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Abstract: The froth flotation process is extensively used for the selective separation of valuable base
metal sulfides from uneconomic associated minerals. However, in this complex multiphase process,
various parameters need to be optimized to ensure separation selectivity and peak performance. In
this study, two machine learning (ML) models, artificial neural network (ANN) and random forests
(RF), were used to predict the efficiency of in-house synthesized chitosan-polyacrylamide copolymers
(C-PAMs) in the depression of iron sulfide minerals (i.e., pyrite) while valuable base metal sulfides
(i.e., galena and chalcopyrite) were floated using nine flotation variables as inputs to the models.
The prediction performance of the models was rigorously evaluated based on the coefficient of
determination (R2) and the root-mean-square error (RMSE). The results showed that the RF model
was able to produce high-fidelity predictions of the depression of pyrite once thoroughly trained as
compared to ANN. With the RF model, the overall R2 and RMSE values were 0.88 and 4.38 for the
training phase, respectively, and R2 of 0.90 and RMSE of 3.78 for the testing phase. As for the ANN,
during the training phase, the overall R2 and RMSE were 0.76 and 4.75, respectively, and during
the testing phase, the R2 and RMSE were 0.65 and 5.42, respectively. Additionally, fundamental
investigations on the surface chemistry of C-PAMs at the mineral–water interface were conducted to
give fundamental insights into the behavior of different metal sulfides during the flotation process.
C-PAM was found to strongly adsorb on pyrite as compared to galena and chalcopyrite through zeta
potential, X-ray photoelectron spectroscopy (XPS), and adsorption density measurements. XPS tests
suggested that the adsorption mechanism of C-PAM on pyrite was through chemisorption of the
amine and amide groups of the polymer.

Keywords: chitosan; froth flotation; metallic sulfides; machine learning; adsorption mechanism;
X-ray photoelectron spectroscopy; zeta potential; total organic carbon

1. Introduction

Froth flotation is a highly complex multiphase process that is used to selectively
separate minerals based on differences in surface characteristics. Froth flotation is the
major separation technique that is used to separate base metal sulfides from the associated
uneconomic minerals, including iron sulfide minerals. In this practice, valuable sulfides are
commonly floated together as bulk concentrates during the first stages of the process (bulk
flotation,) followed by several cleaning stages to selectively separate individual minerals
(selective flotation).
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The froth flotation process is impacted by a large number of interactive variables [1].
For example, airflow rate affects bubble sizes which subsequently impact the mineral-
bubble attachment, gas hold-up, froth depth, etc. [2]. The variables that affect the froth
flotation process are divided into three major groups [3,4]: (a) Feed attributes, such as parti-
cle size distribution, mass flowrate, mineral specific gravity, liberation, composition, etc.; (b)
Physicochemical influences including reagent types and interaction, reagents dosages and
addition sequence, water quality, slurry pH, and temperature; and (c) Hydrodynamic as-
pects including flotation circuit design, type of flotation cell, airflow rate, and froth stability.
The flotation performance is usually evaluated based on the recovery of valuable minerals
in the flotation concentrates and the quality of the concentrates (value metal grades) [5].
These variables affect the flotation outcomes independently, but their interdependence
complicates the process control. Thus, it is essential to develop high-fidelity control systems
that can produce quality outcomes of the process given the diverse process variables.

Conventional modeling tools, such as mathematical and statistical approaches, have
been used to predict flotation performance through experiments [5–7]. However, such
modeling tools have proven to lack the capability to accurately predict the performance
of complex systems that have interdependent input variables [5]. For example, Monyake
and Alagha [8] recently used response surface methodology (RSM) to optimize pyrite
depression in the bulk flotation of chalcopyrite and galena. However, when developing
the quadratic equations for response predictions, some insignificant terms had to be ex-
cluded as a way of improving the models’ accuracy. As a result, some combinations of
the eliminated terms could not be studied. Additionally, the correlation coefficient (R2)
values of copper recovery and grades were low when using RSM, which agrees with
the findings of Pilkington et al. [9], where the statistical R2 values for the prediction of
artemisinin extraction from Artemisia annua were much lower when compared to artificial
neural network (ANN) predictions. This suggested that machine learning (ML) models
are superior to RSM at response predictions. Reflecting on these intricacies and the afore-
mentioned insufficiencies of classical modeling approaches, researchers have focused on
developing and employing ML models—both supervised and unsupervised—for predic-
tion, and in some cases optimization, of flotation processes [10–16]. When properly trained
with high-quality datasets, ML models can be very effective at revealing underlying re-
lationships between experimental process parameters and outputs (herein metal grades
and recoveries) and performance predictions. Researchers have applied ML models for
prediction of froth flotation outcomes in a wide range of applications. The flotation of a
paper de-inking process was studied by Labidi et al. [12] using ANN. Their work showed
that ANN was reliable at accurately reproducing the experimental results with high R2

values. Ali et al. [17] assessed the performance of five different ML models [ANN, ran-
dom forest (RF), adaptive neuro-fuzzy inference system (ANFIS), Mamdani fuzzy logic
(MFL), and hybrid neural fuzzy inference system (HyFIS)] to predict the coal ash content
in the flotation of fine coal. Their work showed that all ML models performed well with
MFL, producing the best prediction performance with R2 of 0.92 on the testing dataset.
Khodakarami et al. [10] used a cascade forward neural network with a backpropagation
algorithm to predict the impact of five operational parameters in the flotation of fine coal
using hybrid polymeric nanoparticles. Nakhaei et al. [15] used ANN to predict the grades
and recoveries of copper and molybdenum in the pilot plant column flotation concentrate
using the backpropagation model. Their model was also tested at an industrial flotation
plant using 92 different datasets collected at different operational conditions and showed
good accuracy for the prediction of copper and molybdenum recoveries and grades with
R2 values ranging from 0.92 to 0.94. Shahbazi et al. [18] used RF together with its associated
variable importance measurements (VIMs) to predict the flotation responses as a function
of particle characteristics and hydrodynamic conditions in quartz flotation. The modeling
results indicated that the RF model was satisfactorily making predictions with R2 values
of 0.96–0.97. An innovative hybrid ML model using a combination of random forest and
firefly algorithm (RF-FFA) was developed by Cook et al. to predict the flotation efficiency



Colloids Interfaces 2023, 7, 41 3 of 23

of metal sulfides in the bulk flotation of galena and chalcopyrite [19]. The RF-FFA model
outperformed other standalone models as it showed high prediction accuracy.

