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Abstract: The input of chemical and physical sciences to life sciences is increasingly important.
Surface science as a complex multidisciplinary research area provides many relevant practical tools
to support research in medicine. The tensiometry and surface rheology of human biological liquids
as diagnostic tools have been very successfully applied. Additionally, for the characterization of
pulmonary surfactants, this methodology is essential to deepen the insights into the functionality
of the lungs and for the most efficient administration of certain drugs. Problems in ophthalmology
can be addressed using surface science methods, such as the stability of the wetting films and the
development of artificial tears. The serious problem of obesity is fast-developing in many industrial
countries and must be better understood, while therapies for its treatment must also be developed.
Finally, the application of fullerenes as a suitable system for detecting cancer in humans is discussed.

Keywords: dynamic surface tension; dynamic interfacial tension; dilational surface visco-elasticity;
drop profile analysis tensiometry; bubble pressure tensiometry; Langmuir trough; Brewster angle
microscopy; medical applications

1. Introduction

At the present time, natural and life sciences are moving closer and closer together.
Although the “fundamental” parts of mathematics could still exist independently and sepa-
rately from other sciences, their real importance for other scientific branches is their impact,
most of all on physical and chemical sciences. These natural sciences, in turn, are becoming
more and more involved in life sciences, meaning that an efficient multidisciplinary system
has resulted, in which the various branches stimulate and also require each other’s inputs.
The fundamental principles of surface and interfacial sciences are wide-spread in nature
and technology, and medicine as important part of the multidisciplinary field profits a lot
from the intensified exchange of knowledge. Much progress in modern medicine is often
caused by the application of specific chemical and physical principles, and in particular
colloid and surface sciences provide many tools to better understand biological systems [1].

This article deals with only a few examples from selected subjects to demonstrate how
experimental instrumentation, theoretical approaches, and model studies allow insight to
be gained into very complex situations. For a detailed description with more examples, even
the space of a whole book would be insufficient. The first topic deals with the application
of dynamic surface tensiometry of human body liquids to support medical diagnostics and
to evaluate the success of therapies for various diseases [2]. In fact, this technique can be
considered a useful tool for complementing other long-established methods.
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A second group of applications of surface science principles is discussed with respect
to the formulation of artificial tears and of synthetic lung surfactants. Understanding the
mechanisms of these biological liquids and their design and application is vital for the
successful treatment of malfunctions of the eye [3] or of the lungs, respectively. In particular,
due to the still-existing COVID-19 pandemic, it was a hot topic to show in a Special Issue
of a journal, summarizing various aspects of surface science applications in pulmonology,
how essential the understanding of the mechanisms of pulmonary surfactants in the human
lungs is [4,5].

A particular issue in industrial countries is the large number of people suffering from
obesity. Surface science methods based on single-drop tensiometry with real-time drop
volume exchange have mimicked the rather complex process of digestion in the human
body. This successful work helped to develop strategies for the control of energy intake,
and in this way have contributed to the serious problems caused by overweight [6].

The final example discussed here is dedicated to the use of fullerenes for the diagnosis
of various types of cancer. Noskov and his team were able to demonstrate how surface
science experiments on the monolayer properties of various fullerenes are essential in
combination with other methodologies to detect the respective diseases [7].

2. Dynamic Surface Tension and Dilational Surface Visco-Elasticity Methods as Tools
for Diagnosis and Therapy Control in Medicine
2.1. History of Tensiometry Studies in Medical Research

The human body contains many biological liquids, such as blood, serum, urine,
seminal plasma, amniotic fluid, saliva, cerebrospinal fluid, tears, mammalian milk, sweat,
lymph, and gastric fluid. The compositions of these liquids are very different, and depends
on the functionality, age, and gender of the person. However, they all contain proteins,
low molecular weight surface-active compounds, and salts. From fundamental studies
of aqueous solutions of proteins, surfactants, and their mixtures, we know that the time
dependence of the surface tension and the frequency dependence of the corresponding
surface dilational visco-elasticity are strongly correlated with the type, concentration,
and composition of the respective solutions [8]. Hence, the dynamic surface tension and
dilational visco-elasticity of the various human liquids should be very different, and it can
be expected that they change with the health state of a person.

Looking into the history, Polányi was probably the first to study the surface tension
of human biological liquids [9]. He measured the surface tension of cerebrospinal liquids.
Later, Künzel in 1941 worked on this topic and performed the first systematic analysis of
dynamic surface tension data of blood serum and cerebrospinal liquid [10]. He showed
that first of all the cerebrospinal liquid contains surface-active compounds that adsorb and
decrease the surface tension. Moreover, he stated that the blood serum contains even more
of these surface-active molecules so that the corresponding surface tension value is lower.

After these historical studies, no real systematic investigations of human biological
liquids with respect to their physico-chemical surface properties happened for quite some
time. The real activity on this topic started from the end of the last century, when people
studied the surface tension behavior of various liquids [11], such as of blood serum [12,13],
cerebrospinal [14] and amniotic liquids [15], gastric juice [16,17], synovial liquid [18], and
saliva [19–21].

In one of the medical branches, pulmonary medicine, and here in particular neonatol-
ogy, measurements of surface tension used for studying the functionality of pulmonary
surfactants have become very popular. Remarkable progress has been made using this sur-
face science tool for the treatment of pulmonary diseases, as summarized by Pison et al. [22].
Researchers have used expired air condensates [23] and also artificial pulmonary surfac-
tants [24,25]. Not only are dynamic surface tension measurements suitable to help improve
the diagnostics of lung diseases, but in particular investigations of thin liquid films sta-
bilized by natural or artificial pulmonary surfactants are also able to provide essential
information about their suitability for the efficient functioning of the lungs [26].
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The interfacial characterization of biological liquids using different tensiometric tech-
niques has deepened the knowledge of their properties, both in well-functioning organs
and in critical conditions. Hence, the physico-chemical investigations may support the
formulation of synthetic surfactants able to be employed for the treatment of different kinds
of diseases.

2.2. The Standard State of Tensiometry Data for Human Liquids

In order to use the surface characteristics of human liquids, a base line must be deter-
mined in order to know what the normal values are and how they may depend on gender
and age [2]. Only then can experiments be performed in order to find out if particular
diseases cause significant changes in one or more characteristic surface parameters. Figure 1
shows the dynamic surface tension values of blood sera taken from newborns during their
first day of life. Curve 1 relates to a well-functioning lung, while curves 2 and 3 indicate
that the lungs of these babies are not sufficiently stabilized for normal breathing. Hence,
the use of dynamic surface tension data could easily serve as a quick test of the maturity of
a newborn, similar to what was proposed by Nikolov and Exerowa via the study of the
stabilization of a liquid film by amniotic fluid taken before the birth of the baby [27].
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Figure 1. The dependence of the dynamic surface tension of the umbilical blood taken during the
first day of life: (1) premature newborn from the reference group; (2,3) two newborns with immature
lungs suffering from congenital pneumonia; data taken with permission from [28].

