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Abstract: This work investigates the transient multilayer electro-osmotic flow of viscoelastic fluids
through an annular microchannel. The dimensionless mathematical model of multilayer flow is
integrated by the linearized Poisson-Boltzmann equation, the Cauchy momentum equation, the
rheological Maxwell model, initial conditions, and the electrostatic and hydrodynamic boundary
conditions at liquid-liquid and solid-liquid interfaces. Although the main force that drives the
movement of fluids is due to electrokinetic effects, a pressure gradient can also be added to the flow.
The semi-analytical solution for the electric potential distribution and velocity profiles considers
analytical techniques as the Laplace transform method, with numerical procedures using the inverse
matrix method for linear algebraic equations and the concentrated matrix exponential method for
the inversion of the Laplace transform. The results presented for velocity profiles and velocity
tracking at the transient regime reveal an interesting oscillatory behavior that depends on elastic
fluid properties via relaxation times. The time required for the flow to reach steady-state is highly
dependent on the viscosity ratios and the dimensionless relaxation times. In addition, the influence
of other dimensionless parameters on the flow as the electrokinetic parameters, zeta potentials at the
walls, permittivity ratios, ratio of pressure forces to electro-osmotic forces, number of fluid layers,
and annular thickness are investigated. The findings of this study have significant implications for
the precise control of parallel fluid transport in microfluidic devices for flow-focusing applications.

Keywords: electro-osmotic flow; Maxwell fluids; multilayer flow; annular microchannel; interfacial
phenomena; electrostatic effects

1. Introduction

Microfluidics is the science and technology of systems that process or manipulate
small (10−9 to 10−18 liters) amounts of fluids, using channels with dimensions of tens to
hundreds of micrometers [1]; however, these channels in microfluidics can range from 1 µm
to 10 µm called transitional microchannels, and from 10 µm to 200 µm called microchan-
nels [2]. Microfluidics evolved from the convergence of technologies and principles from
several pre-existing domains, such as chemistry, physics, biology, material science, fluid
dynamics, and microelectronics [3]. Therefore, microfluidic devices emerged to overcome
the challenges of many applications that required various assays that were not possible or
very complicated to perform on the macroscale. As a result, today, great potential has been
developed in personalized medicine, disease diagnosis, chemical screening, cell culture,
cell separation, cell treatment, drug screening, drug delivery, and DNA sequencing [3].
For example, the lab-on-a-chip (LOC) can concentrate biological and chemical experiments
in traditional laboratories on a chip of several square centimeters with high integration [4].
Hence, microfluidic devices have several benefits over conventionally sized systems be-
cause they exploit the physicochemical properties of fluids on the microscale. Some benefits
of microfluidic devices are: (i) by using small volumes of samples, chemicals, and reagents,
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reduce overall fees in many applications, (ii) compact size, which results in a reduction
of experimental times, (iii) excellent control of parameters and quality of data obtained,
which allows the automation of processes, (iv) enhanced the analytical sensitivity and
temperature control of samples, (v) more straightforward automation and parallelization,
(vi) integration of different lab tasks or routines in one device, and (vii) cheap since they do
not necessarily require the integration of various expensive equipment.

Liquid pumping in microfluidic devices is often achieved by electrokinetic effects,
where the fluid movement depends on the formation of an electrical double layer on
the microchannel walls [5]. Electrokinetics is a general term associated with the relative
motion between two charged phases [6]. Electro-osmosis and electrophoresis are the two
most widely studied electrokinetic effects, dating back to the early 1800s [7]. The electro-
osmotic phenomenon was first reported as a transport technique in 1809 by Reuss [8], who
demonstrated that water could flow through a plug of clay by applying an electrical voltage.
Later in 1816, Porrett [9] independently reported the discovery of the electro-osmotic
phenomenon; although his experiments were similar to those of Reuss, he used a bladder
membrane as the porous barrier. From the above and throughout the years from 1879 to
1924, was developed the fundamental theory of the electric double layer, a basic concept for
understanding an electro-osmotic flow [10–13]. With earlier knowledge of electrokinetic
phenomena, the method of pumping electrolytes in narrow capillaries was first investigated
by Burgreen and Nakache [14], Rice and Whitehead [15], and Levine et al. [16] in the years
1964, 1965, and 1974, respectively.

With this background, in the past three decades until today, electro-osmotic flow as a
pumping mechanism has become an essential tool for fluid manipulation in microsystems.
The relevance of electro-osmotic micropumps is because they have a simple and compact
structure, unlike pressure-driven conventional mechanical micropumps, whose manufactur-
ing is based on moving parts [17,18]. Therefore, considering the impact of electro-osmotic
flow in miniaturized systems, analytical, numerical, and experimental investigations have
been carried out on the transport of Newtonian fluids. Andreev and Lisin [19] solved
numerically the electro-osmotic flow effect on the efficiency of capillary electrophoresis
in a wide range of buffer concentrations and capillary diameters. Osuga et al. [20] ana-
lyze in detail the growth process and stationary flow profile of electro-osmotic flow for
a large capillary-radius-to-Debye length ratio. Patankar and Hu [21] developed a nu-
merical scheme to simulate electro-osmotic flows at the intersection of a cross-channel
during the injection process for capillary electrophoresis. The numerical simulations help
to determine the important parameters in controlling the shape of the injected sample.
Tsao [22] studied the electro-osmotic flow in an annular channel, considering that the
Helmholtz-Smoluchowski equation can describe the electro-osmotic mobility; however,
this equation must be corrected by a geometry-dependent factor to evaluate the mean veloc-
ity correctly. Chang et al. [23] analytically solved the start-up electro-osmotic flow through
a small pore or microchannel with an annular or rectangular cross-section under the Debye-
Hückel approximation. While Yavari et al. [24] analyzed the combined electro-osmotic
and pressure-driven flow in a microannulus involving the uniform Joule heating and
negligible viscous dissipation. Additionally, throughout time several works about electro-
osmotic flows have been developed with different conduit geometries such as parallel flat
plate channels [25–27], rectangular channels [28–30], and cylindrical channels [25,31,32].
Trying to cover the wide range of applications of microfluidics, the electro-osmotic flow
has been extended to handling non-Newtonian fluids to predict their complex behavior.
Therefore, many studies incorporate the rheological models of Phan-Thien-Tanner [33,34],
Oldroyd [35], Maxwell [36–38], and power-law [39,40], among others [41–43].

Furthermore to considering the flow of single-phase fluids such as those shown above,
many applications in microfluidics have benefited from the transport of two or more immis-
cible fluids in microfiber generation processes [44–46], continuous chemical processing [47],
transfer of enzyme-based processes [48], separation of antibiotics [49], viscous drag pump-
ing [50] and flow-focusing processes [51], synthesis of nanomaterials [52], reaction [53],
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microextraction [54], drug analysis in blood samples [55], purification of analytes from
biomedical samples [56], isolation of blood components [57], droplet formation [58] and
many other applications mentioned by references [58–60]. In this context, parallel flows are
widely used in different microsystems involving two- or three-phase fluid flows, which
require developing stable liquid-liquid interfaces and maintaining a continuous parallel
laminar flow pattern in the channels [58,61–64].

