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Abstract: One primary concern in colloid science is understanding the relationship of its macro-
scopic rheology and diffusion behavior with the observed microscopic arrangements of the nano-
particles in the fluid. This manuscript addresses the study of these dynamical properties through a 
first-principle stochastic method. Both properties directly relate to the observed fluid structure fac-
tor, which depends on a few known material parameters. However, in the literature, this static quan-
tity is reported up to the first prominent peak of its small momentum transfer of the scattered radi-
ation, leading to inaccurate determination of the transport properties. Here, it is proposed to use the 
rescaled mean spherical approximation under the requirement of fitting the experimental data of 
the structure beyond the dependence of more significant wave numbers. The predicted viscosity 
agrees with the observed ones at a low volume fraction of particles for ferrofluids dispersed in pol-
ymer solvents. This rheological quantity is inversely related to the self-diffusion coefficient of a 
tracer particle. 
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1. Introduction 
Nowadays, the experimental study of rheology in well-characterized ferrofluids is 

amply documented, either in the presence or absence of external magnetic fields [1]. Fer-
rofluids consist of nanometer-sized magnetic particles dispersed in a solvent. Nonethe-
less, modeling the viscosity and transport properties of the self-diffusion of the magnetic 
particles has not yet reached the same level of understanding. Important tools which de-
pend on a physically motivated fixing parameter to study the viscosity of magnetic fluids 
are the Rosenzweig model and Chow’s polymer rheology model properly adapted to fer-
rofluids [1]; however, measurements of the diffusion coefficient at diverse thermody-
namic conditions of solvent properties, the colloid volume fraction, and dipolar strength 
are not known. With this motivation, this manuscript proposes a stochastic model to de-
termine the self-diffusion and viscosity of monodisperse ferrofluids. These transport 
properties rely upon the accurate knowledge of the microstructure of the ferrofluid given 
by the structure factor. According to our understanding, in the literature, scarce publica-
tions of comprehensive experimental studies on the microstructure and its relation to the 
dynamics in the same well-characterized magnetic fluid are noticeable. This manuscript 
aims to contribute to developing a first-principle approach to understanding the rheology 
of ferrofluids. 

Therefore, a proposed dynamical model will be helpful if it is based on the compre-
hensive experimental data of the fluid structure and contrasted with the observed dynam-
ics. Scattering techniques of neutrons, small-angle X-rays, and forced Raleigh experiments 
yield access to the structure factor of ferrofluids [2–4]. A significant drawback of this ob-
served static property is its limited, short momentum transfer dependence due to the lim-

Citation: Ávalos Gonzalez, L.D.; 

Hernández-Contreras, M.;  

Martinez, K.M. The Viscosity and  

Self-Diffusion of Some Real  

Colloidal Ferrofluids.  

Colloids Interfaces 2022, 6, 62. 

https://doi.org/10.3390/col-

loids6040062 

Academic Editor: Ramón G. Rubio 

Received: 3 September 2022 

Accepted: 27 October 2022 

Published: 31 October 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Colloids Interfaces 2022, 6, 62 2 of 13 
 

 

ited resolutions of the scattering radiation techniques at larger magnitudes. These tech-
niques only provide the prominent structure factor peak in the low-wave-vector regime 
and neglect the tail, which contains non-negligible spatial information. 

For this reason, this manuscript resorts to one of the most numerically economical 
methods that is accurate enough to determine the structure factor of the colloid. This man-
uscript uses a rescaled mean spherical approximation fit of known experimental structure 
factors to accurately assess the total wave number contributions. As a result, the present 
study renders a novel prediction of diffusion and viscosity of the ferrofluid without arbi-
trary adjustable parameters. The prediction depends solely on material data of the volume 
fraction of particles and dipole strength associated with the structure factor. Thus, a com-
parison of this model for the viscosity of ferrofluids dispersed in polymer solutions shows 
their agreement at a low volume fraction of particles and how they deviate at higher con-
centrations. Previous studies on such rheology properties use a thermodynamically moti-
vated fixing parameter to explain the same experimental data [1,5]. Appendix A intro-
duces the stochastic method used in this manuscript. Its principal physical results are 
summarized as follows: During its diffusion, a tracer colloidal particle experiences inter-
action with the cloud of others surrounding it, contributing to a friction ∆ζ. Additionally, 
the hydrodynamic friction 𝜁 (𝜙) contributes to the slowing down of its motion due to 
the solvent (sol) with a viscosity 𝜂 . It also depends on the concentration of the other 
particles at the volume fraction 𝜙. That is to say, 𝜁 = 𝜁 + ∆ζ gives the total friction on 
the tracer particle. References [6,7] demonstrated that the diffusion coefficient of the tracer 
particle at the longtime (so-called overdamped diffusion regime) satisfies a Stokes–Ein-
stein relationship 𝐷 = 𝑘 𝑇/𝜁, whose explicit form is: = 1 + 𝑑𝑥 ( )( ( ) )   (1)