In this study, two ML models (RF and ANN) were developed, trained, and validated
for predicting the grades and recoveries of base metals and iron (Pb, Cu, Zn, and Fe) in the
concentrates produced from the bulk flotation of galena (PbS) and chalcopyrite (CuFeS2)
from a complex sulfide ore of Mississippi Valley Type (MVT) that also contained sphalerite
(ZnS) and pyrite (FeS2). The common industrial flotation practice for MVT is to recover
galena and chalcopyrite as a bulk float during the first stages while depressing sphalerite
and pyrite. Therefore, a high-grade bulk concentrate should have enrichment of Pb and Cu
while the grades of Fe and Zn should be minimized. In this work, in-house synthesized
chitosan-polyacrylamide co-polymers (C-PAMs) of different structural characteristics were
used as novel pyrite depressants, while sphalerite was depressed using zinc sulfate, which
is usually used at industrial operations. The ML models were developed using nine
different inputs (chitosan degree of deacetylation; weight ratio of chitosan: acrylamide;
C-PAM dosage; sphalerite depressant dosage; collector dosage; frother dosage; slurry pH;
flotation time; and impeller speed) with eight different outputs [grades and recoveries of
lead (Pb), copper (Cu), iron (Fe), and zinc (Zn)]. Statistical performance metrics [coefficient
of determination (R2) and root mean square error (RMSE)] were used to evaluate the
prediction performance of the ML models. Zeta-potential, total organic carbon (TOC),
and X-ray photoelectron spectroscopy (XPS) measurements were used to investigate the
adsorption mechanism of C-PAM on mineral surfaces.

2. Materials and Methods
2.1. Mineral Samples and Reagents

Model sulfide mineral samples of galena (PbS), chalcopyrite (CuFeS2), and pyrite
(FeS2) were purchased from Ward’s Science, USA. The mineral samples were crushed using
a mortar and pestle, then dry-sieved. The −38 µm size fraction was used for reagent
adsorption tests, including zeta-potential, contact angle, and XPS, while the −75 + 38 µm
size fraction was used for TOC tests. According to the chemical analysis of the model sulfide
minerals and X-ray diffraction results shown in Supplementary Information (Figure S1),
the purities of all the model mineral samples were greater than 85%. The complex sulfide
ore, containing PbS, CuFeS2, and sphalerite (ZnS) as the valuable sulfide minerals and
FeS2 as the major sulfide gangue mineral, was obtained from a mine in North America.
The flotation feed assayed 1.37% Pb, 0.3%Cu, 0.46% Zn, and 3.46% Fe. Sodium isopropyl
xanthate (SIPX), zinc sulfate (ZnSO4), and methyl isobutyl carbinol (MIBC) that were
used as a collector, and a ZnS depressant and a frother, respectively, were all purchased
from Fischer Scientific, Waltham, MA, USA. In-house synthesized C-PAM was used as a
depressant of FeS2. Sodium hydroxide (NaOH) and hydrochloric acid (HCl) were used to
regulate slurry pH in the froth flotation tests and other adsorption tests. Deionized water
was used in all the adsorption studies, while tap water was used in the batch flotation
tests of the complex sulfide ore. Chitosan polymer (85% degree of deacetylation) and
acrylamide monomer that were used in the synthesis of C-PAM were purchased from
Fischer Scientific, USA. Cerium (IV) ammonium nitrate that was used as a polymerization
initiator was purchased from Acros Organics. Acetic acid, acetone, and nitric acid used for
the preparation of C-PAMs were all purchased from Fisher Scientific, Waltham, MA, USA.

2.2. Preparation of Chitosan-Polyacrylamide Copolymers (C-PAMs)

A total of nine C-PAM polymers (pyrite depressants) were synthesized in-house using
chitosan polymer as the backbone and acrylamide monomer (AM) as side chains. The full
procedure for the synthesis of C-PAM was adopted from the previous work of Monyake
and Alagha [8,20]. The synthesized C-PAMs have variable chitosan degree of deacetylation
and chitosan: AM weight ratio. The synthetic scheme of C-PAM is presented in Figure 1.
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Hydrogen Nu-
clear Magnetic Resonance (1H-NMR) were used to characterize the synthesized C-PAMs, as
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shown in Figures S2 and S3, respectively, in the Supplementary Information. For the NMR
tests, C-PAM samples were dissolved in D4 acetic acid (CD3COOD) and D2O solution, and
chemical shifts were collected at 400 MHz. The FTIR signals and NMR chemical shifts of
major functional groups of C-PAM are as follows:

NMR (ppm): 3.0 (H2 proton), 3.5 (H3–H6), 1.5 (methylene H), 2.06 (methine H), and
1.9 (methyl H).

FTIR (cm−1): 3350 (OH), 3200 (NH stretching vibrations), 1650 (C=O), 1550 (N–H
bending) [21].
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Figure 1. Synthetic scheme of chitosan-polyacrylamide copolymers (C-PAMs) used in this study
(a) Chain initiation on the chitosan backbone; (b) Continuous chain propagation and (c) chain
termination at the end of the reaction. Adopted from [21].