It has been demonstrated that the gestation period and the dimensions of the fetus
are directly related with the concentrations of specific lipids and proteins (e.g., cholesterol,
triglycerides, and atherogenic). During the pregnancy, the protein and lipid composi-
tions vary with time, consequently affecting the surface tension of biological liquids. This
assumption is supported by experimental data, as depicted in Figure 2, where the devel-
opment of some selected dynamic surface tension values is shown during the pregnancy.
Note that the data were not obtained from a single patient but are averaged data for many
studied patients (52 women). Here, γ1, γ2, and γ3 are the surface tension values for three
different time periods of the adsorption kinetics, namely t = 0.01 s, 1 s, and at equilibrium
(t→∞), respectively. These three selected dynamic surface tensions are most informative
and can be used for the evaluation of the health state of patients suffering from different
diseases. Using the bubble pressure combined with bubble profile analysis tensiometry,
these data are easily accessible [8]. Such data are not only used in human medicine, but
also in veterinary medicine, as impressively shown in [29].

It becomes clear that the respective circumstances of a patient, such as pregnancy, can
lead to significant changes in the dynamic surface tension behavior of their blood serum.
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2.3. Dilational Surface Visco-Elasticity Data for Human Liquids

From a surface science point of view, the measurement of the dynamic surface tension
is not the only accessible technique for gathering essential data that are helpful in diagnosis
and therapy control in human medicine. In 2008, Kazakov et al. [30] analyzed the surface
visco-elasticity of composed protein–surfactant mixtures as well as real human liquids
using an oscillating drop methodology. It was possible to demonstrate that in particular
situations, the dilational visco-elasticity can provide more specific data for the diagnostics of
certain diseases as compared to the dynamic surface tension data. For example, in Figure 3,
the visco-elasticity modulus |E| and phase angle φ of the blood serum before and after an
operation is shown, and their significant change in terms of their frequency dependence
demonstrate the medical potential of these easily accessible surface parameters.
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Many more examples of the information obtained from the dilational visco-elasticity
of blood serum, urine, breath condensate, and cerebrospinal liquid samples can be found.
Such investigations are essential for several medical fields, such as rheumatology, neurology,
and pulmonology [31]. In particular for the characterization of pulmonary surfactants and
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their synthetic substitutes, surface relaxation methods are very efficient, as recently shown
in [32] and further discussed below in more detail in Section 5.

In fact, evident progress has been achieved thanks to the interfacial properties studied
in pulmonary medicine, and specifically for lung surfactants related to the neonatology field.
This is expected to lead to similar results for other branches of medicine via the systematic
and standardized utilization of the tensiometric methodologies. From this perspective, the
investigation of surfactant systems by simulating real human liquids under the influence of
interfacial properties is fundamental for using this approach as a complementary method
to other medical techniques, as discussed in the following sections.

3. Artificial Tears for Dry Eye Syndrome

According to the international Tear Film and Ocular Surface Society (TFOS), dysfunc-
tional tear syndrome (DTS), commonly known as “dry eye syndrome”, is defined as an
“ocular surface disease characterized by a loss of homeostasis of the tear film, and accom-
panied by ocular signs, in which tear film instability and hyperosmolarity, ocular surface
inflammation and damage, and neurosensory abnormalities play etiological roles” [33,34].
DTS is a common ocular disorder affecting millions of people, which causes decreases in
both the quality and amount of tears [35]. Human tears have the vital function of mois-
turizing the ocular surface and minimizing damage to the corneal epithelium. The tears
are mostly composed of water, electrolytes, proteins (e.g., antibodies and lysozymes), and
lipids, which combined together form three distinct layers (see Figure 4):

(1) The outermost lipid layer produced by the meibomian glands is located in the eyelids
and composed of both polar and non-polar lipids,

(2) A middle aqueous layer produced by the lacrimal glands,
(3) The epithelium-covering mucoid layer, which helps to anchor the aqueous part of the

tear film on the ocular surface.
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Dysfunctions in any of these layers can provoke tear film instability and hyperos-
molarity [36] due to environmental factors, systemic diseases, and medications [37]. This
kind of condition can lead to a wide variety of symptoms such as redness, stringy mucous,
burning, and itchiness, eventually causing scarring and fibrosis due to unprotected corneal
epithelial exposure [38]. There are two primary categories of DTS, aqueous deficient and
evaporative [39]. Left untreated, both DTS categories can result in visual disturbances and
tear film instability, with potential damage to the ocular surface [40], also increasing the
risk of ocular infection. Tear substitutes are necessary for the treatment of these kinds of
ocular disease.

Tear substitutes have been classified by Barabino et al. [41] into three categories,
depending on their degree of interaction with the eye: wetting agents, multiple-action tear
substitutes, and ocular surface modulators. While wetting agents only lubricate the ocular
surface with a limited residence time, multiple-action tear substitutes can improve the tear
film quality and quantity without interacting with the ocular surface. The last category,
ocular surface modulators, interacts with the ocular surface in order to counteract DTS.
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Artificial tears are the preferred first-line therapy as tear substitutes due to their non-
invasive nature and low side effect profile, despite the fact that the currently commercial
products do not successfully recreate the normal human tear film, although they mimic
its behavior well. A vast number of artificial tear products are currently available on the
market, in multidose vials containing preservatives or in preservative-free single-dose
units, which are used to assess a formulation’s sterility and avoid eye infections. The most
common kinds of ingredients contained in artificial tears can be summarized as follows [33]:

(1) Viscosity-enhancing agents are used to increase the tear film thickness and the reten-
tion of artificial tears at the ocular surface [42], preventing the loss of water, since they
act as water-retaining agents;

(2) Electrolytes are able to maintain the osmotic balance of the ocular surface by providing
essential ions for the maintenance of the corneal epithelial cells [43];

(3) Osmoprotectants are utilized to prevent ocular surface cell apoptosis induced by DTS.
(4) Regarding oily agents and surfactants, the presence of lipids and proteins in the lipid

layer plays a critical role in the surface tension of the tear film and humectation of the
ocular surface. Any alterations in the lipid layer lead to an increase in tear evapora-
tion [44]. Consequently, oily agents, in the form of liposomes and nanodroplets, are
used in the formulations of tear substitutes to replenish this layer [45].

There is a need to better understand the specific mechanical and pharmacological roles
of each ingredient composing the different formulations in order to establish the behavior
of the lipid layer, and in particular, its interfacial properties, such as the interfacial tension
and visco-elasticity.