Following the research on parallel flows, viscous drag pumping is a commonly used
method for driving a non-conducting fluid through neighboring conducting fluids. This
pumping technique can be implemented in biomedical applications and chemical analysis
where some fluid samples such as oil, ethanol and organic solvents have low electrical
conductivity [65,66]. Gao et al. [67] presented a two-fluid electro-osmotic pump, assuming
that a conducting liquid driven by electro-osmotic effects drags a non-conducting liquid
by viscous forces. Their proposal was based on the fact that a fluid with low electrical
conductivity cannot form an electrical double layer and, therefore, cannot be pumped
alone by electro-osmotic effects. Following this idea, Haiwang et al. [68] analyzed a three-
fluid electro-osmotic pumping technique, in which an electrically non-conducting fluid
is delivered by the viscous interfacial force of two conducting fluids. Other studies on
viscous drag pumping using combined electro-osmotic and pressure gradient effects for
chemical and biomechanical processes, injection analysis, and microelectronic cooling
systems can be reviewed in references [69–71]. The parallel flow systems mentioned above
do not use special liquid-liquid boundary conditions as one of the fluids is non-conducting;
then, to solve the electric potential, a specified zeta potential at liquid-liquid interfaces is
enough. However, in another case, considering all the transported fluids are electrically
conducting, the interfacial phenomenon include forming an electrical double layer both
in solid-liquid [6] and liquid-liquid interfaces [72]. Therefore, the interfacial electrostatic
effects necessary to solve the electric potential and velocity distributions should consider a
potential difference, Gauss’s law, and the Maxwell electric stresses. Under this electrostatic
conditions, different works about the electro-osmotic transport of two conducting fluids
with Newtonian [73–75] and non-Newtonian [76] behavior were carried out, considering
applications involving biological testing processes, biomedical diagnosis, and heat transfer.
These investigations report that the discontinuity of the electrical potential and viscous
stresses in the liquid-liquid interfaces produce speed jumps in these regions. Furthermore,
the polarity of the concentrated electric charges within the electric double layers in the
contact of these conducting fluids plays an important role in shaping the velocity profile of
these flows.

Advances in microfabrication technologies have allowed the development of microflu-
idic devices capable of handling several fluid layers in the same conduit [45,51,77–79].
For this reason, theoretical research about electro-osmotic flows that handle multilayer par-
allel fluids has been carried out to simulate their behavior in microsystems. For Newtonian
fluids, Torres and Escandón [80] in the year 2020 solved the transient electro-osmotic flow of
multilayer immiscible fluids in a narrow cylindrical capillary. In the case of non-Newtonian
fluids, the research dates from 2011 with the study of Li et al. [81], who analyzed the steady
combined electro-osmotic and pressure-driven flow of multilayer immiscible fluids in a
microchannel formed by two parallel flat plates; here, a power-law fluid is imposed in the
middle layer. To extend the proposal of Li et al. [81], on the inclusion of complex fluid
behavior in the multilayer scheme, recently, Escandón et al. in [82,83] studied multilayer
electro-osmotic flows of Phan-Thien-Tanner and Maxwell fluids in a slit microchannel,
respectively. These investigations highlighted the importance of rheological effects on the
multilayer flow field in both steady and transient states.

This research intends to extend the knowledge about control techniques in multilayer
flows under electrokinetic effects. Therefore, this work aims to solve the transient electro-
osmotic flow of multilayer immiscible Maxwell fluids in an annular microchannel following
the proposed design by [79] because this channel geometry is more realistic within multi-
layer flows; however, it has not been addressed yet. Also, this parametric study will focus
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on the interaction between the non-Newtonian behavior and the interfacial electrostatic
phenomena of the conducting transported fluids. In particular, this investigation is helpful
for applications handling biofluids or polymeric solutions with viscoelastic behavior, where
the start-up of the flow requires a prediction with high space-time precision.

2. Mathematical Modeling
2.1. Physical Model Description

The present study theoretically analyzes an electro-osmotic pump where the multilayer
flow generator device presented in Figure 1, is an adaptation of the coaxial device described
by Morimoto et al. [79]. Here, the annular microchannel is formed of two concentric tubes,
and the combination of the microfluidic modules allows to increase the number of fluid
layers from n = 1 to n = i. The cylindrical coordinate system (r, z) is shown in the enlarged
view with the red square into Figure 1 and marks the origin of the studied section of this
electrokinetic pump. The concentric tubes that form the annular cavity have an external
radius R and an internal radius aR, where 0 < a < 1. Each n-fluid layer contains a mixture
of a symmetrical electrolyte and a solute having viscoelastic characteristics. In Figure 1,
the liquid-liquid interfaces are placed in rn positions within the range of aR < rn < R;
n = 1, 2, 3, ..., i are subscripts that indicate the number of the corresponding fluid layer,
where n = 1 and n = i are the fluid layers in contact with the inner and outer wall of
the microchannel, respectively. Fluids are immiscible and electrically conductive, and the
liquid-liquid interfaces between them can be considered polarizable and impermeable to
charged particles. As a result, electrostatic effects appear at the liquid-liquid interfaces
caused by the formation of an electric double layer deriving in a potential difference
∆ψn. In addition, an electrostatic interaction with the surrounding fluids arises on the
microchannel walls, forming another double electric layer at the solid-liquid interfaces
whose surface charge is represented by the zeta potentials ζI and ζO for the inner and
outer walls, respectively. With the above, the movement of fluids is produced by applying
a uniform electric field Ez which induces electro-osmotic effects on the electric double
layers. The electric field is produced by electrodes located at the ends of the conduit and
the beginning of each green module. Additionally to the electro-osmotic forces, each fluid
layer can be subjected to an external pressure gradient pz.

z
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Fluid 2n=

Fluid 1n=i-
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..
.

0

r �Dy
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Figure 1. Sketch of the microfluidic device to generate aligned concentric flow. The red square shows
the arrangement of the electro-osmotic flow of multilayer immiscible fluids in the studied section.

2.2. Governing and Constitutive Equations

The electro-osmotic flow field for the incompressible n-fluid layers is governed by the
following Poisson, continuity and Cauchy momentum equations:
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∇2Φn = −ρe,n

εn
, (1)

∇ · vn = 0 (2)

and
ρn

Dvn

Dt
= −∇p +∇ · τn + ρng + ρe,nE, (3)

where Φ is the electric potential, ρe is the volumetric free charge density, ε is the dielectric
permittivity, v is the velocity vector, ρ is the fluid density, t is the time, p is the pressure, τ
is the stress tensor, g is the gravitational acceleration vector and E is the electric field vector.
Moreover, the stress tensor is related to the Maxwell rheological model as [84,85]:

τn + λn
∂τn

∂t
= η0,nγ̇n, (4)

where λ is the relaxation time, η0 is the zero-shear-rate viscosity and γ̇n = (∇vn) + (∇vn)T

is the rate-of-strain tensor. The general governing and constitutive equations mentioned
above can be simplified with the following assumptions:

• Transient and fully-developed flow.
• The physical and electrical properties of fluids are considered constant [67].
• Planar interfaces between the fluids [69,73,81] which can be assumed by consider-

ing the following. (i) very low Reynolds numbers, i.e., Ren(= ρnRuHS/η0,n) � 1,
which results in parallel flows [68,81]. (ii) Uniform zeta potentials along the study
section of the annular microchannel. And (iii) the gravity does not affect the flow
in the channel [69,81]. The characteristic flow velocity is defined by the Helmholtz-
Smoluchowski velocity as uHS = −εrefζrefEz/ηref, where the subscript “ref” indicates
reference quantities.

• The electrochemical interface structure between the immiscible fluids follows the
Verwey-Niessen theory [72,86]. Therefore, the electric double layers at the liquid-
liquid interfaces are two diffuse charge layers separated by a central inner compact
layer. The latter is characterized by a potential drop between the two diffuse layers
due to the orientation of the solvent molecules. Also, the continuity of electrical
displacements on both sides of the central compact layer in the absence of ions in the
inner layer is considered [86,87].

• The annular microchannel is considered very long, and the study region neglects any
end effect. Thus, the electric potential Φn can be determined as the superposition of the
potential into the electric double layer, ψn, with the external potential, φ, yielding [6]:

Φn(r, z) = ψn(r) + φ(z), (5)

where φ(z) = φ0 − zEz, φ0 is the electric potential at the inlet of the microchannel at
z = 0, and Ez is the constant electric field in the z-axis.