2.3. Froth Flotation Experiments

A total of 130 experiments (Tables S1–S4, Supplementary Information) were carried out
wherein 9 flotation parameters were varied, as indicated in Table 1. Industrial procedures
for this type of ore (MVT) initially involve a rougher flotation stage wherein galena and
chalcopyrite are floated together as a bulk concentrate (rougher concentrate) using xanthate
collectors while sphalerite and pyrite are depressed using zinc sulfate and sodium cyanide,
respectively. The chalcopyrite/galena bulk concentrate is further processed in the cleaning
stages (cleaner flotation) where chalcopyrite is floated, and galena is depressed. Sphalerite
is usually floated from the rougher tailings in the following stages (cleaner flotation), while
pyrite is depressed. This process is shown in the simplified flowsheet in Figure 2. Flotation
tests in this work were performed in a single stage to represent the rougher flotation stage
for this type of ore.
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Table 1. Summary of the flotation variables (inputs) and flotation responses (outputs).

Input Name Input Code Input Levels Outputs

Low Center High

Chitosan Degree of deacetylation (%) X1 75 85 95 Fe grade (%)
Fe recovery (%)

Pb grade (%)
Pb recovery (%)

Cu grade (%)
Cu recovery (%)

Zn grade (%)
Zn recovery (%)

Chitosan: AM Ratio (g/g) X2 3 5 7
C-PAM dosage (g/ton) X3 75 100 125

Slurry pH (unitless) X4 7 8.5 10
Xanthate Dosage (g/ton) X5 300 400 500

ZnSO4 (g/ton) X6 500 600 700
MIBC Dosage (g/ton) X7 50 75 100
Impeller Speed (RPM) X8 1000 1250 1500
Flotation time (min) X9 3 5.5 8
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Figure 2. A simplified flow diagram of the typical flotation procedures of Mississippi Valley Type
(MVT) complex sulfide ore was used in this study.

All flotation tests were carried out using a Denver flotation machine with a 1-L tank
using tap water as a medium of flotation at 45 wt.% solids. In all flotation tests, the
depressants were sequentially added first (C-PAM and ZnSO4), followed by collector
(SIPX) and frother (MIBC), which were each conditioned for 2–3 min. After flotation,
the concentrates were collected, dried, and assayed for Pb, Cu, Zn, and Fe using atomic
absorption spectroscopy (AAS), and metal recoveries in the concentrates were calculated
using Equation (1).

Metal recovery = Cc/F f ∗ 100% (1)

where C and F represent the dried weights of the flotation concentrate and feed, respectively;
whereas c and f are the metal grades in the concentrate and feed, respectively.

2.4. Adsorption Mechanism Studies

The following tests were carried out to understand the mechanism of pyrite depression
by C-PAMs. Unless otherwise stated, freshly ground mineral particles of −38 µm were
used in all adsorption tests.

2.4.1. Zeta Potential

Zeta potential tests were carried out using the Malvern Nano ZS zetasizer (Malvern
instruments, Westborough, MA, USA) to study the interaction between model sulfide
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minerals and C-PAM at a solid–liquid interface in potassium chloride (KCl) solution
(0.001 M) as the background electrolyte. Each zeta potential test was performed at variable
pH at a solid concentration of 0.01 wt.%. C-PAM (3 mg/L) was added separately and
magnetically stirred for 3 min. After the minerals’ suspensions settled, zeta potential
measurements were performed using the supernatant. The reported zeta potentials were
averaged from three independent zeta potential measurements.

2.4.2. Total Organic Carbon (TOC)

The adsorption density of C-PAM on galena, chalcopyrite, and pyrite were studied in
the form of total organic carbon using the TOL-L series Total Organic Carbon analyzer-L
Shimadzu Corporation, Columbia, MD, USA. Model mineral particles of size fraction
+38 − 75 µm were used as they represent the intermediate particle size distribution usually
used for micro flotation studies [20]. TOC was collected for pyrite before and after treatment
with C-PAM at mineral suspension pH of 4, 7, and 10, while C-PAM dosage was varied
at 25, 50, 75, 100, and 125 mg/L, respectively. Mineral suspensions in the presence of
deionized water and a predetermined amount of C-PAM were mixed for 30 min. The
supernatant was collected, filtered, and centrifuged to remove any invisibly suspended
solids and used to measure TOC. The TOC value was regarded to represent the C-PAM
concentration remaining in solution while the amount of C-PAM adsorbed on pyrite at
equilibrium was calculated using Equation (2):

Qe =
(C0 − Ce)V

m
(2)

where Qe is the amount of C-PAM adsorbed on pyrite surfaces at equilibrium (mg/g); C0
and Ce represent the initial and remaining concentration (mg/L) of C-PAM in the solution,
respectively; V is the solution volume (L); and m represents the mass of each mineral
sample (g).

2.4.3. X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) spectra were collected using the Kratos Axis
165 photoelectron spectrometer following the same procedure as TOC tests using −38
µm mineral particle size. After the mineral samples were completely settled, the solution
was discarded, and the mineral samples were washed and filtered with deionized water
and fully dried. The X-ray source used for XPS tests was monochromatic Al at 60 µm
spot size. XPS spectra of untreated minerals and minerals treated with C-PAM were
collected and analyzed using CasaXPS instrument software with Gaussian-Lorentzian peak
resolving capabilities.

