison to
those observed during the binding interaction of the drug with DNA, along with an
increase in an additional fluorescence band at ~375 nm [29] attributed to the neutral species
of HM [49–56]. The modulation of the fluorescence intensity of HM (the cationic species)
with added CTAB concentrations is shown in the inset of Figure 1. These results reflect
the deintercalation of the bound drug from the HM–DNA complex in the presence of the
surfactant. As a control experiment, the interaction of HM with the surfactant alone has
also been performed with the result that the inception of saturation of the interaction of
CTAB with the HM–DNA complex is observed at [CTAB] ~0.6 mM, a considerably small
concentration of the surfactant at which there is essentially no interaction of HM with the
surfactant alone [29].

The CTAB-induced modulation of the fluorescence profile of the HM–DNA complex is
thus reasonably assigned to the dissociation of the bound drug, while the development of
the fluorescence band corresponding to the neutral species of HM may be due to enhanced
hydrophobicity of the medium due to the presence of the surfactant. In this context, it
is pertinent to state that similar observations were not found with an anionic surfactant,
namely sodium dodecyl sulfate (SDS) [29]. This is probably due to the lack of an interaction
of SDS with DNA owing to the electrostatic repulsion between the negatively charged
polyphosphate DNA backbone and the anionic surfactant [26,27,57–63]. Similarly, with
a neutral surfactant (Triton X-100), no noticeable sequestration of the DNA-bound drug
molecules could be observed [29]. These observations collectively lead to the conclusion
that a stabilizing electrostatic interaction between the cationic surfactant CTAB and the
negatively charged polyphosphate backbone of DNA probably plays an important role
underlying the observed interactions leading to the sequestration of the bound drug
molecules from the DNA duplex. It is relevant to state in this context that in the range of
CTAB concentrations employed in the present study, the native conformation (B-form) of
DNA remains practically unperturbed, as is characterized by the circular dichroic (CD)
profile of DNA with added CTAB, which resembles the CD profile of the B-DNA [29].
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Figure 1. Effect of CTAB on the emission of DNA-bound HM. Spectra (i) to (v) correspond to [CTAB] 
in mM (i) = 0, (ii) = 0.1, (iii) = 0.2, (iv) = 0.3, (v) = 0.4. Inset variation of cationic fluorescence (I/I0 at 
Figure 1. Effect of CTAB on the emission of DNA-bound HM. Spectra (i) to (vii) correspond to [CTAB]
in mM (i) = 0, (ii) = 0.1, (iii) = 0.2, (iv) = 0.3, (v) = 0.4, (vi) = 0.5, (vii) = 0.6. Inset variation of cationic
fluorescence (I/I0 at λem = 435 nm; I0 is the fluorescence intensity of DNA-bound HM in the absence
of CTAB, and I is the fluorescence intensity of DNA-bound HM with an increasing concentration of
CTAB). [Adapted with permission from Ref. [29] Copyright 2011 American Chemical Society].

In the study of the interaction of drug molecules with biological receptors, the kinetics
of the association and dissociation of the drug is considered to have crucial diagnostic
significance [26,27,58–60]. A slow rate of deintercalation from the DNA-bound state has
been widely argued in the literature as an important property toward efficient therapeu-
tic functionality [26,27]. The fluorescence decay profile of HM in the presence of DNA
(at λ ~ 435 nm) represents a characteristic rate constant for the association process, as
ka(±5%) = 0.0375 s−1 (Figure 2a), while the dissociation rate constant with added CTAB is
found to be kd(±5%) = 0.0098 s−1 (Figure 2b) [29].
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Figure 2. Change in the fluorescence intensity of HM at λem = 435 nm with respect to time. (a) During
the interaction of 2.0 µM HM with 100 µM DNA. (b) Dissociation of DNA-bound HM in the presence
of 0.9 mM CTAB. The solid black lines indicate the fitted lines. [Adapted with permission from
Ref. [29]. Copyright 2011 American Chemical Society].

However, given that the dissociation kinetic data observed in the presence of CTAB
should not be directly comparable with the association kinetics data found in the absence
of the surfactant, the following expression has been used to calculate a value for the
dissociation rate constant:

K =
k1

k−1

where, K = 3.34 × 103 represents the binding association constant of HM with DNA. Using
this relationship, we have k−1 = 1.12× 10−5 M−1s−1 [29], that is the prerequisite for a faster
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association, and the relatively much slower dissociation of the drug from the DNA duplex
is realized under the presently employed experimental conditions.