In order to mimic a realistic layer of meibum secretion, a model system composed
of cholesteryl esters and cholesterol can be investigated, as they constitute the major
components of the lipid layer. The studies described in [46] were carried out using the
Langmuir trough technique for characterizing both the equilibrium and dynamic interfacial
properties of the cholesterol (CH) and cholesteryl stearate (CS) monolayers. In fact, it
is convenient to measure the dilational surface moduli of elasticity and viscosity under
dynamic conditions, since the meibum undergoes numerous mechanical perturbations from
its formation until its renewal upon blinking. Even if the real disturbance of the tear fluid
does not respond to a periodic sinusoidal deformation, measurements at frequencies close
to 0.1 Hz have been performed, taking into consideration that a typical blinking period is
around 5 s [47]. On the other hand, the evaluation of the equilibrium properties of the lipid
monolayers is also necessary to gain a complete picture of their dynamic behavior. In fact,
an analysis of the surface pressure area per molecule isotherms has shown the existence of
a strong synergy between cholesterol and cholesteryl stearate. The addiction of cholesterol
to the lipid mixture increases the rigidity of the monolayer, with a consequent enhancement
of the dynamic surface visco-elastic modulus. It has been shown that the addition of CH
may induce conformational modifications, leading to the existence of different types of
organization for the molecules at the interface:

(a) At the lowest surface pressures a disordered liquid phase is observed, due to a weak
lateral packing of the molecules;

(b) By increasing the surface pressure, the coexistence of the two liquid phases is expected,
with a decrease in elasticity;

(c) A further increase in elasticity then occurs due to an enhanced lateral packing of
the molecules.

Figure 5 shows the dilational elasticity as a function of the molar fraction of choles-
terol (xCH) for experiments performed at two different deformation frequencies around
three different values of the reference pressure, at the physiological temperature of 35 ◦C.
As demonstrated, the elasticity modulus is almost unaffected by the deformation fre-
quency, and the decrease in dilational surface elasticity indicates the formation of more
fluid monolayers.



Colloids Interfaces 2022, 6, 81 7 of 25

Colloids Interfaces 2022, 6, x FOR PEER REVIEW 7 of 26 
 

 

components of the lipid layer. The studies described in [46] were carried out using the 
Langmuir trough technique for characterizing both the equilibrium and dynamic interfa-
cial properties of the cholesterol (CH) and cholesteryl stearate (CS) monolayers. In fact, it 
is convenient to measure the dilational surface moduli of elasticity and viscosity under 
dynamic conditions, since the meibum undergoes numerous mechanical perturbations 
from its formation until its renewal upon blinking. Even if the real disturbance of the tear 
fluid does not respond to a periodic sinusoidal deformation, measurements at frequencies 
close to 0.1 Hz have been performed, taking into consideration that a typical blinking pe-
riod is around 5 s [47]. On the other hand, the evaluation of the equilibrium properties of 
the lipid monolayers is also necessary to gain a complete picture of their dynamic behav-
ior. In fact, an analysis of the surface pressure area per molecule isotherms has shown the 
existence of a strong synergy between cholesterol and cholesteryl stearate. The addiction 
of cholesterol to the lipid mixture increases the rigidity of the monolayer, with a conse-
quent enhancement of the dynamic surface visco-elastic modulus. It has been shown that 
the addition of CH may induce conformational modifications, leading to the existence of 
different types of organization for the molecules at the interface: 
(a) At the lowest surface pressures a disordered liquid phase is observed, due to a weak 

lateral packing of the molecules; 
(b) By increasing the surface pressure, the coexistence of the two liquid phases is ex-

pected, with a decrease in elasticity; 
(c) A further increase in elasticity then occurs due to an enhanced lateral packing of the 

molecules. 

 
Figure 5 shows the dilational elasticity as a function of the molar fraction of choles-

terol (xCH) for experiments performed at two different deformation frequencies around 
three different values of the reference pressure, at the physiological temperature of 35 °C. 
As demonstrated, the elasticity modulus is almost unaffected by the deformation fre-
quency, and the decrease in dilational surface elasticity indicates the formation of more 
fluid monolayers. 

Figure 5. The surface elasticity moduli of the CH/CS mixture vs. xCH at different surface pres-
sures at 35 °C; taken from [46]. 

The study of this simple model system has shown that slight modifications of the 
composition of the lipid monolayers may induce strong changes in the interfacial proper-
ties, which in turn may cause physiological dysfunctions of the meibum film, and in turn 

Figure 5. The surface elasticity moduli of the CH/CS mixture vs. xCH at different surface pressures
at 35 ◦C; taken from [46].

The study of this simple model system has shown that slight modifications of the
composition of the lipid monolayers may induce strong changes in the interfacial properties,
which in turn may cause physiological dysfunctions of the meibum film, and in turn a DTS
pathology. For this reason, it is necessary to define the best composition for mimicking
the biological characteristics of the meibum layers and deepening the aspects related to
different ocular diseases [48].

The study of the dynamic and equilibrium surface properties is also fundamental for
determining the optimal composition and the behavior of another class of tear substitutes:
oil-in-water emulsions, where oily droplets are stabilized in the aqueous phase using
suitable emulsifiers. As previously mentioned, the lipid layer is naturally composed of
both non-polar and polar lipids, and it has been determined that polar lipid abnormalities
may be involved in DTS [49,50]. Therefore, several formulations include polar lipid-like
surfactants, since in cationic emulsions the positively charged oil droplets can interact with
the negatively charged mucin layer of the tear film to stabilize it [51,52]. In these cases,
studies of the interfacial properties are essential for the choice of the suitable type and
concentration of surfactants in a way to avoid toxic effects and increase the eye moisture.
Moreover, the behavior of the surface tension and visco-elasticity provides important
information for the formulation of stable oily emulsions [53] that are suitable to interact
with and protect the lipid eye layer.

The determination of the physico-chemical effects of the tear substitutes on the lipid
layer may be considered a complementary investigation in support of the physicians’
activities for the choice of the most suitable tear substitute, depending on the specific ocular
disease affecting each patient.

4. Effects of Serum Proteins on Interfacial Properties of Ophthalmic Silicon Oils

Vitrectomy is the second most frequently used surgical ophthalmic intervention after
cataract, consisting of the replacement of the vitreous body, a visco-elastic fluid that occupies
the vitreous chamber of the eye, with transparent vitreous substitutes. It is performed to
treat several pathological or traumatic vitreoretinal conditions, such as retinal detachments,
hemorrhages, inflammations and infections, and the presence of foreign bodies in the eye.
After the vitreous removal, a long-term substitute is commonly injected to fill the vitreous
chamber and the sensory layer of the retina in contact with the retinal pigment epithelium.
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Despite the wide use of these vitreous substitutes and their relevance in ophthalmic
surgery, none of the currently available products possess all of the physiological require-
ments for an efficient vitrectomy procedure, since they present significant shortcomings,
mostly related to lack of biocompatibility and inadequate behavior [54].