where 𝜇 = 𝐷/𝐷  and 𝐷 = 𝑘 𝑇/𝜁 .  The second term in the square bracket on the right-
hand side of (1) is the ratio ∆ζ/𝜁 . 𝑘  is the Boltzmann constant, and 𝑻 is the absolute 
temperature. Notice that Equation (1) is given precisely in terms of the structure factor 𝑺(𝒙), which presently is an unknown quantity to the theory of Equation (1). The present 
manuscript does not concern the measurement of the structure factor. However, an inde-
pendent study  in References [2–4] reported the measurement for several magnetic col-
loids. The main difficulty is its insufficient and limited wave number 𝑘 measurement as-
sociated with the experimental techniques. The following section describes how to extend 
it to a larger 𝑘 through the so-called rescaled mean spherical approximation (RMSA) by 
a fit of the experimental 𝑆(𝑥) of [2–4]. In Equation (1), the short-time friction 𝜁  consid-
ers the hydrodynamic interaction among the magnetic particles, which is vital for concen-
trated colloids. This property has not been measured for ferrofluids yet. Therefore, this 
manuscript resorts to its experimental counterpart corresponding to an equivalent hard 
sphere colloidal suspension of polystyrene particles given in Ref. [8] without an electrical 
charge. The Carnahan–Starling pair correlation function 𝑔(𝜙) = (1 − 0.5𝜙)/(1 + 𝜙)  
also gives an approximated theoretical value 𝜁 = 𝜁 𝑔(𝜙) [9]. For a very-low-concen-
trated suspension, 𝜁 ≈ 𝜁 = 3𝜋𝜂 𝑑 acquires the Stokes form of a free-diffusing particle 
where 𝑑 is the particle diameter, 𝜙 = 𝜋𝜌𝑑 /6, and 𝜌 = 𝑁/𝑉 is the number density for a 
colloid constituted by 𝑁 colloidal particles occupying a sample volume 𝑉. References 
[6,7] showed that the total tracer friction has a linear relationship with the static viscosity 
of ferrofluids and has the simple expression: 𝜂 = 𝜁 + ∆ζ,3𝜋𝑑 = 𝜂 𝐷𝐷 = 𝜂 𝐷𝐷 𝐷𝐷  (2)

In Equation (2), due to the hydrodynamic interactions (HI) among all the particles, 
the normalized self-diffusion coefficient 𝐷 /𝐷  includes the modification of the Stokes 
free-particle friction 𝜁 = 𝑘 𝑇/𝐷 . 
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Because of the diffusion, Equation (1) and the viscosity of Equation (2) show a de-
pendency on 𝑺(𝒙) , which enters as an external input to this theory. A route to this 
knowledge is given by the analytical rescaled mean spherical approximation (RMSA) of 
the structure factor of hard spheres introduced by Hayter and Penfold [10]. Hansen and 
Hayter [11] demonstrated that it could accurately reproduce the experimental stricture 
factor of a fluid made of particles with the Yukawa repulsive interaction. This method 
rescales, with a parameter 𝑠, the wave number 𝑘 , volume fraction η’, ionic electrolyte 
strength κ′, diameter of the particle 𝑑 , and the parameters of the original system, 𝑘 =𝑘 𝑠, 𝛾 = 𝛾 𝑠, 𝜅 = 𝜅 𝑠, 𝜙 = 𝜂 𝑠 , 𝑑 = 𝑑 𝑠, to preserve the analytical mean spherical ap-
proximation of Hayter and Penfold [11] for the structure factor 𝑆(𝑘′) = 1/[1 − 24𝜂  𝑐(𝑘′)] with: c(k’) = 𝐴[𝑠𝑖𝑛(𝑘´) − 𝑘´ cos(𝑘´)]𝑘´𝟑    

+ 𝐵 2𝑘´𝟐 − 1 𝑘´𝑐𝑜𝑠(𝑘′) + 2𝑠𝑖𝑛(𝑘´) − 2𝑘´𝑘´𝟑  

+ 𝜂´𝐴 24𝑘´𝟑 + 4 1 − 6𝑘´ 𝑠𝑖𝑛 (𝑘´) − 1 − 12𝑘´ + 24𝑘´ 𝑘´𝑐𝑜𝑠(𝑘´)2𝑘´𝟑  + 𝐶[𝜅´𝑐𝑜𝑠ℎ(𝜅´)𝑠𝑖𝑛(𝑘´) − 𝑘´ sinh(𝑘´) cos (𝑘´)]𝑘´(𝑘´ + 𝑘´ )  + 𝐹[𝜅´𝑠𝑖𝑛ℎ(𝜅´)𝑠𝑖𝑛(𝑘´) − 𝑘´ (cosh(𝜅´) cos(𝑘´) − 1)]𝑘´(𝜅´ + 𝑘´ )  + 𝐹[𝑐𝑜𝑠(𝑘´) − 1]𝑘´ − 𝛾′𝑒 ´[𝜅´ sin(𝑘´) + 𝑘´cos (𝑘´)]𝑘´(𝜅´ + 𝑘´ )  

(3)

which describes a colloidal dispersion of particles with repulsive pair-interaction energy 
in electrolytes: 𝛽𝑈(𝑥) = 𝛾´ 𝑒 ´𝑥 ,   𝑥 > 1, (4)

where 𝑥 = 𝑟/𝑑  and 𝛽 = 1/𝑘𝑩𝑇. The factors A, B, C, and F have involved expressions 
whose definitions are in Ref. [11]. 