In another report by Paul et al. [35], the detergent-sequestered release of norharmane
(NHM, Scheme 1) from the DNA double helix was addressed by using a series of cationic
surfactants, namely cetyltrimethyl ammonium bromide (CTAB), tetradecyl trimethyl am-
monium bromide (TTAB), and dodecyl trimethyl ammonium bromide (DTAB), with vary-
ing hydrophobic tail lengths (n = 16 for CTAB, n = 14 for TTAB and n = 12 for DTAB;
n = number of carbon atoms in the surfactant tail length).
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Scheme 1. The cation 
 neutral prototropic equilibrium of NHM. [Reprinted with permission from
Ref. [35]. Copyright 2016, Elsevier].

The observations (Figure 3) of cationic surfactant-induced modulations in the fluores-
cence profile of DNA-bound NHM in a qualitatively reverse pattern in comparison to those
observed for the binding of the drug to the DNA duplex is ascribed to the deintercalation
of the drug from the DNA scaffolds, whereas the genesis of the additional fluorescence
band at ~380 nm is attributed to the neutral species of the drug [29,35,64–66]. The negligi-
ble interaction of NHM with the surfactants alone within the range of concentrations of
the surfactants employed for deintercalation of the drug was also confirmed in suitably
designed control experiments [35]. The important criterion of a slow rate of deintercalation
of the drug compared to the rate of association is also achieved under the as-employed
experimental conditions. The fluorescence decay traces describing the deintercalation of the
DNA-bound drug in the presence of the surfactants are presented in the insets of Figure 3,
and the relevant data are compiled in Table 2.

Table 2. Summary of kinetic parameters for the surfactant-sequestered dissociation of DNA-bound
NHM at 293 K.

Surfactant n a kd (s−1)

CTAB 16 65 × 10−3

TTAB 14 12 × 10−3

DTAB 12 7.96 × 10−3

a n = no. of C-atoms in the surfactant chain. The rate constant for the association of NHM with DNA at 293 K is
ka = 108.1 × 10−3 s−1. [Reprinted with permission from Ref. [35]. Copyright 2016, Elsevier].

In this context, it is important to note that simply through the rational choice of the
surfactants, the rate of dissociation of the drug from the DNA scaffolds can be tuned
effectively over an order of magnitude (Table 2). This in turn provides considerable
flexibility in the wider perspective of research on drug delivery toward optimization of the
ADME (Administration-Distribution-Metabolism-Elimination) profile of the drug, and our
results appear to present a tenable initiative for this effect in an in vitro study.

Thermodynamics of dissociation. The thermodynamic parameters corresponding to
the dissociation of the NHM–DNA complex with an added surfactant, as derived from
isothermal titration calorimetry (ITC) measurements, are presented in Table 3 (and the
results of ITC measurements for the interaction of CTAB with the NHM–DNA complex
are displayed in Figure 4). That the native conformation of the DNA double helix is not
discernibly perturbed in the presence of the surfactants within the range of concentrations
of the latter implies the possibility of no direct interaction of DNA with the surfactants.
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Consequently, it is argued that the enhanced hydrophobicity of the medium in the pres-
ence of the surfactants stimulates a transit opening of the compact double-helical DNA
structure. This in turn provides a hydrophobic sink for deintercalation of the bound drug
molecules from the drug–DNA complex by decreasing the energy of activation of the
process [26,27]. The deintercalated drug molecules are subsequently associated with the
surfactant molecules. The first step is typically governed by pivotal contributions from
hydrophobic interactions and is usually recognized as the rate-limiting step. However,
it is important to realize that the thermodynamic data derived from ITC measurements
provide an equilibrium description of the inherently complex phenomenon. The observed
increase in entropy (T∆S > 0) is in consensus with the typical thermodynamic signature
for hydrophobic hydration in which a positive change of entropy is described based on
the release of water molecules and the counterions from the interface of the interacting
species [67–72].
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Figure 3. Fluorescence spectra (λex = 348 nm) of the drug NHM (bound to hsDNA) in the presence
of increasing concentrations of various cationic surfactants. In panel (a): curves (i)→ (ix) represent
concentrations of CTAB: 0, 50, 100, 150, 200, 250, 300, 350, 400 µM; in panel (b): curves (i)→ (vi)
represent concentrations of TTAB: 0, 20, 40, 60, 100, 120 µM; in panel (c): curves (i)→ (viii) represent
concentrations of DTAB: 0, 50, 100, 150, 200, 250, 300, 350 µM. The insets show the kinetics of the
growth of the fluorescence intensity of NHM (bound to hsDNA) following dissociation of the drug
induced by the cationic surfactants (monitoring wavelength is λem = 450 nm). The symbols denote
the experimental data, and the solid lines denote the fitted lines. The details of the experimental
conditions are given in the text. [Reprinted with permission from Ref. [35]. Copyright 2016, Elsevier].
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Table 3. Summary of thermodynamic parameters for the surfactant-sequestered dissociation of
DNA-bound NHM.