2.5. Overview of the Machine Learning Models
2.5.1. Random Forest Model

RF model is developed from the classification and regression tree (CART) model with
the bagging technique [22,23]. The RF model grows hundreds of independent CARTs
in a parallel manner. Each CART splits in a binary fashion at each node, and the entire
CART grows in a recursive fashion. The CART stops growing when data in terminal nodes
becomes near homogenous. The RF model allows CARTs to grow their maximum sizes
without pruning and smoothing. The final output of the RF model is the average value
of outputs from all trees. A major feature—two-stage randomization [24,25]—is distinct
from the RF model with other CART-based models. The first randomization is that the
bootstraps utilized to grow CARTs randomly select data from the parent dataset. The
second randomization is that randomly selected variables are employed to determine the
optimal split scenario at each node. The two-stage randomization ensures CARTs in the RF
model are independent [26]. To achieve the optimal prediction, a 10-fold cross-validation
(CV) method and grid search method are used to determine the optimal hyperparameters
for the RF model. In this study, all predictions are unitized 100 trees in the forest and
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4 splits at each node. The random forest classification model uses a predetermined number
of independent trees organized into subsets of training data [22,27]. The number of trees is
determined from the original dataset, where the optimum number of trees is approximately
66.66% of the training data set [22,27]. In this work, 100 trees were chosen to be almost
66.66% of the training dataset, and it should be noted that when 100 trees were exceeded,
the random forest performance did not change. The optimum value of the number of
nodes in this study was determined to be four to ensure low variance and decorrelation in
the forest.

2.5.2. Artificial Neural Network (ANN)

Artificial neural network (ANN) is one of the most widely used computation tech-
niques developed based-off on the complicated functioning of the human brain [28]. The
basic structure of ANN consists of three different types of layers, i.e., input layer, output
layer, and hidden layer [29]. Figure 3 displays the basic architecture of an artificial neural
network with a single hidden layer and a single response variable. All of the processing
in the neural network is carried out by these number of small yet powerful units known
as neurons or nodes. A simple shallow neural network model consists of a single input
layer with multiple input nodes, a single output layer with one node, and a single hidden
layer with multiple neurons optimized for any given problem. The neurons are connected
with both the input and output layers, with every neuron forming a unique connection
with each of the neighboring layer nodes. The connections between these adjacent hidden
layer neurons or between neurons and the nodes are distinguished based on the assigned
mathematical weights, which are later optimized. These weights govern the influence each
neuron holds over the output of the previous layer that gets transferred to its immediately
connecting neurons in the subsequent layer [30]. The number of neurons in both the in-
put and output layers depends upon the quantity of input and output variables used for
model development, respectively. The number of neurons in a hidden layer is considered
a hyperparameter for neural network architecture and thus requires optimization during
model training.

The output of any neuron in the hidden layer(s) or in the output layer is mathematically
computed using Equation (3) [31–36]. A bias term is added to the computed output to
ensure a non-zero result by a neuron, even when zero inputs are given. The output
generated by every neuron is taken through an activation function to ensure advanced
non-linear learning by the neural network [37].

zk = f0

[
HN

∑
j=1

Wkj × fh

(
IN

∑
i=1

Wji × Xi + Wj0

)
+ Wk0

]
(3)

where,

Wji: Connection weight connecting the neurons of jth hidden layer with the node of ith
input layer;
Wj0: Bias added to the neuron of jth hidden layer;
fh: Activation and transfer function for each hidden neuron;
Wkj: Connection weight connecting the node of kth output layer with the neuron of jth
hidden layer;
Wk0: Bias added to the node of output layer;
f 0: Activation and transfer function for output node;
Xi: ith input variable;
Zk: kth response variable;
IN: Total input layer nodes in the model;
HN: Total hidden layer neurons in the model.
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node [38].

2.6. Data Collection and Dataset Preparation

Experimental datasets were derived from a total of 130 laboratory batch flotation
experiments (rougher flotation). Nine different flotation variables (inputs) were tested
at three different levels each while the metal grades and recoveries were regarded as
the outputs. The significance of various input variables for the prediction of grades and
recoveries of Cu, Pb, and Fe is shown in Figures S4 and S5 in the Supplementary Information.
The data were cleaned to detect and remove any errors. Statistical parameters for the dataset
consisting of 130 data-records featuring the nine input variables and the 8 corresponding
outputs have been given in Table 2. Before the data was used for model training, scaling
was done through employing linear mapping, as given by Equation (4), because each of the
input variables were widely distributed. Scaled data was then used for model development.

X_n [0, 1] = (X − X_min)/(X_max − X_min) (4)

where,

X_n = Scaled/Normalized value for input variable ‘x’;
X_max = Highest value of input variable ‘x’;
X_min = Minimum value of input variable ‘x’;
Z = Real value of input variable ‘x’.

Table 2. Statistical parameters of the nine inputs and eight outputs make up the ML database.

Attribute Minimum Maximum Mean Standard Deviation

Chitosan Degree of deacetylation (%) 75.00 95.00 85.00 5.55
Chitosan: AM Ratio (g/g) 3.00 7.00 5.00 1.11

C-PAM dosage (g/ton) 75.00 125.00 100.00 13.87
Slurry pH (unitless) 7.00 10.00 8.50 0.83

Xanthate Dosage (g/ton) 300.00 500.00 400.00 55.47
ZnSO4 (g/ton) 500.00 700.00 600.00 55.47

MIBC Dosage (g/ton) 50.00 100.00 75.00 13.87
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Table 2. Cont.