High-viscosity (up to 2000 cSt) polydimethylsiloxane (PDMS) silicone oils (SOs) are
among the most frequently used vitreous substitutes. To date, they remain an indispensable
tool in retinal surgery, especially in complicated retinal pathologies requiring a long-term
vitreous substitute for internal tamponade. Most SOs used in ophthalmic surgery have a
density equal to 0.97 g/cm3; hence, they float above the residual eye cavity fluid, which
helps in retinal reattachment in the case of superior breaks. Heavier SOs with densities
between 1.02 and 1.06 g/cm3 are also used for other purposes. One of the important
advantages of using SOs is related to their high surface energy at the interface with the
aqueous phase (i.e., interfacial tension), which ensures the closure of retinal breaks and
reduces subretinal leakage.

The use of SOs, however, is associated with some complications. There is clinical
evidence [54] that if an SO is left for a longer period in the vitreous chamber, it invariably
tends to emulsify. Besides the obvious, although reversible, affected vision caused by the
light scattering, the occurrence of the emulsification leads to a series of possible serious
complications requiring the early removal of the SO [55]. This is particularly true when the
oil droplets are small enough to pass from the vitreous to the anterior chamber. In this case,
the droplets may get trapped in the trabecular meshwork and block the aqueous drainage,
leading to increased intraocular pressure and a higher risk of developing glaucoma.

Several experimental studies have proven the relevance of the emulsification of the
exposition of SO in the vitreous chamber to endogenous molecules (proteins, lipids, etc.),
the presence of which is favored by the post-surgery inflammatory state of ocular tissues.
Bartov et al. [56] demonstrated that various blood constituents, such as lymphocytes,
plasma, red blood cells, and hemoglobin, act as emulsifiers for SO when dissolved in
aqueous solution. Heidenkummer et al. [57] characterized various SOs with specific
physicochemical properties in terms of their rate of emulsification. The authors added
biomolecules to the system, and in particular used 0.1% solutions of fibrinogen, fibrin, γ-
globulins, acidic alpha-l-glycoprotein, and serum dissolved in sterile distilled water, as well
as in balanced salt solution [57]. They found that the group of low-viscosity SOs (1000 cs)
was the least stable. They identified as the most effective emulsifiers fibrinogen, fibrin,
and serum, followed by γ-globulins. Emulsions obtained by sonicating and centrifuging
mixtures of SO and saline solutions containing various blood components were investigated
by Savion et al. [58], who found that red blood cell membranes, plasma lipoproteins, and
purified (high-density lipoprotein) HDL apolipoproteins favored SO emulsification.

It is, therefore, evident that most of the above-mentioned biomolecules are surface-
active molecules that adsorb at the SO-aqueous interface and favor its emulsification, based
on their effects on interfacial properties. For comprehension of the emulsion’s generation
and stability, it is of great relevance [59–61] to understand how such molecules modify
these interfacial properties, and in particular the dilational surface rheology; that is, the
dynamic response of the interfacial tension (IFT) to perturbations of the interfacial area.

These effects have, however, been investigated only in a few studies. The IFT values
between SO and pure water are in the range between 35 and 42 mN/m, depending on
the specific SO composition [62,63]. In the presence of endogenous molecules, such as in
a vitreous chamber, the equilibrium IFT of SO against the aqueous phase is significantly
reduced. In fact, Nakamura et al. [64] reported an IFT value, measured at 37 ◦C using the Du
Nouy ring method, of about 16 mN/m between SO (1000 cSt) and vitreous liquefied bovine
fluid. In addition, they found similar values for the IFT of SO against intraocular fluids,
and slightly lower values (12.6 mN/m) for SO in contact with retinal tissue specimens after
24 h. All of these IFT values were significantly lower than those measured for the SO–pure
water interface and are compatible with an increased tendency for the system to emulsify.
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More recently, in [65], the equilibrium and rheological properties were characterized
for the interface between 1000 cSt SO and aqueous solutions (Dulbecco’s saline buffer)
containing albumin, γ-globulin, and their mixtures. These proteins represent the most
abundant fractions of human serum, with 35–50 g/L for albumin and 20–55 g/L of globulins.
The measurements were performed using pendant drop tensiometry. As for Figure 6, the
results showed that for a protein concentration of the order of 20% of the physiological
values, the IFT decreases down to values of about half of the value measured for the buffer–
SO interface, with the protein mixture being slightly more surface-active. Measurements
performed with oscillating drops [66] after the IFT equilibrium showed significantly larger
values (see Figure 7) of the surface dilational visco-elasticity module for γ-globulins at
concentrations that were only a few percent of the physiological value, over a broad range
of oscillation frequencies. These values are, therefore, compatible with emulsions showing
significant stability against droplet coalescence. Emulsification tests in syringes [67] on
the same system demonstrated that while the SO–buffer interface is unable to provide an
emulsion, in the presence of the above proteins, stable emulsions (over several months)
are obtained already at concentrations above 0.5% of the physiological concentration in
blood and even of the order of 0.01% for protein mixtures. This finding corroborates the
hypothesis that the release of a small amount of proteins from ocular tissues (typically
as an inflammatory response to surgery) may have a primary role in the formation of
an emulsion.

Considering the relatively low IFT values, emulsification could be caused by typical
head movements, or more likely by voluntary or involuntary eye movements (saccadic
movements of the eye, eye rotation during sleep). The latter could also promote the
interfacial area perturbations related to dilatational stimuli of the interfacial layer.

In addition to biomolecules, other types of molecules can adsorb and modify the
interfacial properties of SO. Despite the use of purification and ultra-purification processes,
variable contents of low molecular weight components (LMWCs) can be still detected
in purified SOs, and these compounds are known to act as surfactants [68]. Moreover,
comparing solutions of buffer, human serum albumin (HSA), and SOs of different compo-
sitions, the SOs with larger concentrations of LMW silicones have been associated with
increased protein denaturation and aggregation and SO-in-water emulsions [67]. Dresp and
Menz [69] investigated the effect of detergent contamination on a ready-to-use standard set
of vitrectomy instruments. They concluded that for reusable instruments, the remnants of
cleaning substances from the sterilization process can increase the risk of the emulsification
of the SO due to a significant decrease in the respective IT value.
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5. Native and Synthetic Pulmonary Surfactants for Neonatal Respiratory
Distress Syndrome
5.1. Native Pulmonary Surfactants