2. Materials and Methods 
This section calculates a tracer particle’s self-diffusion coefficient and, from it, the 

bulk viscosity of some real ferrofluids. The first two systems studied are suspensions of 
maghemite ( 𝛾 − 𝐹𝑒 𝑂 ) nanoparticles at volume fraction concentrations of 𝜙 =0.007  𝑎𝑛𝑑 0.155 in an aqueous trisodium citrate electrolyte (pH 7) at temperature 𝑇 =298 𝐾 with concentrations of 0.0025 M and 0.025 M, respectively. Data were taken from 
Cousin, F. et al. [12]. Adapted with permission from Ref. [12]. Copyright 2022 by the 
American Physical Society (Figure 1a). 
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(a) (b) 

Figure 1. Structure factor, self-diffusion, and viscosity of ferrofluid. (a) Depicts the comparison be-
tween experimental structure factor 𝑆(𝑘) from Cousin, F. et al. [12] and rescaled mean spherical 
approximation liquid theory as a function of wave number 𝑘. (b) The theoretical fit of 𝑆(𝑘) was 
used to determine the self-diffusion coefficient 𝐷/𝐷  (black square) of Equation (1), and viscosity 𝜂/𝜂  (star symbol) of Equation (2), including experimental hydrodynamic interactions among par-
ticles of hard polystyrene spheres from Van Megen, W. et al. [8]. Ref. [12] adapted with permission. 
Copyright 2022 by the American Physical Society. Ref. [8] adapted with permission. Copyright 2022 
by Royal Society of Chemistry. In Figure 1b, error bars are less than the symbol sizes. 

Figure 1 depicts both ferrofluids’ small-angle neutron scattering experimental struc-
ture factors. Figure 1a also displays the best fit of the experimental 𝑆(𝑘) using Equation 
(3); see Appendix B. These fittings indicate that the leading pair-wise interaction between 
colloidal particles is a long-range repulsion represented by the potential energy of Equa-
tion (4). A picture with a long black line fits the actual colloid concentration of ϕ = 0.07, 
where particles have a reported mean diameter d = 69Å. The results for the parameters in 
Equation (3) are: A = −18.476 441, B = 13.90703556, C = 2.001670513, and F = −1.99056432, 
with the rescaled values 𝜂‘ =  0.205708299, 𝜅‘ =  3.738041955, 𝛾‘ =  180.3806936, and 𝑠 =  0.69815. The fit of the more concentrated suspension at 𝜙 =  0.155 corresponds to 
a dashed line (red color online) where the values of the parameters of Equation (3) need 
to now be A = −30.1038152, B = 29.61722598, C= 0.564610346, and F =−0.56460917, and 𝜂‘ =  0.328224489 , 𝜅‘ =  10.24267095 , 𝛾‘ =  136047.7841,  and 𝑠 =  0.77873 . In this 
last case, the citrate concentration is 0.025 M, and the particle diameter d = 88Å. Figure 1a 
shows that RMSA is good enough for the less-concentrated suspension and its prediction 
at a higher colloid concentration deteriorates, finding only an agreement with the high of 
the first peak of the measured structure. Furthermore, we calculated self-consistently from 
Equation (1) the normalized self-diffusion coefficient of a tracer particle departing from 
its free diffusion 𝐷/𝐷 . References [6,7] demonstrated that for the concentrated ferrofluids 
and due to hydrodynamic interactions (HIs) among particles, the diffusion constant reads 𝐷/𝐷 = (𝐷/𝐷 )(𝐷 /𝐷 ). Therefore, using Equation (1) requires first knowing the input 
value of the experimental short-time diffusion coefficient 𝐷 /𝐷 . For ferrofluids, it is not 
known. However, we interpolated seven of its functional values as a function of the vol-
ume fraction 𝜙 from the experiments of a rigid sphere-like suspension made of polysty-
rene particles reported by Van Megen, W. et al. [8]. Adapted with permission from Ref. 
[8]. Copyright 2022 by Royal Society of Chemistry. These are the pairs: (𝜙, 𝐷 /𝐷 ) = 
(0.013611, 0.972147), (0.023820, 0.953164), (0.034028, 0.934285), (0.07, 0.868598), (0.085072, 
0.84146), (0.102086, 0.811099), and (0.119101, 0.781029). On the other hand, the RMSA fit-
ting of 𝑆(𝑘) for ϕ = 0.07 implies that there is a mapping of the factors 𝑠, A, B, C, and F 
onto the potential energy in Equation (4) with the rescaled amplitude of interaction 𝛾´ =
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180.380694 and dimensionless rescaled screening length 𝜅´ = 3.738042. This fact per-
mits studying of the model systems derived from the actual colloidal suspension by var-
ying only the volume fractions. Each of the above seven volume fractions 𝜙 corresponds 
to a different rescaled one given by 𝜂 =  𝜙 /𝑠   that leads to the new structure factor 𝑆(𝑘 ) = 1/[1 − 24𝜂 𝑐(𝑘 )] through Equation (3). To determine the longtime self-diffusion 
coefficients with the inclusion of the effects of the hydrodynamic interaction, 𝐷/𝐷 =(𝐷/𝐷 )(𝐷 /𝐷 ), Equation (1) is integrated numerically up to a 0.001 precision from its 
previous result, starting with 𝜇 = 𝐷/𝐷 = 1 (see Appendix C). Figure 1b shows their val-
ues. On the other hand, the diffusion constants 𝐷/𝐷  without the HI 𝐷 /𝐷 = 1 are 
0.333974, 0.337617, 0.350233, 0.337763, 0.272075, 0.153156, and 0.040574. According to our 
model of the static viscosity given in Equation (2), 𝜂/𝜂  is inversely related to the above 
self-diffusion coefficient, and Figure 1b yields its concentration dependence for the inclu-
sion of hydrodynamic interactions. Standard error bars of 𝐷/𝐷  and 𝜂/𝜂   are on the 
order of 10  and they appear in Figure 1b. The errors result from recalculating each 
plotted value of 𝐷/𝐷  and 𝜂/𝜂  in Figure 1b at the five lower values of 𝜙 − ∆ for each 
of the seven ϕ in steps ∆= 10 . For each of the five 𝜙 − ∆, the initial condition of the 
numerical difference of the fitted 𝑆(𝑘 )  versus the experimental one was the minimum 
in each of the five cases, which requires the additional boundary condition of the radial 
distribution function at the rescaled diameter 𝑑’ to be 𝑔(x = r/𝑑’ = 1)  = 0 (see Appen-
dix B). 