Surfactant a Ka
(M−1)

∆H
(kJ mol−1)

T∆S
(kJ mol−1)

∆G
(kJ mol−1)

CTAB (n = 16) (3.5 ± 0.12) × 105 −3.85 ± 0.19 27.79 ± 0.08 −31.63
TTAB (n = 14) (2.6 ± 0.10) × 105 −1.56 ± 0.10 29.36 ± 0.10 −30.93
DTAB (n = 12) (1.84 ± 0.11) × 104 0.59 ± 0.10 24.92 ± 0.11 −24.33

a n is no. of carbon atoms in the surfactant tail. [Reprinted with permission from Ref. [35]. Copyright 2016, Elsevier].
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2.2. Sequestration of Small Drug Molecules from DNA Using Mixed Micelles

Nath and co-workers showed that anionic micelles (SDS micelles) have certain lim-
itations for drug sequestration; for example, the sequestered cationic drug substantially
inhabits the surface of micelles and is not encapsulated into the nucleus of micelles due
to the high surface charge density, and cationic drug molecules are also unable to gain
significant hydrophobic stabilization, etc. [36]. To overcome this challenge, they employed
pluronic copolymers in addition to SDS micelles. Such polymer–micelle assemblies form
mixed micelles and offer more hydrophobic and electrostatic environments to the bound
drugs. These unique features of mixed micelles make them potent candidates for drug
sequestration. It has been established that P123-SDS mixed micellar assemblies can suc-
cessfully deintercalate DNA-bound ethidium bromide; this sequestration may be con-
trolled by the varying chain length of the copolymer used [36,37]. Additionally, cationic
surfactant—copolymer mixed micelles, such as P123-CTAB mixed micelles, can be utilized
to diminish the denaturing capacity of surfactants on the native structures of biomolecules
in the course of their functioning as sequestrating agents for protein-bound drugs [39].
Herein, we discuss the sequestration of an anticancer drug, epirubicin hydrochloride
(EPR), from its intercalated complex with well-matched (WM) DNA and a series of
mismatched (MM) DNAs, namely cytosine-cytosine mismatched DNA (CC MM DNA),
cytosine-thymine mismatched DNA (CT MM DNA), and cytosine-adenine mismatched
DNA (CA MM DNA), employing a P123-SDS mixed micellar assembly [38]. EPR exhibits a
fluorescence maximum at ~590 nm (excitation at 480 nm). The binding interaction of EPR
with DNA is characterized by the quenching of the fluorescence intensity of the drug, while
the recovery of the fluorescence intensity of EPR with added SDS to the EPR–DNA (with
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WM and MM DNAs) complex containing 0.5 mM P123 is indicative of the release of the
bound drug molecules from the DNA scaffolds (Figure 5).
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(a) WM DNA, (b) CA MM DNA, (c) CC MM DNA, (d) CT MM DNA. [Adapted with permission
from Ref. [38]. Copyright 2021 American Chemical Society].

The deintercalation of the drug from the DNA duplex in the presence of mixed
micelles is further affirmed by fluorescence lifetime data, which show that the excited-
state fluorescence lifetime of EPR in the EPR–DNA-mixed micelle complex (~1.44 ns) is
strikingly close to that of the drug in the EPR–mixed micelle complex (in the absence of
DNA) [38]. This result implies that the deintercalated drug molecules are entrapped within
the mixed-micellar systems. The release of the drug from DNA with the mixed micelle is
also established from other biophysical methods, like fluorescence anisotropy, UV-melting
studies, and CD spectral studies. This investigation not only provides detailed insights into
the interaction of anticancer drugs with DNA, but also highlights that a mixed-micellar
system consisting of an anionic surfactant and neutral triblock copolymer can be employed
for detoxification in the case of drug overdose [38].