Thin films of pulmonary surfactant solutions cover the inner surfaces of the lungs
and play an important role in the process of breathing [70]. A pulmonary surfactant is a
complex mixture of lipids with proteins and its deficiency due to prematurity causes respi-
ratory distress syndrome, which is the leading reason for premature infant death [71]. The
pulmonary surfactant decreases the surface tension to extremely low values after surface
compression and prevents alveolus collapse upon exhalation [72]. This unique ability to
decrease the surface tension to almost zero arises due to a significant amount of dipalmitoyl
phosphatidyl choline (DPPC), with its molecular structure helping to form a closely packed
monolayer [70–72]. On the other hand, this molecular structure prohibits DPPC adsorption
from the bulk solution, where the lipid remains in the form of vesicles [73]. Initially, the
surface tension values at equilibrium and after compression were the main parameters
used to characterize pulmonary surfactant solutions [74]. Only the kinetic dependencies of
the surface tension at adsorption of the pulmonary surfactant on pure aqueous surfaces
were measured to estimate the dynamic surface properties [75]. This allowed the possi-
bility of proposing a medical treatment procedure for premature infants based on natural
pulmonary surfactants extracted from animal lungs [71]. At the present time, several
pharmaceutical formulations are used (Curosurf, Infasurf, Survanta, Alveofact) that save
thousands of lives per year, but like many other natural medical drugs, they have several
disadvantages, including their unstable composition, high costs, and limited sources [76].
The first generation of synthetic pharmaceutical formulations of pulmonary surfactants
(ALEC and Exosurf) was made based on DPPC and had low efficiency, although they
met the requirements of the parameters presented previously [77]. This means that these
parameters proved to be insufficient for the full characterization of the inner surfaces of the
lungs, since the real state of the lungs proved to be more complicated. For example, alveoli
undergo continuous deformation and remain far from equilibrium, while the minimal
values of surface tension strongly depend on the magnitude of deformation and adsorption
from the bulk of pulmonary surfactants that usually proceeds on the preoccupied surface.

5.2. Dynamic Surface Properties of Pulmonary Surfactants

Investigations of surface properties of pulmonary surfactant solutions via surface
rheology and other experimental techniques have given additional information on the key
components [24,78,79]. It was shown that pulmonary proteins, especially SP-B, facilitate
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the formation of the multilayer structure in the adsorption layer, which serves as reservoir
for supplementary molecules staying close to the surface [3,80]. The slow progress in
this scientific area can be explained by the significant difficulties connected with the
measurements of dynamic surface properties at conditions relevant to the physiological
state inside the lungs, with low surface tension values (lower than 30 mN/m). Several
experimental methods were developed for measuring extremely low surface tension values
at periodic compression and expansion levels [81]. One of the frequently used methods
involves a captive bubble surfactometer, which is based on an analysis of bubble shapes
in solutions of pulmonary surfactants. This allows the simulation of tidal breathing by
changing the bubble volume. Recently, the constrained drop surfactometer method was
developed, where the drop of a pulmonary surfactant solution is used instead of a bubble.
In this case, the composition of the air phase is under control, which makes it possible
to investigate the influence of foreign particles or agents on the surface properties of
pulmonary surfactant solutions [82]. The Langmuir film balance with a special design of
the Langmuir trough for work in the range of low surface tension is also frequently used
for the investigation of different model systems, and can be easily combined with optical or
spectroscopic techniques. It works at relatively slow deformation speeds with frequencies
of the surface area oscillations of less than 0.2 Hz, but it allows the compression to be
continued even after the surface tension reached zero values. The character of the surface
tension changes as a response to deformations of the surface layer, directly connecting it
with the functionality of the pulmonary surfactant [83,84]. The dynamic surface elasticity is
a fundamental property of a surface layer describing the system response to deformations.
It could be used to estimate the efficiency of pulmonary surfactant solutions. However, long-
term measurements of the dynamic surface elasticity were performed only at sufficiently
high surface tensions [24]. For measurements of the efficient surface elasticity in the
range of low surface tension values, a new approach was recently proposed based on the
analysis of the non-linear system response to large deformations [85]. It was shown that
the surface tension changes during periodic compression and expansion phases, meaning
the spread of the DPPC monolayer differs significantly from the corresponding changes for
the adsorption layer of the native pulmonary surfactant (Figure 8) [32,86].
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plots) measured at different amplitudes of the area oscillations, as indicated in the figure, for a spread
monolayer of DPPC (A) and adsorbed layers of pulmonary surfactant solution at a concentration of
1.25 mg/mL at 25 ◦C (B).

At conditions close to the physiological conditions, the surface elasticity proved to be
higher for DPPC than for the complex mixture of the pulmonary surfactants (Figure 9). It
was assumed that the presence of proteins during the formation of a multilayer structure
leads to an acceleration of the relaxation processes connected with an exchange of lipid
molecules between the surface and sublayer. The temperature increase results in an addi-
tional acceleration of the relaxation processes due to the decrease in ordering in the surface
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layer structure. For pulmonary surfactant solutions at 35 ◦C, the characteristic relaxation
time decreases from hundreds to a few seconds with the decrease in surface tension from
30 to 1 mN/m [86,87]. Moreover, for deformations larger than 10%, an irreversible collapse
in the adsorption layer takes place and leads to a loss of functional properties for some
molecules, which have to be substituted by new molecules arriving from the bulk phase. In
this case, a sufficiently fast transfer of molecules from the bulk phase or sublayer is required
to maintain the stationary oscillation of the surface tension. Recently, it has been shown
that the complexes of protein SP-B with anionic lipids and SP-C not only accelerate the
adsorption of lipids to the surface layer, but also improve the penetration of hydrophobic
and hydrophilic molecules through the vesicle’s membrane [32,88].
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5.3. Synthetic Pulmonary Surfactnts

In spite of the significant progress in understanding the proteins’ functions in pul-
monary surfactants, the strict mechanism of their actions, which allows the possibility
for the pulmonary surfactants to maintain the functional properties of the lungs in the
course of periodic surface deformations, remains unknown so far. Therefore, developing a
second generation of synthetic pharmaceutical formulations for pulmonary surfactants is
based on copying or imitating the molecular structure of SP-B proteins [76,77,84]. To date,
only a part of the SP-B macromolecule can be synthesized, which will have to undergo
medical trials [89]. At the same time, there are encouraging results for the influence of
synthetic polyelectrolytes and co-polymers on the dynamic surface properties of pulmonary
surfactants [90–92].

The applications of pulmonary surfactants for medical treatments of adult patients
with acute respiratory distress syndromes have shown controversial results, probably
due to differences in the administration methods. However, the COVID-19 pandemic
has restored interest in and initiated several medical treatments for patients with this
devastating disease. The preliminary results have shown that pulmonary surfactants can
help patients on artificial lung ventilators [93–95]. Moreover, pulmonary surfactants are
considered perspective agents for drug delivery to the lungs [96,97].

6. Interfacial Aspects of Digestion
6.1. Mechanism of Lipid Digestion

Lipase is an enzyme responsible for the digestion of lipids in our body. Triglycerides,
also known as triacylglycerols, are the most common sources of lipids and the primary
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substrates of lipase [98]. Triglycerides have a glycerol backbone attached to three fatty
acid sidechains via ester bonds. Lipase can cleave these ester bonds during the digestion
of lipids and produces diglycerides, monoglycerides, glycerol, and fatty acids [99]. Ad-
ditionally, phospholipids, composed of a glycerol backbone attached to two fatty acids
and a phosphate headgroup, can be digested using a specific group of lipases called
phospholipases [100].