Figure 2 yields the prediction of the self-diffusion and viscosity. 

 
Figure 2. Predicted self-diffusion coefficient 𝐷/𝐷  (black square) of Equation (1), and viscosity 𝜂/𝜂  (star symbol) of Equation (2) for the structure factor fit with RMSA given by the dash (red 
color online) in Figure 1a with ϕ = 0.155. The corresponding potential of Equation (4) has an ampli-
tude 𝛾 = 13607.7841  and screening factor 𝜅 = 10.24267.  Using the potential of Equation (4) , 
seven additional ϕ values lead to a new predicted 𝑆(𝑘). Consequently, it was necessary to interpo-
late seven 𝐷 /𝐷  as a function of ϕ to determine 𝐷/𝐷 . The error bars are less than the symbol 
sizes. 

Figure 2 shows the same seven volume fractions as those of Figure 1b, but now for 
the second system, whose structure factor was fitted with the RMSA dashed line, also 
depicted in Figure 1a. In Figure 3, we provide the results for the ferrofluid. 
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Figure 3. Experimental data of 𝑆(𝑘) given by star and dot symbols was taken from Wagner, J. et al. 
[3]. Adapted with permission from Ref. [3]. Copyright 2022 IOP Publishing, Ltd. Present manu-
script’s fits of 𝑆(𝑘) with the RMSA theory (continuous black and blue lines) shows perfect coinci-
dence with the fits (magenta and red color lines) made by Wagner, J. et. al. [3]. Adapted with per-
mission from Ref. [3]. Copyright 2022 IOP Publishing, Ltd. 

This was reported by Wagner, J. et al. [3], and made of cobalt ferrite nanoparticles 
(Co𝐹𝑒 𝑄 ) with a silica core–shell dispersed in water at a counterion concentration of 5 × 10  M. The physical parameters of the ferrofluid are: charge per particle 51e (e, 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛ic 𝑐ℎ𝑎𝑟𝑔𝑒); water dielectric constant 𝜖 =  78; particle diameter 𝑑 = 413Å; counterion charge 1𝑒; and temperature 𝑇 =  298 𝐾. Adapted with permission 
from Ref. [3]. Copyright 2022 IOP Publishing, Ltd. In contrast to the previous colloids, the 
volume fraction is now very low, where 𝜙 = 0.00362 at room temperature 𝑇 =  298 𝐾. 
The RMSA fitting of the experimental S(k) is shown in the plot with a continuous black 
and blue line in Figure 3. The results for the constant parameters, in this case, were A = −
5.69819788, B = 3.492354362, C = 0.369312106, F = −0.3689106, 𝜂‘ =  0.127399712, 𝜅‘ = 4.351245361 , 𝛾 ‘ =  169.8507697 , and 𝑠 =  0.30515 . A numerical analysis similar to 
Figures 1 and 2 yields the predicted self-diffusion and viscosity plotted in Figure 4. 

 
Figure 4. Self-diffusion coefficient (mark ■) and viscosity (spot ★) for system parameters 𝛾 =14.05132 and 𝜅 = 0.96709 in potential energy function Equation (4) corresponding to the present 
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manuscript’s fitted RMSA 𝑆(𝑘) for the system with volume fraction 𝜙 = 0.00362 of Figure 3. From 
this ferrofluid, seven other different particle concentrations were studied. Error bars are roughly the 
same size as symbols. 

On the other hand, the highest concentrated case (dashed line, red color line in Figure 
3) with 𝜙 = 0.00774 has ,accordingly, values of  𝐷/𝐷 = (𝐷/𝐷 )(𝐷 /𝐷 ) = 0.053156 and 
a viscosity of 𝜂/𝜂  = 18.812284. Yet, the experimental studies of Mériguet et al. [4] 
allowed us to follow-up on the increasing colloid concentration effect on the rheology of 
the maghemite nanoparticles  𝛾 − 𝐹𝑒 𝑂  dispersed in an aqueous citrate electrolyte at a 
concentration of 0.03 M. The physical parameters of the ferrofluid are the increasing 𝜙 = 
0.097, 0.158, and 0.203; the charge per particle (80𝑒, 65𝑒, 68𝑒) e is the electronic charge. 
The water dielectric constant 𝜖 =  78.3  and the particle diameter 𝑑 = (134Å, 126Å, 120Å). The counterion charge is 1𝑒. The temperature 𝑇 =  298 𝐾. Adapted 
with permission from Ref. [4]. Copyright 2022 Elsevier Science & Technology journals. 
The theoretical results constitute Table 1, and they include the standard error. 