• The free charge density in terms of the electrical potential, ψn, can be described by the
Boltzmann distribution as [6]:

ρe,n = −2Znen0,n sinh
(

Zneψn(r)
kBTn

)
, (6)

where Zn is the valence of electrolyte, e is the electron charge, n0,n is the ionic num-
ber concentration in the bulk solution, kB is the Boltzmann constant and Tn is the
fluid temperature.

• Low interfacial potentials to consider the Debye-Hückel approximation at solid-
liquid [6,88] and liquid-liquid interfaces [74,76]. This assumption is valid until
50 mV [6,15,25].

• The electric double layers do not overlap.
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• The pressure gradient pz applied in the z-axis of the microchannel remains constant
and is produced by syringe pumps.

Once the assumptions above are considered, the result is a unidirectional flow with
flat liquid-liquid interfaces between the fluids. Then, (1)–(4) are rewritten as follows,
the Poisson-Boltzmann equation as:

d2ψn(r)
dr2 +

1
r

dψn(r)
dr

= κ2
nψn(r), (7)

while the momentum equation reduces to:

ρn
∂un(r, t)

∂t
= −pz −

1
r

τrz,n(r, t)− ∂τrz,n(r, t)
∂r

− εnκ2
nEzψn(r) (8)

and the constitutive equation for Maxwell fluids can be expressed as:

τrz,n(r, t) + λn
∂τrz,n(r, t)

∂t
= −η0,n

∂un(r, t)
dr

, (9)

where κ2
n = 2Z2

ne2n0,n/εnkBTn is the Debye-Hückel parameter related to the Debye length

κ−1
n =

(
εnkBTn/2Z2

ne2n0,n
)1/2 [6], un is the fluid velocity on the z−axis and τrz,n is the

shear stress.
To obtain the momentum Equation (8) in terms of velocity and be more easily solved,

(9) has to be derived with respect to the r-axis, resulting in:

∂τrz,n(r, t)
∂r

= −λn
∂2τrz,n(r, t)

∂t∂r
− η0,n

∂2un(r, t)
∂r2 , (10)

after, substituting (10) into (8), yields:

ρn
∂un(r, t)

∂t
= −pz + λn

∂2τrz,n(r, t)
∂t∂r

+ η0,n
∂2un(r, t)

∂r2 − 1
r

τrz,n(r, t)− εnκ2
nEzψn(r). (11)

In this direction, (8) is derived with respect to time to have:

∂2τrz,n(r, t)
∂t∂r

= −ρn
∂2un(r, t)

∂t2 − 1
r

∂τrz,n(r, t)
∂t

. (12)

Therefore, by replacing (12) into (11) the following relationship is obtained:

ρnλn
∂2un(r, t)

∂t2 + ρn
∂un(r, t)

∂t
= −pz −

1
r

τrz,n(r, t)− λn

r
∂τrz,n(r, t)

∂t
+ η0,n

∂2un(r, t)
∂r2 − εnκ2

nEzψn(r). (13)

Finally, to eliminate τrz,n from (13), (9) is divided by the radial coordinate r and
replaced into (13), resulting in the following momentum equation for n−fluid layers as a
function of velocity only:

ρnλn
∂2un(r, t)

∂t2 + ρn
∂un(r, t)

∂t
= −pz +

η0,n

r
∂un(r, t)

dr
+ η0,n

∂2un(r, t)
∂r2 − εnκ2

nEzψn(r). (14)

The governing equations given by (7) and (14), referring to the electric potential and
velocity, are solved by applying the corresponding boundary conditions at t > 0 as follows.
First, for fluid layer 1 in contact with the microchannel inner wall, the boundary conditions
that are taken into account and evaluated at r = aR are a specified zeta potential and the
no-slip boundary conditions as:

ψ1(r = aR) = ζI, u1(r = aR, t) = 0. (15)
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Second, the boundary conditions at the liquid-liquid interfaces have to be evaluated at
r = rn=1,2,3,...,i−1. For the electric potential are a potential difference and the Gauss’s law as:

ψn+1(r)− ψn(r) = ∆ψn, (16)

εn+1
dψn+1(r)

dr
= εn

dψn(r)
dr

, (17)

and for the velocity, the continuity of velocity:

un+1(r, t) = un(r, t) (18)

and the electroviscous stress balance:

τrz,n+1(r, t) + τe,n+1(r) = τrz,n(r, t) + τe,n(r), (19)

where the Maxwell shear stress is:

τe,n(r) = −εnEz
dψn(r)

dr
. (20)

And third, for fluid layer i in contact with the microchannel outer wall, the boundary
conditions that are taken into account and evaluated at r = R are a specified zeta potential
and the no-slip boundary conditions as:

ψi(r = R) = ζO, ui(r = R, t) = 0. (21)

Complementary, the initial conditions applicable to the momentum Equation (14) for
all fluids and in the entire geometric domain of the annular microchannel (aR ≤ r ≤ R )
are as follows:

un(r, t = 0) = 0, τrz,n(r, t = 0) = 0,
∂un

∂t

∣∣∣∣
r,t=0

= 0. (22)

2.3. Dimensionless Mathematical Model

To normalize the mathematical model defined above, are introduced the following
dimensionless variables:

t̄ =
ηreft

ρrefR2 , r̄ =
r
R

, ψ̄n =
ψn

ζref
, ūn =

un

uHS
, τ̄rz,n =

Rτrz,n

ηrefuHS
. (23)

Therefore, by replacing (23) into (7), (9) and (14), the Poisson-Boltzmann, momentum
and Maxwell equations are obtained in their dimensionless form as follows:

d2ψ̄n(r̄)
dr̄2 +

1
r̄

dψ̄n(r̄)
dr̄

= κ̄2
nψ̄n(r̄), (24)

ρ̄nλ̄n
∂2ūn(r̄, t̄)

∂t̄2 + ρ̄n
∂ūn(r̄, t̄)

∂t̄
= −Γ + η̄n

∂2ūn(r̄, t̄)
∂r̄2 +

η̄n

r̄
∂ūn(r̄, t̄)

∂r̄
+ ε̄nκ̄2

nψ̄n(r̄) (25)

and

τ̄rz,n(r̄, t̄) + λ̄n
∂τ̄rz,n(r̄, t̄)

∂t̄
= −η̄n

∂ūn(r̄, t̄)
∂r̄

. (26)

As well, all boundary conditions are normalized by use the dimensionless variables
given in (23) for t̄ > 0 as follows. Equation (15) for solid-liquid interface placed at the
microchannel inner wall at r̄ = a, can be rewritten as:

ψ̄1(r̄ = a) = ζ̄I, ū1(r̄ = a, t̄) = 0. (27)
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Respectively, from (16)–(20) for all liquid-liquid interfaces placed at r̄ = r̄n=1,2,3,...,i−1,
the following dimensionless equations are obtained:

ψ̄n+1(r̄)− ψ̄n(r̄) = ∆ψ̄n, (28)

ε̄n+1
dψ̄n+1(r̄)

dr̄
= ε̄n

dψ̄n(r̄)
dr̄

, (29)

ūn+1(r̄, t̄) = ūn(r̄, t̄) (30)

and

τ̄rz,n+1(r̄, t̄) + ε̄n+1
dψ̄n+1(r̄)

dr̄
= τ̄rz,n(r̄, t̄) + ε̄n

dψ̄n(r̄)
dr̄

. (31)

Also, (21) for the solid-liquid interface placed at the microchannel outer wall at r̄ = 1,
can be rewritten as:

ψ̄i(r̄ = 1) = ζ̄O, ūi(r̄ = 1, t̄) = 0. (32)

Regarding the initial conditions in (22), these also are normalized by using (23), yielding:

ūn(r̄, t̄ = 0) = 0, τ̄rz,n(r̄, t̄ = 0) = 0,
∂ūn

∂t̄

∣∣∣∣
r̄,t̄=0

= 0, (33)

for a ≤ r̄ ≤ 1.
The dimensionless parameters arising in this section are described mathematically as:

κ̄n =
R

κ−1 , ρ̄n =
ρn

ρref
, ε̄n =

εn

εref
, η̄n =

η0,n

ηref
, Γ =

pzR2

UHSηref
, λ̄n =

ηrefλn

ρrefR2 , r̄n =
rn − a

R
+ a, ∆ψ̄n =

∆ψn

ζref
, (34)

where κ̄n are electrokinetic parameters representing the ratios between the microchannel
height to the Debye lengths, ρ̄n are the densities ratios, ε̄n are the dielectric permittivities
ratios, η̄n are the viscosity ratios, Γ is the ratio of external pressure forces to electro-osmotic
forces, and λ̄n are the dimensionless relaxation times. Besides, r̄n and ∆ψ̄n are the interface
positions and the potential differences, respectively, both dimensionless and ranging from
n = 1 to n = i− 1.