Human gastric and pancreatic lipases are the main enzymes for the digestion of lipids
in the gastrointestinal tract, facilitating fat absorption by producing free fatty acids [101].
Since lipase is hydrophilic, the hydrophobic lipase substrates should be emulsified to
maximize the enzymatic lipolytic digestion at the triglyceride–water interface [102]. The
ingested lipids compose a coarse oil-in-water emulsion in the mouth, which becomes
finer and finer along the stomach and small intestine. The competition at the interface
of the emulsion droplets is the vital factor determining the rate of fat digestion. Besides
the physical peristaltic forces, bile salts, phospholipids, lipolysis products, and proteins
mediate the emulsification and determine the fate of the digestion [103].

6.2. Mimicking In Vitro Digestion

Owing to the moral and technical challenges of in vivo gastrointestinal studies, in vitro
models are usually chosen to mimic digestion. To this end, interfacial techniques can be
used to distinguish the bulk from interfacial phenomena [104]. Dynamic tensiometry cou-
pled with subphase exchange fits when studying triglyceride–water interfaces similar to
the passage of food colloids through the gastrointestinal tract by alternating the aqueous
phase [105]. The OCTOPUS [106] and CDC-PAT [107] systems are two setups developed
based on the droplet exchange technique. A schematic representation of an in vitro diges-
tion model based on dynamic tensiometry is shown in Figure 10. During the formation of
the initial protein adsorption layer, the dynamic surface tension is measured for 30–60 min.
Then, interfacial oscillation is imposed on the droplet to measure the dilational rheology of
the adsorbed layer. Afterward, the droplet bulk is exchanged with a new subphase, and
the interfacial properties are measured for each of the exchanged solutions [106].
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6.3. Interfacial Dynamics of Digestive Oil–Water Interface

The surface-active molecules affect the enzymatic activity of the lipase by control-
ling its interfacial concentration [108]. Sn-2 monopalmitin and Sn-2 monocaprilyn, two
monoglycerides produced during digestion, are highly surface-active and can desorb lipase
from the interface, leading to a self-regulated rate of digestion [109,110]. Figure 11 shows
how fast Sn-2 monoglycerides displace lipase from the interface. The surfactants can also
interrupt the enzymatic activity of lipase as a model amphiphile. Cationic surfactants
interact more strongly with lipase at the interface at neutral pH than anionic or non-ionic
surfactants [111,112].
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The effect of in vitro gastrointestinal digestion on protein-covered interfaces is shown
in Figure 12. While the extent of lipolysis is similar for both proteins, the emulsification
increases the pepsinolysis of β-lactoglobulin considerably, unlike the β-casein [106]. Dur-
ing pepsinolysis, an increase in the dynamic interfacial tension indicates the enzymatic
degradation of proteins and their removal from the interface. During lipolysis, the inter-
facial tension decreases due to lipase adsorption and the generation of reaction products.
The dilational visco-elastic moduli of the interface allow insight to be gained into the
interfacial composition.
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6.4. Bile Salt Effect on Lipase Activity

The lipolysis rate is determined by the competition and interactions of the surface-
active materials at the interface and via the interfacial accessibility for lipase. Bile salts are
highly surface-active biosurfactants, which can remove other materials from food emulsion
interfaces, thereby arranging the interface for lipase–colipase complex adsorption [113].
Therefore, dynamic interfacial techniques have been used to study the interactions of food
emulsion components with bile salts. Accordingly, a competitive sequential adsorption
study showed that protein films have more resistance to desorption by bile salts than
the non-ionic surfactant Tween 20 [114]. The complexation of bile salts at the interface
determines their stability; sodium taurocholate adsorbs at the water–air interface more
conveniently and irreversibly than sodium glycodeoxycholate [115].

6.5. Effects of Lipase Inhibitors as Antiobesity Drugs

The inhibition of pancreatic lipase regulates the amounts of free fatty acids and mono-
glycerides released and subsequently absorbed by our body. Therefore, they provide an
approach for discovering potential antiobesity drugs [116]. Orlistat, also commercially
known as Xenical® or Alli®, is a well-known antiobesity drug approved by the US Food
and Drug Administration. Its working principle is based on the competitive inhibition of
human pancreatic and gastric lipases, i.e., it binds to the catalytic triad of lipase to restrict
the availability of triglycerides [117]. However, regarding the side effects, safer poten-
tial substitutes have been actively sought, including natural lipase inhibitors [118]. The
DrugBank database at the University of Alberta was investigated to find pancreatic lipase
inhibitors via molecular docking and addressing silibinin(A) and glutathione–disulfide
as potential inhibitors. Then, their effectiveness was confirmed by measuring the lipid
digestion in a pendant drop model [6].

7. Fullerene Derivatives for Special Tumor Therapy

Fullerene was early discovered in 1985 by Kroto, Curl, and Smalley, the Nobel Prize
winners in chemistry in 1996. In the subsequent years, the potential applications of this
substance in different technological fields appeared to be rapidly evident by virtue of the
chemical reactivity of fullerene’s molecular structure.

The beneficial applications in medicine of a variety of fullerene derivatives, over
the course of two decades after fullerene’s discovery, were exhaustively pointed out by
Da Ros [119]. Their photodynamic effects, formation of composites with biopolymers,
interactions with proteins, and solubility in aqueous phases constitute the essential func-
tionalities of fullerene derivatives in pharmacology innovations and the ensuing tumor
therapies [120–124]. The successful oncological therapies of the body-injected product
involve local accumulation onto malignant cells via an interaction with the cell membrane
or penetration between the membrane layers as a self-arrangement, due to the peculiar
alteration of the malignant cell structure. This locally targeted strategy demands the ex-
istence of two-dimensional forms of the adopted fullerene derivative. In this medical
context, recently Noskov and his coworkers envisaged a greater chance of medical success
resulting from a deeper understanding of the dynamic properties and interfacial rheology
for adsorption layers of fullerene derivatives. A continuation of this series of experimental
investigations, conducted by these authors, proved the significance of the designed formu-
lations in the two-dimensional layered structure of the applied pharmaceutical fullerene
products, instead of taking into account their sole molecular species [7,125–128].