Table 1. Maghemite ferrofluid at 𝑇 = 298𝐾, using experimental data from Meriguet, G. et al. [4] for 𝑆(𝑘) and its fit with RMSA given in Figure 5. From the low to high Φ, the parameters in potential 
Equation (4) are (𝛾 , 𝜅 ) = (9.9307, 42060.621), (9.1645, 27454.6523), 𝑎𝑛𝑑 (9.0739,33659.3519). 

Φ 
𝑫/𝑫𝟎 = (𝑫/𝑫𝒔)(𝑫𝒔/𝑫𝟎) 
with Experimental HI 

for 𝑫𝒔/𝑫𝟎 

𝜼/𝜼𝒔𝒐𝒍 =  𝑫𝟎/𝑫 
with Experimental HI 𝜼/𝜼𝒔𝒐𝒍 =  𝟏/𝒈(𝜱) 

0.097 0.473378 ± 4.27 × 10-5 2.112476 ± 0.00019 2.238865 
0.158 0.355309 ± 1.146 × 10-5 2.814451 ± 9.079 × 10-5 3.097647 
0.203 0.260957 ± 2.595 × 10-5 3.832048 ± 0.00038 4.332215 

Figure 5 shows the RMSA fit of the structure factors to the measured ones. 

 
Figure 5. Theory of RMSA with continuous lines fits the experimental 𝑆(𝑘) at three magnetic 
colloid volume fractions ϕ; 0.097, (a), 0.158 (b), 0.203 (c). Data with symbols ★  reported by 
Meriguet, G. et al. [4]. Adapted with permission from Ref. [4]. Copyright 2022 Elsevier Science & 
Technology journals. 

Figure 6 yields the microstructure for another set of experiments (see Ref. [2]) that we 
used. 
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Figure 6. The liquid theory of RMSA fits the experimental 𝑆(𝑘) taken from Meriguet, G. et al. [2] at 
three ferrofluid volume fractions ϕ; 0.109 (a), 0.17 (b), 0.219 (c). Calculations of the colloid diffusion 
constant with Equation (1) and viscosity, Equation (2), are reported in Table 2. Adapted with 
permission from Ref. [2]. Copyright 2022 IOP Publishing, Ltd. 

The physical parameters of the ferrofluid are, for the increasing ϕ = 0.109, 07, and 
0.219: charge per particle of (40𝑒, 40𝑒, 30𝑒); water dielectric constant 𝜖 =  78.3; particle 
diameter 𝑑 = 124Å, 134Å, 120Å ;   and counterion concentration of (0.03M, 0,003M, 0.003M), respectively. 
The counterion charge is 1𝑒 . The temperature 𝑇 =  298 𝐾. Adapted with permission 
from Ref. [2]. Copyright 2022 IOP Publishing, Ltd. The theoretical results constitute Table 
2, and they include the standard error. 

Table 2. Maghemite ferrofluid at 𝑇 = 298𝐾, using experimental data from Meriguet, G. et al. [2] for 𝑆(𝑘) and its fit with RMSA given in Figure 6. From low to high, Φ parameters in potential Equation 
(4) are (𝛾 , 𝜅 ) = (8.1843, 6838.3094), (4.3263, 405.06416), 𝑎𝑛𝑑 (3.8567,252.8522). 

Φ 
𝑫/𝑫𝟎 = (𝑫/𝑫𝒔)(𝑫𝒔/𝑫𝟎) 
with Experimental HI 

for 𝑫𝒔/𝑫𝟎 

𝜼/𝜼𝒔𝒐𝒍 =  𝑫𝟎/𝑫 
with Experimental HI 𝜼/𝜼𝒔𝒐𝒍 =  𝟏/𝒈(𝜱) 

0.109 0.602362 ± 4.926 × 10−5 1.660131 ± 1.357 × 10−5 1.773798 
0.17 0.306733 ± 3.702 × 10−5 3.260164 ± 0.00039 3.614409 

0.219 0.335417 ± 1.840 2.981363 ± 0.00016 3.403315 

As a final test on the usefulness of the proposed rheology model based on Equations 
(1) and (2). Figure 7 provides its comparison with the viscosity versus hydrodynamic 
volume fraction 𝛷  of the ferrofluid 𝐹𝑒 𝑂  in polymeric solvents of transformer oil, 
pentanol, heptanol, dioctyl sebacate, and distilled water. The physical parameters of the 
ferrofluid are: 𝛷 = (1 + 2𝛿/𝑑) 𝛷 , polymer double-layer thickness 𝛿 = (𝑝 / − 1)𝑑/2 , 
volume fraction Φ = 𝜋 𝜌𝑑 /6  with particle diameter d = 86Å,  𝑝 ≈3.4, 𝑎𝑛𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑓𝑟𝑜𝑚 263𝐾 𝑡𝑜 343𝐾. Experimental data reproduced 
from Balau O. et al. [5]. 
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Figure 7. Comparison of the relative bulk viscosity as a function of the hydrodynamic concentration 
of magnetic particles in the fluid against the experimental data (symbol ∎) taken from Balau O. et 
al. [5]. Calculations of the colloid viscosity use Equation (2) with the structure factor given by the 
analytical mean spherical approximation and soft repulsion of the Weeks–Chandler–Andersen 
potential, as explained in the text. 