3. Solution Methodology
3.1. Electric Potential Distribution

Because the Poisson-Boltzmann equation for the electric potential (24) has the form of
a modified Bessel differential equation, it results in the following well-known solution for
each n-fluid layer:

ψ̄n(r̄) = C2n−1 I0(κ̄n r̄) + C2nK0(κ̄n r̄), (35)

where C2n−1 and C2n are integration constants whose subscripts are according to each
fluid layer, I0(·) and K0(·) are the modified Bessel functions of the first and second kind
of zero-order, respectively. To obtain the integration constants value, the corresponding
boundary conditions given in (27)–(29) and (32) were applied with the aid of (35). As result,
a system of linear equations represented by a general matrix notation as Ax = b is shown
in Appendix A. Thus, the matrix inverse method is used in (A1) to find C2n−1 and C2n.

3.2. Velocity Profiles

The velocity distribution for this multilayer flow is obtained by employing the Laplace
transform method as follows:

Un(r̄, s) = L {ūn(r̄, t̄)} =
∫ ∞

0
ūn(r̄, t̄)e−st̄dt̄ (36)

and for the shear stress as:

τ̃rz,n(r̄, s) = L {τ̄rz,n(r̄, t̄)} =
∫ ∞

0
τ̄rz,n(r̄, t̄)e−st̄dt̄. (37)
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Applying the above pair of equations to the momentum and constitutive equations
given in (25) and (26), results in:

λ̄nρ̄n

[
s2Un(r̄, s)− sūn(r̄, t̄ = 0)− ∂ūn

∂t̄

∣∣∣∣
r̄,t̄=0

]
+ ρ̄n[sUn(r̄, s)− ūn(r̄, t̄ = 0)] =

η̄n
∂2Un(r̄, s)

∂r̄2 +
η̄n

r̄
∂Un(r̄, s)

∂r̄
+

ε̄nκ̄2
n

s
ψ̄n(r̄)−

Γ
s

(38)

and respectively

τ̃rz,n(r̄, s) + λ̄n[sτ̃rz,n(r̄, s)− τ̄rz,n(r̄, t̄ = 0)] = −η̄n
∂Un(r̄, s)

∂r̄
. (39)

The initial conditions given in the (33) satisfy the (38) and (39), and these can be
rewritten as:

∂2Un(r̄, s)
∂r̄2 +

1
r̄

∂Un(r̄, s)
∂r̄

− α2
nUn(r̄, s) = βnψ̄n(r̄) +

Γ
sη̄n

(40)

and

τ̃rz,n(r̄, s) = −γn
∂Un(r̄, s)

∂r̄
, (41)

where α2
n = (ρ̄ns/η̄n)(λ̄ns + 1), βn = −ε̄nκ̄2

n/η̄ns, and γn = η̄n/(1 + λ̄ns). To solve the
momentum Equation (40), requires suitable boundary conditions which arise by apply (36)
and (37) in (27) and in (30)–(32). As a result, for the inner wall of the annular microchannel
at r̄ = a:

U1(r̄ = a, s) = 0, (42)

while for all liquid-liquid interfaces at r̄ = r̄n=1,2,3,...,i−1 and with the aid of (41), are obtained
the following expressions:

Un+1(r̄ = r̄n, s) = Un(r̄ = r̄n, s), (43)

− γn+1
∂Un+1

∂r̄
+

ε̄n+1

s
dψ̄n+1

dr̄
= −γn

∂Un

∂r̄
+

ε̄n

s
dψ̄n

dr̄
(44)

and finally, for the outer wall of the annular microchannel at r̄ = 1, it results in:

Ui(r̄ = 1, s) = 0. (45)

Hence, the mathematical model for this electro-osmotic flow in Laplace space consists
of (40) and (42)–(45), which is solved as described below. In general, (40) represents an
non-homogeneous ordinary differential equation and its solution can be constructed by the
principle of superposition of a homogeneous solution Uh,n(r̄, s) and a particular solution
Up,n(r̄, s), as follows:

Un(r̄, s) = Uh,n(r̄, s) + Up,n(r̄, s), (46)

where the homogeneous and particular solution are:

Uh,n(r̄, s) = An I0(αn r̄) + BnK0(αn r̄) (47)

and
Up,n(r̄, s) = Fn I0(κ̄n r̄) + GnK0(κ̄n r̄) + H0. (48)

The particular solution given in (48) consists of two parts. The first part corresponds
to Fn I0(κ̄n r̄) + GnK0(κ̄n r̄) and retains the form of a modified Bessel differential equation,
as seen on the right-hand side of (35). The second part corresponds to H0, which is treated as
a constant. Both parts are also related to the terms on the right-hand side of (40). Therefore,
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An, Bn, Fn, Gn, and H0 are constants to be determined. In this sense, substituting (48) in (40),
and with the aid of (35), yields:

∂2

∂r̄2 [Fn I0(κ̄n r̄) + GnK0(κ̄n r̄)] +
1
r̄

∂

∂r̄
[Fn I0(κ̄n r̄) + GnK0(κ̄n r̄)]− α2

n[Fn I0(κ̄n r̄) + GnK0(κ̄n r̄) + H0] =

βn[C2n−1 I0(κ̄n r̄) + C2nK0(κ̄n r̄)] +
Γ

sη̄n
. (49)

Considering that the Bessel functions depend only on the radial coordinate and by
factoring Fn and Gn, from (49) is obtained that:

Fn

[
d2

dr̄2 I0(κ̄n r̄) +
1
r̄

d
dr̄

I0(κ̄n r̄)− α2
n I0(κ̄n r̄)

]
+ Gn

[
d2

dr̄2 K0(κ̄n r̄) +
1
r̄

d
dr̄

K0(κ̄n r̄)− α2
nK0(κ̄n r̄)

]
− α2

n H0 =

βn[C2n−1 I0(κ̄n r̄) + C2nK0(κ̄n r̄)] +
Γ

sη̄n
. (50)

Following the principle of superposition of solutions, the global solution will be the
sum of all solutions, which can be manipulated independently. Therefore, from (50) the
following three relationships are obtained:

Fn

[
d2

dr̄2 I0(κ̄n r̄) +
1
r̄

d
dr̄

I0(κ̄n r̄)− α2
n I0(κ̄n r̄)

]
= βnC2n−1 I0(κ̄n r̄), (51)

Gn

[
d2

dr̄2 K0(κ̄n r̄) +
1
r̄

d
dr̄

K0(κ̄n r̄)− α2
nK0(κ̄n r̄)

]
= βnC2nK0(κ̄n r̄) (52)

and
− α2

nH0 =
Γ

sη̄n
. (53)

However, by replacing (35) into (24), yields:

d2

dr̄2 I0(κ̄n r̄) +
1
r̄

d
dr̄

I0(κ̄n r̄) = κ̄2
n I0(κ̄n r̄) (54)

and
d2

dr̄2 K0(κ̄n r̄) +
1
r̄

d
dr̄

K0(κ̄n r̄) = κ̄2
nK0(κ̄n r̄). (55)