Attribute Minimum Maximum Mean Standard Deviation

Impeller Speed (RPM) 1000.00 1500.00 1250.00 138.68
Flotation time (min) 3.00 8.00 5.50 1.39

Pb grade (%) 7.29 24.39 15.76 4.00
Pb recovery (%) 19.87 99.94 64.77 22.68

Fe grade (%) 0.65 11.36 7.63 1.91
Fe recovery (%) 2.43 64.97 35.00 11.21

Cu grade (%) 1.14 2.81 1.93 0.32
Cu recovery (%) 23.74 85.75 55.97 16.45

Zn grade (%) 0.50 7.22 2.31 1.78
Zn recovery (%) 1.09 22.82 8.45 5.05

3. Results
3.1. Adsorption Mechanism of C-PAM on Mineral Surfaces
3.1.1. Zeta Potential

These tests specify the strength of C-PAM adsorption on mineral surfaces. Strong
adsorption of C-PAM was indicated by a large change in the zeta potential of mineral
suspensions, while a weak adsorption was revealed through a smaller shift in the zeta po-
tential value. Figure 4 shows the effects of pH on the zeta potential of aqueous suspensions
of model sulfide minerals in the absence and presence of C-PAM. As shown in Figure 4a,
pyrite exhibited a positive charge at a pH lower than 6.5 and reached a point of zero
charge at pH 6.5, also referred to as the isoelectric point (IEP). The surfaces of pyrite were
observed to be negatively charged at mildly alkaline to strongly alkaline pH. It is common
for sulfide minerals to be negatively charged at a pH exceeding 2 because they contain
sulfur ions which have an IEP of 1.6, together with negatively charged metal hydroxide
species [39]. In the absence of C-PAM, galena was positively charged and reached the IEP
at pH 5 and became negatively charged at pH > 5, as shown in Figure 4b. Chalcopyrite
IEP was expected to be around pH 2–3 [40], but as observed in this work, chalcopyrite was
negatively charged at all pH ranges tested, as shown in Figure 4c, without the addition
of C-PAM. When C-PAM was introduced as a depressant, all minerals exhibited more
positive shifts of zeta potential values (∆ζ), as shown in Figure 4a–c. The zeta potential of
C-PAM used was +48.98 mV; therefore, it was expected that a positively charged (cationic)
depressant would electrostatically adsorb on model mineral surfaces that were negatively
charged at an alkaline pH range.

C-PAM was observed to strongly adsorb on pyrite surfaces at pH 8–12, as shown by
the large positive shift in zeta potentials as compared to other sulfide minerals. Table 3
shows the anticipated strength of C-PAM adsorption on metal sulfides as indicated by the
magnitude of ∆ζ of mineral suspensions after C-PAM adsorption. It was observed that
at pH 8, 10, and 12, ∆ζ values for pyrite were +28.6, +34.4, and +35.5 mV, respectively.
Even though positive shifts of the zeta potential values of galena and chalcopyrite were
observed, however, ∆ζ values were observed to be smaller as compared to those of pyrite.
For example, at pH 8, 10, and 12, ∆ζ values were +9.3, +17.3, and +24.8 mV, respectively,
for galena, and +22.2, +20.5, and +20.2 mV, respectively, for chalcopyrite. These results
indicated that C-PAM is anticipated to have preferential adsorption on pyrite minerals
at alkaline pH. As published literature, the depression of pyrite minerals increases with
increasing pH [41–44]; therefore, this was a good indicator that C-PAM might potentially
be a desirable depressant of pyrite in an alkaline environment.
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Table 3. Magnitude of shifts of zeta potential of metal sulfides’ suspensions (∆ζ) post C-PAM
adsorption at different pH.

pH Zeta Potential Shifts (∆ζ), mV

Galena Chalcopyrite Pyrite

4 +0.8 +18.2 +0.8

6 +11.2 +23.3 +5.9

8 +9.3 +22.5 +28.6

10 +17.3 +20.5 +34.4

12 +24.8 +20.2 +35.5

3.1.2. Adsorption Density Analysis

The adsorption behavior of C-PAM on the surfaces of model pyrite, galena, and
chalcopyrite minerals is shown in Figure 5 in the form of the amount of C-PAM adsorbed
on mineral surfaces at equilibrium as a function of initial C-PAM dosage in the mineral
suspensions at pH 7. For all minerals, the amount of C-PAM adsorbed increased with
the increase in the initial concentration of C-PAM in the mineral suspensions. It is clear
from Figure 5 that the adsorption of C-PAM was stronger on pyrite surfaces as compared
to galena and chalcopyrite at an initial concentration range between 75–125 mg/L. This
suggested that this concentration range of C-PAM could be ideal for the depression of
pyrite in the bulk flotation of chalcopyrite and galena.
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Figure 5. Adsorption densities of C-PAM on model sulfide minerals as a function of initial C- PAM
concentration measured using total organic carbon (TOC) analysis.

An adsorption isotherm was established for the adsorption of C-PAM on model sulfide
minerals which followed Langmuir adsorption isotherm, indicating monolayer adsorp-
tion shown in Figure 6. At the tested concentration range of C-PAM (25–125 mg/L), the
maximum adsorption on pyrite was found to be 35.21 mg/g while maximum adsorption
on chalcopyrite and galena were 22.42 mg/g and 12.45 mg/g, respectively. These results
suggest that C-PAM had preferential adsorption on pyrite compared to galena and chal-
copyrite, which is consistent with the work of Monyake and Alagha [20] on model mineral
samples when the tested range of C-PAM concentrations were lower (1–5 mg/L). These
findings could be crucial to the flotation of a complex sulfide ore where pyrite is selectively
depressed in the first stage of flotation while galena and chalcopyrite are floated in bulk.