For the first time, Noskov et al. [125] reported measurements of the dynamic surface
tension and surface dilational elasticity modulus for fullerene (C60) derivatives with
lysine and arginine amino acids. The measurement values, together with the concomitant
Brewster angle microscopy images, allowed important information to be acquired about the
mechanism of adsorption layer formation in such a complex system, as well as its structure
and adsorption kinetics behavior. A distinct dynamic surface elasticity is exhibited by the
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two studied fullerene derivatives. Figure 13 illustrates the time evolution of the surface
tension and dilational surface elasticity modulus for an aqueous solution of C60-lysine.
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Subsequently, Noskov et al. [126] studied the surface properties of solutions of
fullerene derivatives with a high number of hydroxyl groups (denoted as fullerenols). The
experimental findings showed the formation of a robust adsorption layer at the water−air
interface and the possibility of transfer from the solution’s surface onto a freshly cleaved
mica plate using the Langmuir−Schaefer technique. Reliable measurement results were
obtained for the dynamic surface dilational elasticity and dynamic surface tension. The anal-
ysis of the experimental findings, in combination with the relevant atomic force microscopy
(AFM) images, revealed a non-homogeneous layer structure, consisting of interconnected
surface microaggregates of fullerenol molecules, as presented in Figure 14. The surface
aggregates are not adsorbed from the bulk phase. Rather, they form in the surface layer
as a result of structural rearrangements of the adsorbed molecules. The slow fullerenol
adsorption is not controlled by diffusion but by an electrostatic adsorption barrier.

Akentiev et al. [127] further investigated the surface properties of fullerenol solutions,
examining the dynamic behavior of adsorption layers with a smaller number of hydroxyl
groups (i.e., C60(OH)20) with respect to the fullerenols in C60(OH)30 [126]. Similar to the
more hydrophilic fullerenol, C60(OH)20 forms a rigid adsorption layer that can be easily
transferred onto a solid surface using the Langmuir–Blodgett and Langmuir–Schaefer
methods. In both cases, the surface properties of the solutions are sensitive to small
mechanical surface perturbations. The adsorption layer of C60(OH)20 is more fragile than
that of C60(OH)30. The experimental findings for C60(OH)20 show that the time evolution
of the surface tension and surface dilational elasticity exhibit diverse and peculiar features,
resulting from different kinds of area perturbation (i.e., continuous or periodic oscillations,
expansion or compression). Regarding C60(OH)30 solutions, the adsorption kinetics are
faster than for C60(OH)20 solutions, presumably due to the lower charge of the molecules
and lower adsorption barrier.



Colloids Interfaces 2022, 6, 81 17 of 25Colloids Interfaces 2022, 6, x FOR PEER REVIEW 18 of 26 
 

 

Figure 14. Upper side. AFM images of different samples of fullerenol C60(OH)x (x = 30 ± 2) film: 
(a) 70 min after the surface formation; (b) 16 h after the surface formation without oscillations; (c) 
after continuous oscillations for 75 min; lower side. The kinetic dependencies of the dynamic sur-
face elasticity are shown with continuous barrier oscillations and various concentrations of full-
erenol C60(OH)X (x = 30 ± 2), taken from [126]. 

Continuous oscillations of the surface area also lead to a decrease in the surface elas-
ticity due to the partial degradation of the adsorption layer. During macroscopic observa-
tions, the adsorption layer appears homogeneous. However, the measurement values of 
the dynamic properties, supplemented with Brewster angle microscopy images, indicate 
that at the microscopic scale, the solution–air interface is non-homogeneous under specific 
conditions whereby the fullerenol molecules are arranged in multiple adsorption layers 
with separate surface aggregates. 

Noskov et al. [128] characterized the structure of the complex spread-layer systems 
constituted by fullerene and its mixtures with the amphiphilic polymers poly(vinylpyr-
rolidone) (PVP) and poly(N-isopropylacrylamide) (PNIPAM), respectively. The interac-
tion of fullerene with these polymers was investigated via measurements of dilational 
surface rheology and using optical techniques (i.e., ellipsometry, Brewster angle micros-
copy (BAM), and AFM). 

The properties of these spread layers at the water–air interface indicated the strong 
adhesion of the layers to water, which can be explained by the hydroxylation of the full-
erene molecules when they contact the water. The layers can sustain surface pressures of 
up to 70 mN/m. The dynamic dilational elasticity of the layers reaches values of approxi-
mately 370 mN/m at surface pressures close to 25 mN/m and then decreases gradually, 
giving rise to two local maxima. The ellipsometric measurements and BAM results show 
that the layers have variable thicknesses. According to the AFM data, the structure pri-
marily comprises bilayers or trilayers at low surface pressures but can contain large ag-
gregates of up to approximately 100 nm. The number of these tall aggregates increases as 
the surface pressure increases, but most of the surface aggregates have dimensions of ap-
proximately 40–60 nm in the x-y plane and approximately 20–40 nm in the z-direction. 
The local maximum of the surface elasticity can indicate the beginning of the layer’s de-
struction. This conclusion was confirmed by optical micrographs that revealed the begin-
ning of the formation of mesoscopic and macroscopic folds in the layer at surface pres-
sures higher than 30 mN/m. 

Protein–fullerene interactions were recently studied by Noskov et al. [7] by perform-
ing measurements of dilational surface elasticity as a function of surface pressure and sur-
face age (together with AFM) on mixed layers of fullerene with bovine serum albumin 
(BSA) at the solution–air interface. The results from the dilational surface rheology and 
AFM measurements for C60/BSA layers at the water–air interface indicated significant 
interactions between the fullerene and protein molecules in the surface layer. The 

Figure 14. Upper side. AFM images of different samples of fullerenol C60(OH)x (x = 30 ± 2) film:
(a) 70 min after the surface formation; (b) 16 h after the surface formation without oscillations; (c) after
continuous oscillations for 75 min; lower side. The kinetic dependencies of the dynamic surface
elasticity are shown with continuous barrier oscillations and various concentrations of fullerenol
C60(OH)X (x = 30 ± 2), taken from [126].

Continuous oscillations of the surface area also lead to a decrease in the surface
elasticity due to the partial degradation of the adsorption layer. During macroscopic
observations, the adsorption layer appears homogeneous. However, the measurement
values of the dynamic properties, supplemented with Brewster angle microscopy images,
indicate that at the microscopic scale, the solution–air interface is non-homogeneous under
specific conditions whereby the fullerenol molecules are arranged in multiple adsorption
layers with separate surface aggregates.

Noskov et al. [128] characterized the structure of the complex spread-layer systems con-
stituted by fullerene and its mixtures with the amphiphilic polymers poly(vinylpyrrolidone)
(PVP) and poly(N-isopropylacrylamide) (PNIPAM), respectively. The interaction of fullerene
with these polymers was investigated via measurements of dilational surface rheology and
using optical techniques (i.e., ellipsometry, Brewster angle microscopy (BAM), and AFM).