The viscosity prediction in Figure 7 comes from Equation (2). The numerical 
calculation uses a model of soft spherical particles with a repulsive interaction at short 
distances of separation of the Weeks–Chandler–Andersen type U(r) − U(r = 𝜎 / ), where 
U(r) = 4ϵ[(𝜎/𝑟) − (𝜎/𝑟) ] is the Lennard-Jones potential. Further use of the analytical 
mean spherical approximation of Ref. [10] allows for obtaining the direct correlation 
function 𝑐(𝑘) as a function of 𝛷  and the structure factor 𝑆(𝑘) = 1/[1 −  24𝛷 𝑐(𝑘)], 
which substituted in Equation (2) yields 𝜂/𝜂  for every 𝛷  𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑎𝑛𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟.  We observe good agreement between the 
predicted viscosity from the model of Equation (2) with the experiments of Balau et al. [5] 
for low volume fractions in the range of 0. ≪ 𝛷 ≪ 0.3; however, the theory of Equation 
(2) deteriorates for a larger 𝛷 . Reference Balau et al. [5]. Adapted with permission from 
Ref. [5]. Copyright 2022 World Scientific Publishing Co. 

3. Results and Discussion 
Figures 1a to 6 illustrate the predictions of the proposed stochastic rheology model 

using Equations (1) and (2) for the diffusion and viscosity of ferrofluids, and are free of 
arbitrary adjustable parameters. However, there is a gap in the comprehensive studies on 
the clearly characterized experimental models of ferrofluids. As seen in Section 2, the 
experimental static structure factors in the literature [2–4,12] show insufficient access to 
maximum wave numbers, pointing to an exciting topic of empirical characterization 
research. These may include accurate structure factor determination and their rheological 
properties under controlled thermodynamic conditions. Partially, these errors on S(k), 
which translate into the resolution of the possible magnitude of the viscosity, are corrected 
by the best fit with the RMSA theory of the empirical 𝑆(𝑘). As shown above, from low to 
moderate concentrations of colloids, RMSA is sufficient to predict 𝐷/𝐷 = (𝐷/𝐷 )(𝐷 /𝐷 ), and 𝜂/𝜂 . However, it fails for higher concentrations. It is evident in Figure 7, where 
assuming a soft sphere repulsion between particles, the simple MSA leads to a predicted 𝜂/𝜂  that agrees roughly with the experimental data of Balau et al. [5], but only for 
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hydrodynamic volume fractions 𝛷 ~30% 𝑎𝑠 𝑖𝑡  𝑓𝑎𝑖𝑙𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑟 𝛷 . One reason 
might be a substantial contribution to the viscosity due to the underlying polymer 
network formed in the solvent and not captured by the MSA. Figures 1a, 3, 5, and 6 show 
that the interactions between particles in the ferrofluids are of a strong, long-range 
repulsion of the type in Equation (4). Indeed, this manuscript’s fit of S(k) (see Figure 3) 
coincides quantitatively with the one obtained by Wagner et al. [3]. It is an open research 
question to consider ferrofluids where the particle magnetic dipole is strong enough that 
its effect on the self-diffusion and viscosity is not negligible. In such a situation, the dipolar 
interaction is long range and may compete with the electrostatic repulsion in Equation (4). 
As a result, aggregates appear (chains and clusters of particles) that modify the viscosity. 
Summarizing the results, Equations (1) and (2) provide a new method to study the viscos-
ity in ferrofluids through the use of the structure factor of the colloid. For the viscosity, its 
practical measure may use the dissipative modulus of the colloid at longtime (equivalent 
short frequencies) [6]: 𝐺´´(𝜔) ≈ 𝜔∗  (5)

where the frequency 𝜔∗: = 𝜔𝑡 𝜔 is roughly the inverse of the diffusive relaxation time 𝑡 = 𝑑 /𝐷  of the particles. We point out that Equation (5) yields a way to know such a 
transport property, namely, 𝐷/𝐷  or 𝜂/𝜂 . 

4. Conclusions 
The results depicted in Figures 1a, 2, and 4 present a new method to study the tracer 

particle self-diffusion 𝐷/𝐷  and viscosity 𝜂/𝜂  in thermally equilibrated ferrofluids 
without external magnetic fields. These transport properties depend critically on the ac-
curate determination of the fluid’s structure factor 𝑆(𝑘). For known maghemite ferrofluids 
in aqueous citrate electrolytes, Figure 1a shows its fitting with the help of the RMSA liquid 
theory and provides its whole wave-vector resolution. The RMSA performance is better 
for low volume fractions, ϕ = 0.07, of particles and deteriorates for higher concentrations. 
Using the best-fitted (𝑘) at ϕ = 0.07 allows for the underlying potential between particles 
given by Equation (4). Therefore, Equations (1) and (2), which are expressed in terms of 
(𝑘), and consequently, the potential, render a first-principle link with the microscopic 
origin of the particle diffusion and viscosity of the ferrofluid. This approach yields a new 
method for studying viscosity in ferrofluids. For the colloid at the concentration ϕ = 0.07, 
Equations (1) and (2) demonstrated in Figure 2 the practical application to predict the rhe-
ology of this system. Figures 3 and 4 for cobalt ferrite nanoparticles illustrate a second 
realization of the proposed stochastic methods of Equations (1) and (2), describing the 
rheology of another interesting aqueous magnetic fluid. Yet, the self-diffusion and viscos-
ity predictions in Tables 1 and 2 of a maghemite ferrofluid in a citrate aqueous electrolyte 
may motivate its experimental confirmation in the future. This conclusion resides in Fig-
ure 7, which demonstrates that the viscosity model can successfully explain experimental 
data for a low hydrodynamic volume fraction 𝛷 ~30% of complex ferrofluids with pol-
ymer solvents with minimum structural information. A possible extension of this ap-
proach includes polydisperse ferrofluid effects and the presence of external electric and 
magnetic fields. 
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Appendix A 
Here, the longtime diffusion coefficient, Equation (1), is derived. The total forces that 