2.3. Sequestration of Sanguinarine (SG) from the Liposome Membrane Using Cyclodextrin

Liposome membranes are self-assembled nanostructures that mimic the lipid bilayer of
the plasma membrane. They roll up into a spherical shell having a hydrophilic interior and
hydrophobic bilayer region capable of accommodating small amounts of water molecules
inside the core and small hydrophobic molecules that can be non-covalently bind the
lipid bilayer. These vesicles may comprise phospholipids, non-ionic or ionic surfactants,
etc. The size and charge of phospholipid vesicles, known as liposomes, can be tuned by
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varying the concentration and composition of the corresponding lipid molecules [73,74].
Over the years, liposomes have captured significant attention in drug delivery research
due to their properties, like solubilization, drug loading, and the targeted delivery of
drugs [44–46,75,76]. Besides this, Chakraborty and co-workers proposed that liposomes
can deintercalate DNA-bound doxorubicin through lipoplex formation [41–43].

In this section, we discuss the sequestration of small drug molecules bound to liposome
membranes by cyclodextrin [47]. Cyclodextrins (CDs) are non-toxic, cyclic sugar polymers,
soluble in water and in polar solvents, comprised of a structurally well-defined hydrophobic
cavity that can accommodate small “guest” molecules mainly via non-covalent interactions.
Hence, CDs have been widely applied as “molecular hosts” in a variety of aspects [77–81].
Sanguinarine (SG) is an alkaloid belonging to the quaternary benzo[c]phenanthridine fam-
ily, having a wide spectrum of therapeutic activities, including antibacterial, antimicrobial,
and anti-inflammatory properties [82–85].

The binding interaction of SG with dimyristoyl-L-α-phosphatidylglycerol (DMPG)
lipid is found to be reflected by a sharp enhancement of the fluorescence intensity of the
band distinctive of the iminium form of SG (λem ~ 580 nm) together with the diminution
of the fluorescence intensity of the band of the alkanolamine form (λem ~ 418 nm) with
increasing DMPG concentrations (Figure 6a); a schematic representation of the iminium
and alkanolamine forms of SG is given in Scheme 2. This observation suggests that a
preferential binding interaction of the cationic (iminium) form of the drug with the anionic
surface charge of the lipid (DMPG) is assisted by a stabilizing electrostatic interaction [47].
Figure 6b reveals that with added β-cyclodextrin (βCD), the fluorescence intensity of the
iminium form (λem ~ 580 nm) of DMPG-bound SG decreases coupled with an increase in
the intensity of the alkanolamine form (λem ~ 418 nm). These observations are indicative of
the expulsion of the drug molecules bound to the DMPG-lipid with added βCD [34,86,87].
Such release of the bound drug molecules is also accompanied by a significant reduction
in the steady-state fluorescence anisotropy of the DMPG-bound drug in the presence of
βCD, indicating the release of motional restrictions of the bound drug molecules [47]. It is
pertinent to note that the complex interaction situation here can lead to several possible
equilibria, such as the (i) interaction of DMPG lipid with βCD leading to disruption of the
compact liposome structure, and (ii) inclusion of the drug molecules within βCD. With
a view of the considerably weak interaction of SG with βCD (association constant in the
order of ~10−3 M−1 [82]), the second possibility is rationally discarded [47].
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Figure 6. (a) Fluorescence spectra of the drug SG (~2.0 µM) in aqueous buffer (pH 7.4) with added
DMPG (the concentration of DMPG increases from (i) to (viii) as 0, 0.05, 0.1, 0.15, 0.3, 0.5, 0.8, and
1.0 mM). (b) Fluorescence spectra of the drug DG bound to DMPG with added βCD (the concentration
of βCD increases from (i) to (vi) as 0, 0.5, 1.0, 1.5, 2.0, and 4.0 mM). The excitation wavelength is
327 nm. [Reprinted with permission from Ref. [47]. Copyright 2018, Elsevier].
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Association and dissociation kinetics. The increase in the fluorescence intensity of
SG at λem = 580 nm (Figure 6a) upon interaction with the DMPG lipid has been monitored
to study the association kinetics of the SG–DMPG interaction. Figure 7a shows the fluores-
cence trace describing the kinetics of the association of the SG–DMPG interaction, and the
data are fitted to a nonlinear regression as follows:

I(t) = βe− kat + η

where, I(t) is the variation in fluorescence intensity (at the wavelength under investigation)
with time t, with an apparent association rate constant being denoted by ka (β denotes
the corresponding amplitude, and η is a constant). The interaction of SG with DMPG is
found to reveal an apparent association rate constant of ka = (1.7 ± 0.08) × 10−2 s−1 at
T = 303 K [47]. Similarly, the βCD-induced sequestration of SG from the DMPG-bound
state (studied by observing the diminution of fluorescence intensity at λem = 580 nm,
Figure 7b) shows an apparent rate constant of dissociation as kd = (4.5 ± 0.18) × 10−2 s−1 at
T = 303 K [47].
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Figure 7. Normalized fluorescence kinetic traces describing the time evolution of (a) the process of
the interaction of SG with DMPG as monitored by the growth of the fluorescence intensity of SG at
λem = 580 nm and (b) the process of the βCD-induced dissociation of the DMPG-embedded drug as
monitored by a decrease in the fluorescence intensity of SG at λem = 580 nm. The scattered symbols
represent the raw data, and the solid lines are the fitted curves. The relevant experimental parameters
are as follows: [SG] = 2 µM, [DMPG] = 1 mM and [βCD] = 8 mM; λex = 327 nm, T = 303 K, pH ~ 7.4
(aqueous buffer). [Reprinted with permission from Ref. [47]. Copyright 2018, Elsevier].

Thermodynamics of the DMPG–βCD Interaction. The thermodynamic parameters
for the interaction of the DMPG lipid with βCD are compiled in Table 4, and the primary
heat-burst curves are depicted in Figure 8a. An overall thermodynamically favorable
interaction of the DMPG lipid with βCD is indicated by ∆G < 0, while the process is seen
to be increasingly thermodynamically favorable (increasingly negative ∆G) with a rise in
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temperature. With an increasing temperature, the interaction is found to be increasingly
less exothermic (∆H < 0), whereas the unfavorable entropic contribution (T∆S < 0) is found
to be progressively less negative (Table 4). The variation in ∆H with temperature leads to a
positive change in the heat capacity, ∆Cp = (514 ± 20) J mol−1K−1, which in turn signifies
an instrumental role of hydrophobic hydration in the interaction and is usually connected
to the burial of polar surfaces of the interacting moieties (DMPG lipid and βCD) following
the interaction [67,69,86–92].

Table 4. Thermodynamic parameters for the DMPG–βCD interaction obtained from isothermal
titration calorimetry (ITC).

Temperature
(K)

Ka
(M−1)

∆H
(kJ mol−1)

T∆S
(kJ mol−1)

∆G
(kJ mol−1)

∆Cp
(J mol−1 K−1)

303 (1.08 ± 0.04) × 103 −31.56 ± 1.2 −13.95 ± 0.6 −17.61 514 ± 20
308 (1.27 ± 0.05) × 103 −28.78 ± 1.2 −10.74 ± 0.43 −18.04
313 (1.47 ± 0.06) × 103 −26.41 ± 1.1 −6.91 ± 0.28 −19.5

[Reprinted with permission from Ref. [47]. Copyright 2018, Elsevier].
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Figure 8. (a) The top panel shows the ITC heat burst curves (after correction for the heat of dilution)
obtained for the titration of the DMPG liposome with βCD at 303 K. The bottom panel shows the ITC
enthalpograms and the fitted lines for ITC titrations at 303 K (closed circle), 308 K (open square), and
313 K (open circle). (b) Plot of ∆H vs. T for the DMPG–βCD interaction. [Reprinted with permission
from Ref. [47]. Copyright 2018, Elsevier].

Diffusion of the Drug. The translational diffusion coefficients (Dt) of SG in various
experimental conditions employed in the study, as obtained from fluorescence correlation
spectroscopy (FCS,) are summarized in Table 5. The variation in the Dt of SG in different
conditions clearly supports the conclusion drawn from spectroscopic and thermodynamic
experiments. Hence, an increase in the Dt of the lipid-bound drug with added βCD can be
interpreted from the release of the bound drug molecules and thus a release of the motional
constraints on the SG molecules with added βCD [86,93–95].