The properties of these spread layers at the water–air interface indicated the strong
adhesion of the layers to water, which can be explained by the hydroxylation of the fullerene
molecules when they contact the water. The layers can sustain surface pressures of up to
70 mN/m. The dynamic dilational elasticity of the layers reaches values of approximately
370 mN/m at surface pressures close to 25 mN/m and then decreases gradually, giving
rise to two local maxima. The ellipsometric measurements and BAM results show that
the layers have variable thicknesses. According to the AFM data, the structure primarily
comprises bilayers or trilayers at low surface pressures but can contain large aggregates of
up to approximately 100 nm. The number of these tall aggregates increases as the surface
pressure increases, but most of the surface aggregates have dimensions of approximately
40–60 nm in the x-y plane and approximately 20–40 nm in the z-direction. The local
maximum of the surface elasticity can indicate the beginning of the layer’s destruction.
This conclusion was confirmed by optical micrographs that revealed the beginning of the
formation of mesoscopic and macroscopic folds in the layer at surface pressures higher
than 30 mN/m.

Protein–fullerene interactions were recently studied by Noskov et al. [7] by performing
measurements of dilational surface elasticity as a function of surface pressure and surface
age (together with AFM) on mixed layers of fullerene with bovine serum albumin (BSA)
at the solution–air interface. The results from the dilational surface rheology and AFM
measurements for C60/BSA layers at the water–air interface indicated significant interac-
tions between the fullerene and protein molecules in the surface layer. The dependence of
the module of the dynamic surface elasticity of the mixed C60/BSA spread layers on the
surface pressure has two local maxima separated by a local minimum. The local minimum
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corresponds to a partial displacement of the protein from the surface and divides the
investigated range of surface pressures into two regions, with a prevailing influence of one
of the components on the surface properties, as illustrated in Figure 15.

The protein influences the surface properties in the second region (at high surface
pressures), while the fullerene can influence the surface properties in the first region. The
AFM images show that both the C60 layers and mixed C60/BSA layers contain large
fullerene aggregates with lengths in the z-directions of up to 100 nm. At the same time, the
observed smaller aggregates in these two systems are different. The mixed layers contain
some patches of the network of almost merged aggregates with a length in the z-direction
of less than about 20 nm. This network presumably contains protein. The formation and
the subsequent reorganization of the network lead to non-monotonic kinetic dependences
of the dynamic surface elasticity module in the course of protein penetration into the
fullerene layer. The formation of mixed protein/fullerene aggregates at the interface can
presumably lead to a decrease in the fullerene’s cytotoxicity due to the formation of the
mixed protein/fullerene corona around the aggregates.

The reviewed scientific achievements [7,125–128] constitute a reliable set of measure-
ment results that fruitfully serve as promising directions for further incoming studies. The
reported interfacial dynamic properties together with the relevant applied methodologies
and procedures will broaden the utilization of fullerene molecules in the near future (i.e.,
fullerenol solutions, fullerene–polymer and fullerene–protein mixed layers) in developing
targeted pharmaceutical formulations for the improvement of special tumor therapies.
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117 (green), 153 (blue, cyan), 277 (magenta), 392 (yellow, dark yellow), 877 (olive), and 1660 (dark
cyan); data taken from [7].

8. Summary and Conclusions

Medicine is a multidisciplinary scientific field and requires various types of input
from other scientific branches, in particular from chemistry and physics. Surface science,
combining physical and chemical principles, is, therefore, of great value for solving medical
problems. Many recent developments in surface science have turned out to be suitable for
medical diagnostics and the control of therapies for various diseases, as well as aiding in
the development of drugs and their optimum delivery.

We have discussed some selected examples to demonstrate how experimental instru-
mentation, theoretical approaches, and model studies help to gain insight into the special
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and complex situations doctors are often confronted with. The first example shows how
measurements of the dynamic surface tension of human liquids can support the diag-
nostics of various diseases. After the first measurements by Künzel [10] of cerebrospinal
liquor demonstrated impressively that different values for healthy and sick patients can
be observed, systematic studies were performed using this methodology. Kazakov and
co-workers summarized in [2] how the dynamic surface tensiometry of many human
liquids gives invaluable inputs into diagnostics and therapy control for various medical
branches. However, there is still a lot of unused potential because the rather conservative
view in medicine prevents a broader application of these methodologies and does not allow
to tensiometry to be applied as a cheap and efficient support tool.

An important second medical field deals with the formulation of artificial tears or syn-
thetic lung surfactants. For both groups of diseases there is a lack of particular liquids that
are produced normally by the healthy human body. To replace such very complex liquids, it
is essential to understand which compounds are responsible for a required performance or
function. For quite some time, systematic investigations of natural and synthetic tears have
been under way. Already in 1996, for example, the stability of the tear film on the eyeball
was systematically studied [129] as a vital prerequisite for the proper function of the eye.
In the meantime, many new aspects have been addressed and will have to be investigated.
There have also been historical studies on the functionality of pulmonary surfactants; for
example, those performed by the pioneering teams of Possmayer [130], Schürch [131], and
Neumann [132]. New experimental methodologies are being used to evaluate the adminis-
tration of drugs to the lungs [133]. For the successful treatment of malfunctions of the lungs,
most recently the work by the leading teams of Gil [134], Noskov [86], and Sosnowski [135]
have been mentioned as being suitable for better formulating and evaluating the respective
replacement liquids.

Most recently, an overview of the role of lung surfactants was published by Ravera
et al. [81]. The various functionalities of the various liquids involved in the digestion
process were discussed and the methods were analyzed to ensure they are suitable for
systematic investigations in order to find optimum solutions for the detected problems.

One of the serious challenges in modern industrial countries is obesity. It represents a
serious problem for the healthcare systems in many countries and it has turned out that
surface science methods are quite successful in controlling energy intake in order to avoid
overweight. New procedures are under way to reduce energy transfer to the body, despite
the uptake of food in excess. During the coronavirus pandemic, it was even found in
experiments with mice that the viral infection has an impact on obesity problems [136].
Using a particular methodology based on tensiometry, the entire digestion process can be
successfully mimicked, as was demonstrated by Maldonado-Valderrama [105,106] using
a multiliquid dosing system such as OCTOPUS combined with drop profile analysis
tensiometry as a tool to mimic the digestion process, analogous to the system earlier used
by Reis et al. [109].

A final example discussed here is the use of fullerenes for the diagnosis of cancer.
In particular, the studies by Noskov and his team [7,126] on the interactions of different
fullerenes with other types of surface-active molecules, such as polymers and proteins,
provided much additional insight into the interfacial aspects of various cancer diseases.

The analyzed examples are of course only a selection, and a complete overview cannot
be given in a single review article. We can conclude, however, that surface science provides
very useful tools for the solution of biomedical problems. This situation, i.e., support
given by surface science to various kinds of applied sciences and technologies, will surely
further propagate. The observed great progress will further be supported by theoretical
approaches, including thermodynamics, quantum chemical calculations, and molecular
dynamics simulations. In order to get closer to reality, more complex mixed layers and
further targets such as drug delivery will be in the schedule for future work.
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