impart Brownian motion on the spherical tracer particle of mass 𝑚 with velocity 𝐯(𝑡) 
contain several terms. These are the dissipative forces due to the solvent friction 𝜁𝒔, the 
force 𝑓𝒔(𝑡) due to impacts of solvent molecules on the tracer surface, and the direct inter-
action forces arising from the potential 𝑈(𝑟), Equation (4), created by all other particles 
around the tracer: 

                                            𝑚 𝐯( ) = −𝜁𝒔𝐯(𝑡) + 𝑓𝒔(𝑡)  + 𝑑𝒓 [∇𝑈(𝑟)]𝑛(𝐫; 𝑡)    (A1)where ∇= (𝜕 , 𝜕 , 𝜕 ) is the translational gradient operator. The instantaneous local con-
centration of the cloud of particles around the tracer is 𝑛(𝐫; 𝑡) = ∑ 𝛿(𝐫(𝑡) − 𝐫𝒊). Ther-
mal fluctuations produce deviations of the concentration 𝛿𝑛(𝐫; 𝑡) =  𝑛(𝐫; 𝑡)  − 𝑛 (𝐫) 
from its static value 𝑛 (𝐫) = <  𝑛(𝐫; 𝑡) > , which is the thermal equilibrium average. 𝛿𝑛(𝐫; 𝑡) satisfies the equation of conservation of the number of particles ∂ 𝛿𝑛(𝐫; 𝑡)/𝜕𝑡 = −∇ ∙ 𝑱. The current of particles is 𝑱 = 𝐕 𝑛(𝐫; 𝒕), and 𝐕 is the average velocity of any of the 
particles. At fluctuation onset, the average friction force on the particle arises from the 
gradient of the colloid electrochemical potential μ, that is to say, −𝜁𝒔𝐕 =  ∇μ. Thus, the 
current is 𝑱 = −n(r;t)𝑘 𝑇(𝜁 ) ∇𝛽𝜇[𝐫; 𝑛(𝐫; 𝑡)]. Linearization of the current up to the first 
order in 𝛿𝑛(𝐫; 𝑡) leads to 𝛿𝑛(𝐫; 𝑡)/𝜕𝑡 =  ∇ ∙ [𝑛 (𝐫)𝐷 ∙ ∇𝛿𝛽𝜇[𝐫; 𝑛(𝑡)]]  +  𝑔(𝑡), with 𝐷 =𝑘 𝑇(𝜁 ) , and Gaussian noise 𝑔(𝑡) was added to represent the random diffusive fluxes. 
Statistical mechanics of liquids yield the derivative ∇𝛿𝛽𝜇[𝐫; 𝑛(𝒕)]] =d𝐫 ′𝜎 𝟏(𝐫, 𝐫′) 𝛿𝑛(𝐫; 𝑡). 𝜎 𝟏 represents the inverse of the static correlation function of liq-
uid theory σ(𝐫, 𝐫′)=<δn(𝐫,0) δn(𝐫′,0)>. Solving the above diffusion equation and substitu-
tion in the linearized version of Equation (A1) up to the first order in 𝛿𝑛(𝐫; 𝑡) yields the 
result:       𝑚 𝐯( ) = −𝜁𝒔𝐯(𝑡)+ 𝑓𝒔(𝑡)  − 𝑑𝑡′ ∆ 𝜁(𝑡 − 𝑡′) ∙ 𝐯(𝑡′) + 𝑭(𝑡). (A2)

The additional force satisfies the fluctuation–dissipation relationship < 𝑭(𝑡)𝑭(𝑡′) >= 𝑘 𝑇∆𝜁(𝑡 − 𝑡′). The time-dependent friction on the tracer due to direct interaction with 
the others surrounding it is the third-order diagonal matrix:                ∆𝜻(𝒕) =  𝑘 𝑇 d𝐫d𝐫 ′d𝐫′′∇[𝑛 (𝐫)]𝜎 𝟏(𝐫, 𝐫′)𝝌(𝐫′, 𝐫′′; 𝒕)∇′′[𝑛 (𝐫′′)]  (A3)𝜒(𝐫, 𝐫′; 𝒕) gives the temporal relaxation of the cloud of particles around the tracer. It is 
related to the so-called intermediate scattering function (expressed in reciprocal space f(𝐤) 
= d𝐫  Exp[𝑖𝐤 ∙ 𝐫]f(𝐫)), which for homogeneous isotropic fluids without an external mag-
netic field is:                     𝐹(k; t)  = < 𝛿𝑛(k; 𝑡)𝛿𝑛(k; 0) >= 𝜒(k; 𝑡)σ(k).  (A4)