3.1.3. X-ray Photoelectron Spectroscopy (XPS) Analysis

Zeta potential and adsorption density studies have suggested that C-PAM preferen-
tially adsorbed on pyrite surfaces as compared to galena and chalcopyrite, which could
enhance the bulk flotation of galena and chalcopyrite. As a result, X-ray photoelectron
spectroscopy (XPS) measurements were used to delineate the adsorption mechanism of
C-PAM on pyrite surfaces. The distinctive binding energies of electrons of each element
identified by XPS have been used to identify chemical states and chemical composition
of different samples [45], which is helpful when studying the adsorption mechanism of
reagents on mineral surfaces [8,20]. Figure 7 shows the full range XPS spectra of pyrite
surfaces before and after C-PAM treatment. As indicated in Figure 7a, pyrite exhibited the
expected surface species of Fe 2p, S 2p, C 1s, and O 1s which was consistent with published
reports [46]. The Fe 2p peaks were observed at 712.08 eV, while the S 2p peaks appeared at
162.08 eV. The presence of C 1s on pyrite at 284.58 eV was a result of adventitious carbon,
while O 1s at 532.08 eV was due to possible mineral oxidation [46,47]. The concentrations of
Fe, S, C, and O on the surface of pyrite were 7.08, 20.50, 41.76, and 30.69 at.%, respectively.
However, after the pyrite was exposed to C-PAM, nitrogen species were observed on pyrite
surfaces as shown by the new N 1s (1.53 at.%) peak at 399.68 eV in Figure 7b of pyrite
treated with C-PAM. The concentrations of Fe and S decreased to 5.47 and 15.68 at.%,
respectfully, after the addition of C-PAM, which supported that adsorption took place. On
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the other hand, the concentrations of C and O species increased to 44.61 and 32.7 at.%,
respectively, which suggested that C-PAM adsorbed on pyrite surfaces.
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adsorption.

3.1.4. Mechanism of C-PAM Adsorption on Pyrite

Further assessment of the mechanism of C-PAM adsorption on pyrite was done
through XPS. Functional groups of C-PAM accountable for the depression of pyrite were
inspected through high-resolution spectra. Figure 8a,b shows the N 1s species of pyrite
before and after C-PAM adsorption. The major peak at 399.68 eV was assigned to the
nitrogen atoms in the primary amine group (–NH2), while the second peak observed at
400.89 eV was originating from the O=C–NH2 group. After C-PAM adsorption, the amine
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group shifted by +0.11 eV while the amide group shifted by +0.62 eV with respect to the
original N 1s peaks of C-PAM. It was reported that any binding energy shift of greater
than 0.1 eV represented a chemical interaction between organic depressants and sulfide
minerals when the interaction between corn starch and pyrite was studied [48]. As a result,
chemisorption was proposed as the main adsorption mechanism of C-PAM on pyrite, as
indicated by the changes in binding energy.
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Figure 8. X-ray photoelectron spectroscopy (XPS) high-resolution N 1s spectra of pyrite (a) before
and (b) after C-PAM adsorption.

Additionally, the C 1s spectra for the surface of pyrite before and after C-PAM treat-
ment were obtained, as shown in Figure 9a,b. The peak at 284.42 eV was assigned to the
C-C resulting from adventitious carbon [45,49] contamination on the surfaces of pyrite
shown in Figure 9a. After treating pyrite with C-PAM, two new peaks were observed at
286.14 eV and 288.46 eV resulting from the C–OH and O=C–NH2 of C-PAM, respectively,
as shown in Figure 9b [45].
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3.2. Machine Learning Models Comparison

The type of ore tested in this work was the Mississippi Valley type (MVT) ore consisting
of galena, chalcopyrite, and sphalerite as the main valuable sulfides while pyrite was the
main gangue sulfide mineral. For this type of ore, the common procedure is to float galena
and chalcopyrite as a bulk concentrate while depressing sphalerite and pyrite [20]. The
performance of the RF model was compared to the ANN model in predicting the grades
and recoveries of metals (Pb, Cu, and Fe) in the flotation concentrates.

3.2.1. Random Forest (RF) Model

The RF model was trained by the training dataset consisting of 75% of data records
from the parent database. Then, the training dataset (containing the remaining data-records)
was employed to assess the performance of the RF model on predictions of grades and
recoveries of Pb, Cu, and Fe in the flotation concentrates. Predictions for the training and
testing dataset as produced by the RF model are shown in Figures 10–12, and the statistical
parameters pertaining to the RF model’s performance are shown in Table 4. As shown
in Figures 10–12 and Table 4, predictions, as produced from the RF model, of grades and
recoveries of Pb, Cu, and Fe exhibit reasonable accuracy. R2 pertaining to the prediction
performance of Fe grade, Fe recovery, Pb grade, Pb recovery, Cu grade, and Cu recovery
is 0.87, 0.91, 0.78, 0.63, 0.80, and 0.73, respectively. RMSE pertaining to the prediction
performance of Fe grade, Fe recovery, Pb grade, Pb recovery, Cu grade, and Cu recovery is
0.834%, 4.196%, 1.962%, 12.402%, 0.141%, and 8.268%, respectively. It is expected that the
RF model can produce accurate predictions because the RF model has a unique architecture
that other models do not obtain [23,50,51]. First, due to two-stage randomization [23,25],
all trees decorrelate with each other. This ensures that bias error is minimized. Next, the RF
model constructure hundreds of independent trees without any smoothing and pruning.
The variation errors for outputs are diminished due to the convergence of outputs from
a large number of trees. Finally, all hyperparameters applied in the model are optimized
by 10-fold cross-validation method [27] and grid-search method [25,52]. Therefore, the RF
model finds the optimal underlying structures between inputs and output.
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Table 4. Overall performance indicators for the developed ML models.

Training Testing

Model R2 RMSE R2 RMSE

RF 0.883 4.380 0.901 3.780

ANN 0.789 3.868 0.717 4.349

3.2.2. Artificial Neural Network (ANN) Model

The training dataset was used to develop a single hidden layer feed-forward neural
network model with eight input variables and eight response variables. Two different
neural network models were developed, one for the metal recoveries and the other one
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for the output metal recoveries. The optimization algorithm, resilient backpropagation
with weight backtracking, was used with the sum of square loss as the cost function during
model training and error back propagation. The tangent hyperbolic function was used as
the activation function at the hidden layer neuron connection, whereas the identity function
was used as the activation function for the output layer, for both the neural network models.
A 5-fold cross-validation was used to avoid the overfitting with an error threshold value of
“0.05” during the model development process.