Therefore, replacing the equalities of (54) and (55) into (51) and (52), respectively, these
can be rewritten as:

Fn

[
κ̄2

n I0(κ̄n r̄)− α2
n I0(κ̄n r̄)

]
= βn[C2n−1 I0(κ̄n r̄)] (56)

and
Gn

[
κ̄2

nK0(κ̄n r̄)− α2
nK0(κ̄n r̄)

]
= βn[C2nK0(κ̄n r̄)]. (57)

The constants Fn and Gn are obtained from the above pair of equations, yielding:

Fn =
βnC2n−1

κ̄2
n − α2

n
, Gn =

βnC2n

κ̄2
n − α2

n
. (58)

Taking into account the constant values of (53) and (58), the dimensionless velocity
distribution for each one n−fluid layer is established from (46), yielding:

Un(r̄, s) = An I0(αn r̄) + BnK0(αn r̄) + Fn I0(κ̄n r̄) + GnK0(κ̄n r̄)− Γ
sα2

nη̄n
. (59)



Colloids Interfaces 2022, 6, 60 11 of 27

The values of constants An and Bn were obtained by applying the boundary conditions
given in (42)–(45) to (59), that with aid of (35), results in a system of linear equations.
This system of equations can be represented by a general matrix notation as Ax = b in
Appendix B. Therefore, to find the values of the constants An and Bn, the matrix inverse
method is used in (A2).

Thus, once found the constants Fn, Gn, An and Bn, these are replaced into (59). In this
last equation, the inverse of the Laplace transform is applied using the numerical method
based on concentrated matrix exponential (CME) distributions [89]. Here, a finite linear
combination of the transform values approximates ū, as follows:

ūn(r̄, t̄) ≈ ūn(r̄, t̄, M) =
1
t̄

M

∑
k=1

ωkUn

(
r̄,

θk
t̄

)
, (60)

where ω1 and θ1 are real coefficients, and from ω2 to ωM, and from θ2 to θM are (M− 1)/2
complex conjugate pairs that the authors in Horváth et al. [89] provide. Here, M = 50.

3.3. Steady-State Velocity

The steady-state solution for the velocity distribution is obtained simplifying (25)
as follows:

1
r̄

d
dr̄

(
r̄

dūn

dr̄

)
=

1
η̄n

(
Γ− ε̄nκ̄2

nψ̄n

)
, (61)

which is integrated to yields

ūn =
1

η̄n

{
Γr̄2

4
+ ε̄nC2n−1[1− I0(κ̄n r̄)]− ε̄nC2nK0(κ̄n r̄) + Dn ln(r̄) + En

}
, (62)

where Dn and En are constants which are determined by applying the corresponding
boundary conditions given in (27) and (30)–(32) into (62). The result of this application
is a system of linear equations which can be represented by a general matrix notation as
Ax = b in Appendix C. Therefore, to find the constants Dn and En, the matrix inverse
method is used in (A4).

4. Results and Discussion

In this investigation, the following range of values are taken into account: 1 ≤ R ≤ 50 µm,
100 ≤ κ−1

n ≤ 300 nm, ρn = 1000 kg m−3, 10−4 ≤ ηn ≤ 10−2 kg m−1 s−1, Ez ≤ 104 V m−1,
10−11 ≤ εn ≤ 10−9 C V−1 m−1, Zn = O(1), 0 ≤ λn ≤ 10−3 s, −25 ≤ ζI,O ≤ 25 mV,
−6.25 ≤ ∆ψn ≤ 6.25 mV, kB = 1.381× 1023 J K−1 and e = 1.602× 10−19 C. Due to any
pressure value can be provided by syringe pumps on the microfluidic devices, the pressure
gradient, pz, is considered of the same order as the electro-osmotic forces. The value of
n will be kept in a moderate and realistic order of O(1), although the solution of this
problem can take values of n = 1, 2, 3, ..., ∞. Thus, with an appropriate combination of the
aforementioned values, the following orders of magnitude of the dimensionless parameters
are obtained: Γ = ±O(1),−0.25 ≤ ∆ψ̄n ≤ 0.25, 10 ≤ κ̄n ≤ 100, 0.5 ≤ ε̄n ≤ 2, 0.1 ≤ η̄n ≤ 12
and 0 ≤ λ̄n ≤ 10. The density of fluids is assumed to be the same with ρ̄n = 1.

4.1. Validation

This section aims to validate the semi-analytical solutions of the electro-osmotic
flow presented in (60) and (62) for the transient and steady-state regime, respectively.
Figure 2 compares the velocity profiles of a multilayer flow handling four layers with two
investigations reported by the scientific community where a single fluid is transported.
In all cases for the multilayer flow, the fluids are Newtonian with λ̄n = 0 and have the
same physical properties as η̄n = ε̄n = ρ̄n = 1; also, the electrostatic interactions between
fluid layers are absent in the liquid-liquid interfaces with ∆ψ̄n = 0, the value of the
electrokinetic parameters is κ̄n = 10, and any external pressure gradient is neglected with
Γ = 0. Furthermore, the specified zeta potential is ζ̄I,O = 1 and because ∆ψ̄n = 0, there are
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no electric double layers at liquid-liquid interfaces. Under the conditions mentioned earlier
for the multilayer flow and with a dimensionless internal radius of the channel of a = 0.5,
it is possible to recover and compare the solutions of the present work with the following
two studies. The first work carried out by Chang and Wang [23] describes an analytical
solution of the electro-osmotic flow in an annular microchannel. The transient regime
presents the velocity profiles at the dimensionless times t̄ = 0.001, 0.01, 0.03, and 10. As a
result, an excellent convergence can be observed between the transient solutions. On the
other hand, the second work developed by Tsao [22], corresponds to an electro-osmotic
flow through an annulus. In the steady-state, there is also a very good match between
the solutions. This validation shows that when there are no electric double layers at the
liquid-liquid interfaces and the physical properties of the fluids are equal, the velocity
profile of a multilayer flow will behave like a single fluid layer.
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 Chang and Wang (2018), a fluid layer
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Figure 2. Comparison of the dimensionless velocity profiles in a purely electro-osmotic flow between
the solutions presented by Chang and Wang [23] and Tsao [22] with n = 1, and the present work with
n = 4, Γ = 0, η̄n = ε̄n = ρ̄n = ζ̄I,O = 1, ∆ψ̄n = 0, r̄1 = 0.625, r̄2 = 0.75 and r̄3 = 0.875.