Its initial value 𝐹(k; t = 0)  = 𝑆(k) is the structure factor of the magnetic colloid. In 
Ref. [6], its explicit form appears as:                                           𝜒 (k; t)  = 𝑆(k) 𝐸𝑥𝑝[− 𝑘    𝐷  𝑡 ( 1 / 𝑆(k)   +  𝝁𝑻 )].  (A5)

Its further substitution in Equation (A3) takes the longtime limit (t → ∞) of the fric-
tion contribution ∆𝜁(𝑡) due to particle interactions, yielding the static scalar ∆𝜁 as one-
third of the trace of Equation (A3) integrated over time. That is to say, ∆ζ =Tr[ 𝑑𝑡 ∆𝜻(𝑡)]/3, which is the second term in the square bracket on the right-hand side 
of Equation (1). 

Appendix B 
The scheme to numerically determine the structure factor 𝑆(𝑘′) in the rescaled mean 

spherical approximation that fits the experimental one is as follows: 
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First, determine the contact value of the pair correlation function 𝑔(𝑟) using the 
physical material parameters of the colloid; volume fraction η and ionic strength κ, at an 
increased diameter of the particle d such that 𝑔(𝑟 = 𝑑) = −(𝑝 + 𝑝  𝐶 + 𝑝  𝐹) yields a 
non-negative value. For this purpose, solve the quartic equation, 𝜔  𝐹 +  𝜔  𝐹 + 𝜔  𝐹  + 𝜔  𝐹 + 𝜔  = 0, for instance, with commercial software. Pick the most promi-
nent positive real solution for F. Such a value of F fixes the magnitudes of p1, p2, and p3 
and the factors A, B, and C, that appear in Equation (3). The explicit form of all those 
constants are in Ref. [10]. Then, select a rescaled diameter 𝑑 =  𝑑 and increase its value 
further by updating 𝑠 = 𝑑/𝑑 . With this value of 𝑠, set 𝑘  = 𝑘/𝑠 , 𝛾/𝑠 = 𝛾 , 𝜅/𝑠 = 𝜅 , and 𝜙/𝑠 = 𝜂 , and use them in 𝑆(𝑘 ) = 1/[1 −  24𝜂  𝑐(𝑘 )], together with Equation (3), until 
the rescaled pair correlation function at 𝑟 = 𝑑’ satisfies the boundary condition to be zero, 
that is to say:    𝑔(x = r/𝑑’ = 1)  = 1 +    𝑑𝑄 (𝑆(𝑄) − 1) 𝑄 𝑠𝑖𝑛(𝑄 𝑥)  =  0, with   𝑄: = 𝑘′𝑑’. (A6)

To numerically evaluate the above integral in Equation (A6), replace it with a discrete 
sum as exemplified in the algorithm of Appendix C, with a maximum value of 𝑄: =𝑘′𝑑’ =  20. 
Appendix C 

The numerical solution scheme to integrate Equation (1) is: 
1. Determine numerical values of parameters 𝑠, 𝑘 , η’, κ’ 𝑑 , 𝐴, 𝐵, 𝐶, 𝑎𝑛𝑑 𝐹 from the fit 

of 𝑆(𝑘′) = 1/[1 −  24 𝜂  𝑐(𝑘′)] with Equation (3) for the experimental structure fac-
tor, using the maximum dimensionless wave number kmax: 𝑘∗ = 𝑘 𝑑 =40 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑎𝑠𝑒𝑠 𝑜𝑓 𝐹𝑖𝑔𝑢𝑟𝑒𝑠 1 𝑡𝑜 6. 𝑈𝑠𝑒 𝑁 = 1000 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑘 ∗ , 𝑖 = 1, . . . , 𝑁, 𝑑𝑘 =: 𝑘 ∗ − 𝑘 ∗  and 𝜙: = 𝜂 𝑠 . 

2. Set variable; iteration = 10. 
Evaluate the integral of Equation (1) starting from the initial condition 𝜇 : =𝐷/𝐷 =1.  
For 1 to iteration:  ∆𝜁 = 0 

For i=1 to N:                              𝐾2 = (𝑘 ∗)  
Evaluate 𝑆(𝑘 ∗) = 1/[1 −  24 𝜂  𝑐(𝑘 ∗)] ∆𝜁 = ∆𝜁 + dk K2  (𝑆(𝑘 ∗)  −  1) /(𝜇  𝑆(𝑘 ∗)  + 1) 

End For ∆𝜁 := ∆𝜁/(36 𝜋 𝜙) 𝜇 : =  1/(1 + ∆𝜁) 
End For 

3. Output 𝐷/𝐷 =  𝜇 . Correct with hydrodynamic interactions using interpolated 𝐷 /𝐷 : = 𝐷 _𝐷 (𝜙) = 𝐴1 + 𝐵1 ∗ 𝜙 + 𝐵2 ∗ 𝜙 , A1 = 0.99762, B1 = −1.87828, and B2 = 
0.50146. For every 𝜙, the longtime self-diffusion is 𝐷/𝐷 = 𝜇  (𝐷 /𝐷 ). The viscosity 
is: 𝜂 =   
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