A search was conducted to optimize the hyperparameter for the neural network model
through trial and error. The goal was to find the optimum number of hidden neurons in
an attempt to optimize the single hidden layer neural network architecture [31,38,53]. The
optimization results showed that the performance of the neural network improved as the
number of neurons in the single hidden layer increased, then the performance of the model
stabilized as the number of neurons reached a total of 41 and 53 for metal grades and metal
recovery outputs, respectively. Increasing the neurons beyond these optimum numbers in
the respective hidden layer did not improve the neural network performance. In fact, it
would just result in increased computational cost. The two final neural network models
were developed using the same training dataset with an optimum number of hidden
neurons, 41 and 53, for metal grades and metal recovery outputs, respectively. The model
development process was stopped as soon as convergence was reached for both neural
network models. The two final optimized artificial neural network models are shown in
Figures 13 and 14, consisting of optimum single hidden layer neural networks for metal
grades and metal recovery outputs, respectively. Blue lines display the added bias terms
for generating a non-zero output for the neuron/node, whereas black lines display the
connections between the hidden neurons and nodes. Moreover, the thickness of the line
connection between these neurons and nodes describes the relative importance in terms
of the magnitude of the connection weights: the thicker the line, the higher the weight
between the respective neuron and node. Once the final trained neural network models
were developed, validation was carried out by using the test dataset to evaluate both the
model’s ability to predict the metal grade and recovery outputs for the flotation of base
metal sulfides in the presence of C-PAM as a pyrite depressant.
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Figure 14. Final optimum artificial neural model for metal recovery outputs.

Figures 15–17 display the real vs. predicted plots, for both grade and recovery of
iron, lead, and copper, as a graphical representation of the performance evaluation for
both the neural network models. The plots show the results for both the training and
testing phases of the neural network models. A 1:1 correlation line in each of those
plots shows the goodness of fit between the actual metal and recovery values and the
predicted corresponding output values by the respective models during both the training
and testing stages.
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3.3. Discussion on the Models’ Prediction Performance

The data obtained from flotation experiments were analyzed and randomly divided
into training (75%) and testing (25%) sets using the cross-validation method. Previous
studies have successfully used the 75–25% data partition method for training and testing
the dataset [19,26,54]. Each of the outputs was trained and tested separately. The data
split was randomized but done in such a way that the training data set was representative
of the parent dataset. Two statistical parameters were used to evaluate the prediction
performance of the models. These parameters basically estimate the cumulative error
in predictions of the metal grades and recoveries in the test dataset with respect to the
experimental values [26,55]. The performance of the developed models was evaluated using
the coefficient of determination (R2) as shown in Equation (5) and root mean square error
(RMSE) shown in Equation (6) [17]. These methods are the most commonly used statistical
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indicators for evaluating the performance of models [56]. R2 values range between 0
and 1, with values closer to 1 indicating that there is a high correlation. As for RMSE, a
higher value indicates that there is a higher deviation of the predicted values from actual
values, while a RMSE value closer to 0 indicates that there is a perfect match between the
actual and predicted values [17]. Table 4 shows the overall performance metric evaluation
results for both the machine learning algorithms, RF and ANN, whereas Table 5 displays a
more detailed evaluation by breaking down the performance into respective grades and
recoveries of Fe, Pb, and Cu. The ANN model for metal grade showed an R2 value of 0.71,
0.81, and 0.80 for Fe, Pb, and Cu grade, respectively, during model training, and an R2

value of 0.64, 0.53, and 0.68 for respective metal grades, during model testing, thus giving
an overall R2 value of 0.758 and 0.652, for training and testing phases, respectively. The
RMSE values by the ANN model for metal grades came out to be 1.02, 1.77, and 0.14 for
Fe, Pb, and Cu grades, respectively, during model training, whereas 1.11, 2.43, and 0.22 for
respective metal grades, during model testing, thus giving an overall RMSE value of 4.75
and 5.42, for training and testing phases, respectively.

Table 5. Statistical performance indicators pertaining to the flotation responses (metal grades and
recoveries).

Training Testing

Response ML Model R2

(Unitless)
RMSE

(%)
R2

(Unitless)
RMSE

(%)

Pb grade RF
ANN

0.75
0.81

2.077
1.77

0.79
0.53

1.962
2.43

Pb recovery RF
ANN

0.70
0.73

13.288
12.02

0.63
0.55

12.402
13.44

Cu grade RF
ANN

0.77
0.80

0.164
0.14

0.80
0.68

0.141
0.22

Cu recovery RF
ANN

0.70
0.75

9.298
8.14

0.73
0.69

8.268
9.77

Fe grade RF
ANN

0.61
0.71

1.143
1.02

0.87
0.64

0.834
1.11

Fe recovery RF
ANN

0.65
0.75

6.288
5.41

0.91
0.82

4.196
5.55

The RF model for both metal grade and recovery outputs performed better than the
respective ANN models with overall R2 values of 0.883 and 0.901, with RMSE values of
4.380 and 3.780, during model training and testing, respectively.

R2 =

[
∑n

i=1
(

Pi − P
)(

Ai − A
)]2[

∑n
i=1
(

Pi − P
)2(Ai − A

)2
] (5)

RMSE =

√
∑n

i=1(Pi − Ai)
2

n
(6)

where n = total number of data observations; Pi = predicted value by the model; Ai = actual
value in the data; P = mean of all predicted values; and Ā is the mean of all the actual
values.