4.2. Electric Potential and Velocity Profiles

Figure 3 shows the dimensionless electric potential and velocity profiles as a func-
tion of the radial coordinate. The multilayer electro-osmotic flow through the annular
microchannel consists of three fluid layers equidistantly distributed with r̄2 = 0.533 and
r̄3 = 0.766. The fluid layers 1 and 3 are in contact with the internal and external walls
of the microchannel, respectively. Figure 3a–c also present the transient development of
the velocity profiles as a function of dimensionless time t̄ until reaching the steady-state
regime in t̄→ ∞, with a potential difference at the liquid-liquid interfaces of ∆ψ̄n = 0.25, 0
and −0.25, respectively. The other dimensionless parameters are shown in the graph.
Figure 3a,c show the electric potential distribution, where the values of ∆ψ̄n = 0.25 and
∆ψ̄n = −0.25 produce a discontinuity of this distribution at the liquid-liquid interfaces.
In addition, the values of ∆ψ̄n = 0.25 and ∆ψ̄n = −0.25 also produce a change in po-
larity and distribution of the electric potential on each side of liquid-liquid interfaces.
The aforementioned is due to the change in polarity of the electric charges in the electric
double layers close to the liquid-liquid interfaces, which depends on the positive or nega-
tive values of ∆ψ̄n. On the other hand, Figure 3b represents the classical electro-osmotic
flow with a uniform electric potential distribution along the cross-section of the annular
channel with ∆ψ̄n = 0. In this graph, it can be observed that for short times (t̄ = 0.05),
the movement of fluids due to electro-osmotic effects begins from the double electrical
layers located on the channel walls. Then, as time passes, the momentum transfer out of
the electrical double layers is transmitted through viscous effects towards the center of
the microchannel. Also, since there are no discontinuities in the distribution of the electric
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potential at the liquid-liquid interfaces of Figure 3b, the shape of the velocity profiles
is undisturbed. Conversely, for any discontinuity and change in polarity of the electric
potential distribution at liquid-liquid interfaces as is observed in Figure 3a with ∆ψ̄n = 0.25
and in Figure 3c with ∆ψ̄n = −0.25, the velocity profiles will suffer certain disturbances like
velocity jumps around the region of contact between the fluids. Furthermore, the continuity
of viscous stresses at the liquid-liquid interfaces is affected by the electrostatic effects from
Maxwell stresses (see (31)), contributing to the disturbances in the shape of velocity profiles.
Therefore, these disturbances in Figure 3a,c result from the presence of double electrical
layers around the liquid-liquid interfaces. Here, the magnitude and sign of the potential
difference ∆ψ̄n = 0.25 or ∆ψ̄n = −0.25 can be controlled by the excess electrical charge in
the interfacial region [72,87].
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Figure 3. Dimensionless electric potential and velocity profiles of a purely electro-osmotic flow
with n = 3, a = 0.3, Γ = 0, κ̄n = 20, ρ̄n = η̄n = ε̄n = λ̄n = ζ̄I,O = 1, r̄1 = 0.533 and r̄2 = 0.766,
for (a) ∆ψ̄n = 0.25, (b) ∆ψ̄n = 0, and (c) ∆ψ̄n = −0.25.

In Figure 4 it is presented the influence of the dimensionless relaxation times with
λ̄n = 0.1, 2.0 and 10 on the velocity profiles. Figure 4a–c, present an oscillatory behavior
of velocity due to the memory effects of fluids. These oscillations increase with the value
of the dimensionless relaxation time. Thus, the velocity profile has a higher magnitude
when the dimensionless relaxation time is λ̄n = 10. Also, the multilayer flow of Figure 4c
takes longer to reach the steady-state regime than the case shown in Figure 4a. Once
the velocity profiles of Figure 4a–c reach the steady-state regime (see the blue lines for
t̄→ ∞), all of them acquire the same magnitude along the cross-section of the microchannel,
which indicates that the elastic effects have ended. From this moment, the fluids behave as
Newtonian fluids.
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Figure 4. Dimensionless velocity profiles of a purely electro-osmotic flow with n =3, a = 0.3, Γ = 0,
κ̄n = 20, ∆ψ̄n = 0.25, ρ̄n = η̄n = ε̄n = ζ̄I,O = 1, r̄1 = 0.533 and r̄2 = 0.766, for (a) λ̄n = 0.1,
(b) λ̄n = 2.0, and (c) λ̄n = 10.

The velocity profiles in Figure 5 show the behavior of a purely electro-osmotic flow
under the influence of the viscosity ratios. In Figure 5a–c, the viscosity ratio of each fluid
layer is the same being η̄n = 0.7, 2 and 6, respectively. The viscosity value can measure the
resistance that the multilayer flow opposes to flow. Therefore, Figure 5a denotes higher
velocity profiles than Figure 5b,c for having the lowest viscosity value with η̄n = 0.7 and,
consequently, the lowest flow resistance.
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Figure 5. Dimensionless velocity profiles of an electro-osmotic flow with n = 3, a = 0.3, Γ = 0,
∆ψ̄n = 0.25, κ̄n = 20, ρ̄n = λ̄n = ε̄n = ζ̄I,O = 1, r̄1 = 0.533 and r̄2 = 0.766, for (a) η̄n = 0.7,
(b) η̄n = 2.0, and (c) η̄n = 6.0.

4.3. Velocity Tracking

Once the behavior of the velocity profiles in the flow field has been described, the fol-
lowing results will analyze the velocity tracking at different positions of the annular
microchannel cross-section as a time function. With this, the influence of dimensionless
parameters on the flow dynamics in its transitory period will be elucidated.

To explore the damped oscillatory motion of Maxwell fluids, Figure 6 shows the
velocity tracking as a time function of the three cases of multilayer flow presented in
Figure 3 for ∆ψ̄n = 0.25, 0 and −0.25 as case (a), (b) and (c), respectively. The velocity
tracking position is located at the middle of each fluid layer, at r̄ = 0.4166, 0.65 and 0.8833
for fluids 1, 2, and 3, respectively. As can be seen, fluids 1 and 3 in contact with the
microchannel walls begin their movement before intermediate fluid 2. This effect happens
because the electric potential in the walls has a greater magnitude than in any other position,
which promotes a faster effect of the externally applied electric field on the double electric
layers at the solid-liquid interfaces. After starting its movement, each fluid layer increases
its velocity and experiences an oscillatory behavior that dampens with time until it reaches
a steady-state regime. It can be seen that the crest and trough of waves in the oscillatory
movement of fluids neighboring the microchannel walls present a velocity peak, while
the central fluid does not. It is also observed that the value of the potential difference ∆ψ̄n
influences the velocity magnitude in each fluid layer. Additionally, the potential difference
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modifies the time in which the multilayer flow reaches the steady-state (t̄ss), having for the
case (a), (b) and (c) that t̄ss = 22.35, 24.48 and 23.05, respectively.

0.1 1 10

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.1 1 10

0.0

0.5

1.0

1.5

2.0

_

_

Fluid 1

 

t

_

u

u

u

 Case (c), tss=23.05

 Case (a), tss=22.35
 Case (b), tss=24.48

Fluid 2  

Fluid 3

 

Figure 6. Velocity tracking of an electro-osmotic flow, cases taken from Figure 3. Case (a) ∆ψ̄n = 0.25,
Case (b) ∆ψ̄n = 0, and Case (c) ∆ψ̄n = −0.25 at the middle of each fluid layer.

Figure 7 shows the velocity tracking of the multilayer flow presented in Figure 4.
Tracking it is carried out in the middle of each fluid layer. It is noticeable that fluids with a
higher dimensionless relaxation time take longer to come out of rest and reach the steady-
state regime. Approximately, for a value of λ̄n = 10 it takes a time of t̄ss = 141.01 to reach
the steady-state regime, while for λ̄n = 0.1 it needs t̄ss = 2.09. In this context, the fluids
with a higher value of the dimensionless relaxation time have a more significant number
of oscillations and a larger velocity magnitude than the other cases shown. The above
demonstrates the elastic and memory effects of this type of Maxwell fluid and that they are
intrinsic in the hyperbolic partial differential Equation (25) and its solution.