2.4. Sequestration of Cryptolepine Hydrate (CRYP) from RNA Using Cucurbit[7]uril

In this section, we discuss the sequestration of an antimalarial drug, cryptolepine
hydrate (CRYP) bound to RNA, with the application of host:guest chemistry employing
cucurbit[7]uril (CB7) as the host structure [48]. CB7 is well-known to form selective and
compact host:guest inclusion complexes with guest molecules [96–101] and thus can be
employed as sequestrating agents for small drug molecules bound to various biological
receptors, such as RNA [102,103]. The occurrence of the interaction of CRYP with CB7 is
evident from the decrease in absorbance (Figure 9a) and the remarkable increase in the
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fluorescence intensity (Figure 9b) of the drug with added CB7 [48]. The marked increase
in fluorescence intensity may be due to the motional restrictions on the CRYP molecules
upon encapsulation in CB7 that results in the lowering of the radiation-less decay channels
of CRYP [104]. Figure 9c shows that the absorbance of the drug bound to RNA increases
with added CB7, and the absorption spectrum finally resembles that of the interaction of
CRYP with CB7 alone. With added CB7, the fluorescence intensity of the RNA-bound drug
is found to increase and finally resemble that of the interaction of CRYP with CB7 alone
(Figure 9d). Such observations that are qualitatively in a reverse pattern in comparison to
those found during the binding of the drug with RNA can be interpreted on the basis of the
CB7-induced deintercalation of the bound CRYP molecules from the RNA duplex [104].

Table 5. Summary of translational diffusion coefficient (Dt) values of SG in various conditions of the
experiment.

System Dt
(µm2 s−1)

Aqueous buffer 63.8 ± 3
1.0 mM DMPG 9.07 ± 0.42

1.0 mM DMPG + 4.0 mM βCD 14.33 ± 0.67
1.0 mM DMPG + 6.0 mM βCD 25.76 ± 1.21

[Reprinted with permission from Ref. [47]. Copyright 2018, Elsevier].
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Figure 9. (a) Absorption and (b) fluorescence (λex = 367 nm) spectra of CRYP with increasing
concentrations of CB7. (c) Absorption and (d) fluorescence spectra of CRYP (bound to RNA) with
increasing concentrations of CB7. In panel (d), the fluorescence spectrum of CRYP alone in an aqueous
medium is represented by the dotted line. The isosbestic points in the absorption spectra are shown
in the respective insets. The images of the visible changes in color with the addition of CB7 upon
irradiation with ultraviolet light are shown in the respective insets. [Adapted with permission from
Ref. [48]. Copyright 2021 American Chemical Society].
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3. Conclusions

In summary, this review predominantly outlines the in vitro studies on the release
of several drugs from biological and bio-replicating systems, with the help of biophysical
techniques, such as absorption spectroscopy, fluorescence spectroscopy, and isothermal
titration calorimetry. In summary, the results discussed in this article are briefly presented
below.

(i) The biological photosensitizer harmane (HM) strongly binds to the DNA duplex
principally via the intercalation mode and can subsequently be sequestered using the
cationic surfactant CTAB where the cationic surfactant acts as a hydrophobic sink for
the drug molecules.

(ii) Another biological photosensitizer, norharmane (NHM), which binds to the DNA du-
plex, has also been shown to have been sequestered with the aid of cationic surfactants,
namely DTAB, TTAB, and CTAB, for which the rate of sequestration of the bound
drug is found to be tunable with variations in the chain length of the surfactants.

(iii) The deintercalation of the anticancer drug epirubicin hydrochloride bound to well-
matched and mismatched DNA has been shown using mixed micellar assemblies
consisting of the anionic surfactant SDS and non-ionic surfactant P123. It was also
noticed that the mixed micelles did not alter the native structure of DNA.

(iv) The dissociation of the alkaloid sanguinarine cation bound to negatively charged
DMPG liposomes using molecular guest β-cyclodextrin shows the application of
host–guest chemistry in this context.

(v) The application of host–guest chemistry in the sequestration of bound drug molecules
is further demonstrated in the context of the deintercalation of the antimalarial drug
cryptolepine hydrate (CRYP) from the RNA duplex using cucurbit[7]uril hydrate.

Thus, we are optimistic that these results could be helpful for studies on the excretion of
drugs from biological environments and for understanding the accompanying mechanisms.
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