The prediction plots for the grades and recoveries of Fe, Pb, and Cu (Figures 10–12,
respectively) show that the RF model was able to capture the intrinsic correlations in
a reliable manner as indicated by the high R2 values. However, the ANN model was
unable to capture the correlations reliably as the R2 values were lower as compared to RF.
This is because ANN model uses local search-and-optimization techniques throughout



Colloids Interfaces 2023, 7, 41 20 of 23

the training phase, which causes premature convergence [19]. This drawback is often
inconsequential—with little-to-no consequence on prediction performance of the models—
in datasets wherein the functional relationship between the input variables and output
is linear and/or monotonic. However, in the case of froth flotation, the input-output
correlations are expected to be complex (presumably highly nonlinear), thus rendering the
predictions of ANN models inaccurate—as reflected by the R2 values shown in Table 4.
ANN predictions can be improved by combining the model with generic programming
algorithms [19] or using the hybrid neural fuzzy models [17] or may be with using deep
learning algorithms, which is an advancement of the ANN algorithm [38,57].

4. Optimization Studies

The impact of structural characteristics of C-PAM on the flotation of sulfide minerals
was previously studied by Monyake and Alagha [8], where statistical analysis (response
surface methodology) was used to predict flotation outcomes and for optimization pur-
poses. However, the authors recommended using machine learning models to predict
the flotation outcomes and optimize the structural characteristics of C-PAM, as machine
learning models could ultimately result in improved and better performance compared
to statistical modeling. The results presented in Section 3 showed that the RF model was
able to reliably predict the metal grades and recoveries in the flotation concentrates as
compared to ANN. An optimization component was developed based on the capability of
RF to predict flotation outcomes based on the inputs and desired outputs. The objective of
the optimization study was to predict the C-PAM structural characteristics (chitosan degree
of deacetylation, X1; chitosan: acrylamide weight ratio, X2 and C-PAM dosage, X3) suitable
to produce target grades and recoveries of Fe, Pb, and Cu in the flotation concentrates. The
slurry pH, X4 (8), xanthate collector dosage, X5 (450 g/t); sphalerite depressant dosage, X6
(650 g/t); MIBC dosage, X7 (50 g/t); impeller speed, X8 (1250 rpm); and flotation time, X9
(4 min) were kept constant. Based on the value of X4–X9 and targeted metal grades and
recoveries, the RF model optimized the value for chitosan degree of deacetylation X1. Then,
X1 was an additional input to optimize the chitosan: acrylamide weight ratio, X2. Then,
X1 and X2 were used as inputs to optimize the C-PAM dosage X3. The optimization study
revealed that 98 g/t of C-PAM synthesized from chitosan of 85% degree of deacetylation at
1:4.5 weight ratio of chitosan: AM was the best structure to produce flotation concentrates
with target grades of 3% Fe, 20% Pb, and 2% Cu while recoveries were targeted at 15%
Fe, 85% Pb, and 75% Cu, respectively. These target grades and recoveries were optimized
previously by the authors in a separate study using statistical methods [8]. The chitosan
degree of deacetylation is an important parameter to enhance base metal flotation while
depressing pyrite because of the higher content of amine functional group, which was
previously reported to have stronger affinity to pyrite compared to base metal sulfides
hence enhancing pyrite depression [20,58,59]. This was shown in the XPS study where
the amine group chemisorbed on pyrite surfaces had a binding energy shift of +0.11 eV.
Grafting acrylamide on chitosan backbone incorporates side chains of acrylamide which
are hydrophilic and have stronger affinity to pyrite.

5. Conclusions

In this study, random forest (RF) and artificial neural network (ANN) models were
developed, trained, and tested to predict the efficiency of in-house synthesized chitosan-
polyacrylamide copolymers (C-PAMs) in the depression of pyrite in the bulk flotation
process of galena and chalcopyrite hosted in Mississippi Valley Type (MVT) ore. The overall
prediction performance of the models was rigorously evaluated based on the coefficient
of determination (R2) and the root-mean-square error (RMSE). With the RF model, the
overall R2 and RMSE values were 0.88 and 4.38 for the training phase, respectively, and
R2 of 0.90 and RMSE of 3.78 for the testing phase. As for the ANN, during the training
phase, the overall R2 and RMSE were 0.76 and 4.75, respectively, and during the testing
phase, the R2 and RMSE were 0.65 and 5.42, respectively. On the basis of these statistical
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parameters, it was clear that, in terms of prediction accuracy, the RF model was superior
compared to the ANN model. This was expected and consistent with prior studies that
have observed that the prediction performance of the RF model is better than several
standalone and ensemble ML models [19,51,60]. The high values of R2 combined with the
low values of RMSE strongly suggest that the RF is a reliable tool for predictions of froth
flotation efficiency, especially of polymetallic sulfide systems, using experimental process
parameters as inputs. However, it is acknowledged that RMSE and R2, by themselves,
do not effectively prove that the RF is a better predictor than ANN. This is because the
overall prediction performance of any given ML model is affected by various factors, and,
therefore, it is complicated to compare different ML models, especially when they are
devised and operated by different users. The aforementioned factors include but are not
limited to (i) nature and volume of the parent database and its splitting into training and
testing sets; (ii) pre-processing (or lack thereof) of the parent database or its derivations
(i.e., training and testing sets); (iii) type and number of statistical parameters (e.g., R2 and
RMSE) used for assessment of prediction performance; and (iv) techniques used to optimize
the hyper-parameters of the ML models. Additionally, this work focused on the use of
using environmentally friendly reagents (C-PAM), which were synthesized in-house for
the depression of pyrite. C-PAM was found to strongly adsorb on pyrite as compared to
galena and chalcopyrite through zeta potential, XPS, and adsorption density measurements.
This finding could potentially prove to be relevant to the industrial flotation of a sulfide
ore where galena and chalcopyrite are floated in bulk while pyrite is depressed in the first
stage of flotation. The adsorption of C-PAM on pyrite was suggested to be through the
chemisorption of the amine and amide groups of C-PAM.
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