In other results, Figure 8 shows the velocity tracking of the analyzed cases in Figure 5
for values of η̄n = 0.7, 2 and 6, respectively, and in the middle of the annular microchannel
at r̄ = 0.65. As expected, the multilayer flow with a value of the viscosity ratios of η̄n = 6
has a lower velocity magnitude than the other cases presented due to a higher resistance to
flow. As observed, the high viscosity of the fluids will increase the number of oscillations
in the transient period of the flow. In this figure, can noticed that the fluids with higher
viscosity reach the steady-state regime faster; for example, with η̄n = 6, the steady-state
regime is achieved in t̄ss = 19.01, while multilayer flow with η̄n = 0.7 takes longer to
reach that condition with t̄ss = 26.02. The above is because by increasing the viscosity
of the fluids, the flow resistance also increases, acting as a type of brake, damping the
oscillatory regime faster. On the other hand, as previously mentioned, the presence of the
elastic contribution of the fluid is manifested in the number of oscillations. That indicates
stored energy coming from the microstructure immersed in the fluid, which gives rise
to the viscoelastic behavior of Maxwell fluids. Then this type of fluids, when deformed,
dissipate energy generating oscillations until reaching an equilibrium state or steady-state.
Therefore, fluids with little resistance to flow dissipate stored energy more easily, showing
an increase in velocity magnitude and few oscillations before reaching steady-state (case
with η̄n = 0.7). Conversely (case with η̄n = 6.0), the high viscosity of the fluids will make



Colloids Interfaces 2022, 6, 60 17 of 27

it more difficult to dissipate the stored energy, increasing the number of oscillations and
reducing the velocity magnitude.
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Figure 7. Velocity tracking of an electro-osmotic flow, cases taken from Figure 4. Case (a) λ̄n = 0.1,
Case (b) λ̄n = 2.0, and Case (c) λ̄n = 10 at the middle of each fluid layer.
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Figure 8. Velocity tracking of an electro-osmotic flow, cases taken from Figure 5. Case (a) η̄n = 0.7,
Case (b) η̄n = 2.0, and Case (c) η̄n = 6.0 at the middle of the microchannel.

Figure 9 represents the velocity tracking of a multilayer flow of three immiscible fluids
as a function of dimensionless time. Here, four cases of combined values of the viscosity
ratios are analyzed, case (a) with η̄1,2,3 = (1.0, 1.5, 2.1), case (b) with η̄1,2,3 = (3.5, 1.9, 0.9),
case (c) with η̄1,2,3 = (0.9, 4.0, 2.1) and case (d) with η̄1,2,3 = (3.0, 9.0, 1.0). The other
dimensionless parameters remain the same as Figure 8. It is noticeable that any combination
of the viscosity ratios of the fluids presented in this figure, and which are in the same
order of magnitude, that is, approximately O(1), the time to reach the steady-state regime
normalizes to an average value of t̄ss = 16.75. Under these conditions, the waves number
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along the oscillatory motion is normalized to a similar number in all the cases presented.
Unlike Figure 8, the oscillations in this figure show more noise or peaks in their periods.
In all cases, the movement of fluids in contact with the microchannel walls will begin before
the intermediate fluid layer because the higher electro-osmotic effects will begin for early
times in the walls than in the liquid-liquid interfaces. Once normalized and constrained
the multilayer flow behavior of the three immiscible fluids, the total energy of each fluid is
reflected in the velocity magnitude; in general, for the fluid with lower viscosity ratio it
reaches a higher velocity.
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Figure 9. Velocity tracking of an electro-osmotic flow for Case (a) η̄1,2,3 = (1.0, 1.5, 2.1),
Case (b) η̄1,2,3 = (3.5, 1.9, 0.9), Case (c) η̄1,2,3 = (0.9, 4.0, 2.1), and Case (d) η̄1,2,3 = (3.0, 9.0, 1.0),
at the middle of each fluid layer.

Figure 10 shows the velocity tracking of a multilayer electro-osmotic flow of three fluid
layers. In this figure, four cases (a), (b), (c), and (d) are studied with different combinations
of the viscosity ratios with η̄1,2,3 = (10, 0.1, 5.0), η̄1,2,3 = (0.1, 9.0, 0.1), η̄1,2,3 = (0.1, 1.0, 12)
and η̄1,2,3 = (12, 1.2, 0.1), respectively. The other dimensionless parameters are the same as
Figures 8 and 9. Unlike Figures 8 and 9, in this figure, the combinations of the viscosity ratios
handle values in three different orders of magnitude, that is, O(10−1), O(100), and O(101).
It is clear that the assumed viscosity values have a relevant influence in each case and in
the time in which it reaches the steady-state regime, being t̄ss = 14.45, 20.25, 18.89 and 20.35
for the case (a), (b), (c) and (d), respectively. Case (a) of this figure shows that when more
viscous fluids contact the microchannel walls, they will produce a more significant wave
number during the transient period. On the contrary, in case (b), it is shown that when the
less viscous fluids are in this position, they will produce a smaller number of oscillations to
reach the steady-state regime. Intermediate cases of this behavior are (c) and (d) cases. It is
important to note that assigning different orders of magnitude to the viscosity ratios in the
immiscible fluids that compose a multilayer array, increases the nonlinearities (amplitude
variations) in the oscillatory response of the flow.
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Figure 10. Velocity tracking of an electro-osmotic flow for Case (a) η̄1,2,3 = (10, 0.1, 5.0),
Case (b) η̄1,2,3 = (0.1, 9.0, 0.1), Case (c) η̄1,2,3 = (0.1, 1.0, 12), and Case (d) η̄1,2,3 = (12, 1.2, 0.1), at the
middle of each fluid layer.

Figure 11 analyzes the value of the dimensionless internal radius of the microchannel
a on the velocity tracking. This figure shows the velocity behavior at the middle of each
fluid for a = 0.1, 0.4, 0.6 and 0.8. The above means, from the case with a widest annular
microchannel cross-section (a = 0.1) to the most narrow (a = 0.8), respectively. As can
be seen, narrow annular channels develop the first wave of the oscillatory regime more
quickly than the wider channels. On the other hand, the first wave with the highest velocity
is developed in the widest channel and reduces its magnitude as the channel becomes
narrower. In addition, as the channel is thinner, the number and uniformity of the waves
increase with the value of the dimensionless internal radius (compare case a = 0.1 with
a = 0.8). With the above mentioned, it is clear that when the value of the dimensionless
internal radius changes, it will affect the velocity magnitude, number and uniformity of
the waves during the transient period. In another result, it can be concluded that the
influence of a is small on the time in which the multilayer flow reaches the steady-state
regime because the values of t̄ss are very similar in the presented cases.



Colloids Interfaces 2022, 6, 60 20 of 27

0.1 1 10

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.1 1 10

0.0

0.5

1.0

1.5

2.0

 

a=0.8, tss=15.55

t

_

 

a=0.6, tss=17.56
_

 

a=0.4, tss=17.45
_

_ Fluid 1
 Fluid 2
 Fluid 3

 

 

a=0.1, tss=16.70

u

u

u

u

Figure 11. Velocity tracking of an electro-osmotic flow with n = 3, Γ = 0, κ̄n = 20, ∆ψ̄n = 0.25,
ρ̄n = ε̄n = λ̄n = η̄n = ζ̄I,O = 1, for different values of internal radius a = (0.1, 0.4, 0.6, 0.8) with
equidistant interface positions.

Figure 12 presents the influence of the remaining dimensionless parameters reported
in this investigation on the velocity tracking in the multilayer electro-osmotic flow. In case
(a) of this figure, it can be seen that the zeta potential values in the walls of the annular
microchannel directly affect the velocity magnitude of the multilayer electro-osmotic flow.
The highest velocity magnitude is reached during the transient and steady-state periods
with symmetric zeta potentials on both walls. Whereas with asymmetric zeta potentials in
the channel walls, i.e., with ζ̄O < ζ̄I or ζ̄O > ζ̄I the velocity magnitude will decrease. This
behavior is because the value of the zeta potential in the walls defines the intensity of the
electro-osmotic forces on the flow through the electric potential distribution into the electric
double layers. In case (b), it is clear that by increasing the fluid’s electrical susceptibility
via the ε̄n parameter, the intensity of the applied external electric field forces and the
flow velocity magnitude will increase. Case (c) shows the influence of the electrokinetic
parameter. It is observed in this figure that steeper velocity tracking slopes are obtained by
increasing the value of the electrokinetic parameter. The above is because in electro-osmotic
flows with very thin electric double layers (κ̄ → ∞), the elastic or restitution effects of
fluids, also called memory effects, will cause much faster velocity changes during the
oscillatory period of the flow. On the other hand, the imposition of a favorable (Γ = 2)
or adverse (Γ = −2) pressure gradient to the flow will increase or decrease the velocity
magnitude of the multilayer flow concerning a purely electro-osmotic flow (Γ = 0). In case
(e), the number of fluid layers within the annular microchannel has little influence on
the flow by slightly modifying its velocity magnitude. Any dimensionless parameters
presented in this Figure 12 have minimal impact on the time the multilayer flow reaches a
steady-state regime.
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Figure 12. Velocity tracking of an electro-osmotic flow with a = 0.3, ∆ψ̄n = 0.25, and λ̄n = η̄n = ρ̄n = 1.0
for different values of Case (a) ζ̄I,O, Case (b) ε̄n, Case (c) κ̄n, Case (d) Γ and Case (e) n, at the middle
of the microchannel.

Finally, the dimensionless results presented in this work together with the suitable
combination of the physical parameters given at the beginning of this section, comply
with the restriction λγ̇ < 1 [84] to use the linear viscoelastic model given in (4). Therefore,
the above restriction in terms of the variables used in the present study is λ(∂u/∂r) ∼
λ(uHS/R)(∂ū/∂r̄) < 1.

5. Conclusions

The present work studies start-up of the multilayer electro-osmotic flow of Maxwell
fluids through an annular microchannel. The obtained results show that:

• The Maxwell fluids exhibit an oscillatory behavior in the transient evolution due to
the elastic and memory effects of this type of fluids.

• As the dimensionless relaxation time value increases, the number of oscillations,
velocity magnitude, and the time to reach the steady-state regime will increase too.

• The dimensionless viscosity ratios of fluids dictate the degree of resistance they oppose
to flow, which, combined with the dimensionless values of the relaxation times,
strongly control the magnitude and oscillatory phenomenon of velocity field.

• While the dimensionless internal radius of the annular microchannel directly influ-
ences the number of oscillations presented by Maxwell fluids, the number of fluid
layers does not affect the general behavior of the flow.

• Higher velocity magnitudes are obtained with symmetric zeta potentials at the mi-
crochannel walls. A similar effect is obtained on the velocity with higher dielectric
permittivity values and the imposition of a favorable pressure gradient to the flow.
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Appendix A. Constants for the Electric Potential Distribution

The system of equations obtained after evaluating the corresponding boundary condi-
tions (27)–(29) and (32) in (35), is rewritten as the following matrix general form as Ax = b.
Here, A is the matrix of known coefficients, x is the vector of unknowns to solve and b is
the vector of constants. To find the solution of the constants C, represented by the vector
x, the inverse matrix method is used [90]. Hence, the arrangement of system of linear
equations for n = 1, 2, 3, ...i is shown as:



I0(κ̄1a) K0(κ̄2a) 0 0 0 0 . . .
−I0(κ̄1r̄1) −K0(κ̄1r̄1) I0(κ̄2r̄1) K0(κ̄2r̄1) 0 0 . . .
−ε̄1κ̄1 I1(κ̄1r̄1) ε̄1κ̄1K1(κ̄1r̄1) ε̄2κ̄2 I1(κ̄2r̄1) −ε̄2κ̄2K1(κ̄2r̄1) 0 0 . . .

0 0 −I0(κ̄2r̄2) −K0(κ̄2r̄2) I0(κ̄3r̄2) K0(κ̄3r̄2) . . .
0 0 −ε̄2κ̄2 I1(κ̄2r̄2) ε̄2κ̄2K1(κ̄2r̄2) ε̄3κ̄3 I1(κ̄3r̄2) −ε̄3κ̄3K1(κ̄3r̄2) . . .
...

...
...

...
...

...
. . .

0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .

. . . 0 0 0 0

. . . 0 0 0 0

. . . 0 0 0 0

. . . 0 0 0 0

. . . 0 0 0 0
. . .

...
...

...
...

. . . −I0(κ̄i−1r̄i−1) −K0(κ̄i−1r̄i−1) I0(κ̄i r̄i−1) K0(κ̄i r̄i−1)

. . . −ε̄i−1κ̄i−1 I1(κ̄i−1r̄i−1) ε̄i−1κ̄i−1K1(κ̄i−1r̄i−1) ε̄iκ̄i I1(κ̄i r̄i−1) −ε̄iκ̄iK1(κ̄i r̄i−1)

. . . 0 0 I0(κ̄i) K0(κ̄i)





C1
C2
C3
C4
C5
C6
...

C2(i−2)+1
C2(i−1)
C2i−1

C2i



=



ζ̄I
∆ψ̄1

0
∆ψ̄2

0
...

∆ψ̄i−1
0

ζ̄O


. (A1)

Appendix B. Constants for the Transient Velocity Distribution

The system of equations obtained after evaluating the corresponding boundary condi-
tions (42)–(45) in (59), is rewritten in matrix general form as Ax = b. Here, A is the matrix
of known coefficients, x is the vector of unknowns to solve and b is the vector of constants.
To find the solution of the constants An and Bn, represented by the vector x, the inverse
matrix method is used [90]. Hence, the arrangement of system of linear equations for
n = 1, 2, 3, ...i is shown as:
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

I0(α1a) K0(α1a) 0 0 0 0 . . .
I0(α1r̄1) K0(α1r̄1) −I0(α2r̄1) −K0(α2r̄1) 0 0 . . .

−γ1α1 I1(α1r̄1) γ1α1K1(α1r̄1) γ2α2 I1(α2r̄1) −γ2α2K1(α2r̄1) 0 0 . . .
0 0 I0(α2r̄2) K0(α2r̄2) −I0(α3r̄2) −K0(α3r̄2) . . .
0 0 −γ2α2 I1(α2r̄2) γ2α2K1(α2r̄2) γ3α3 I1(α3r̄2) −γ3α3K1(α3r̄2) . . .
...

...
...

...
...

...
. . .

0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .

. . . 0 0 0 0

. . . 0 0 0 0

. . . 0 0 0 0

. . . 0 0 0 0

. . . 0 0 0 0
. . .

...
...

...
...

. . . I0(αi−1r̄i−1) K0(αi−1r̄i−1) −I0(αi r̄i−1) −K0(αi r̄i−1)

. . . −γi−1αi−1 I1(αi−1r̄i−1) γi−1αi−1K1(αi−1r̄i−1) γiαi I1(αi r̄i−1) −γiαiK1(αi r̄i−1)

. . . 0 0 I0(αi) K0(αi)





A1
B1
A2
B2
A3
B3
...

Ai−1
Bi−1
Ai
Bi



=



H1
H2
H3
H4
H5
...

Hi−2
Hi−1

Hi


. (A2)

The coefficients of (A2) are the following:

H1 = −F1 I0(κ̄1a)− G1K0(κ̄1a)− Γ/s2(λ̄1s + 1),

H2 = −F1(κ̄1r̄1)− G1K0(κ̄1r̄1) + F2 I0(κ̄2r̄1) + G2K0(κ̄2r̄1),

H3 = γ1[F1κ̄n I1(κ̄1r̄1)− G1κ̄1K1(κ̄1r̄1)]−
ε̄1

s
[C1κ̄1 I1(κ̄1r̄1)− C2κ̄1K1(κ̄1r̄1)]

−γ2[F2κ̄2 I1(κ̄2r̄1)− G2κ̄2K1(κ̄2r̄1)] +
ε̄2

s
[C3κ̄2 I1(κ̄2r̄1)− C4κ̄2K1(κ̄2r̄1)],

H4 = −F2 I0(κ̄2r̄2)− G2K0(κ̄2r̄2) + F3 I0(κ̄3r̄2) + G3K0(κ̄3r̄2),

H5 = γ2[F2κ̄2 I1(κ̄2r̄2)− G2κ̄2K1(κ̄2r̄2)]−
ε̄2

s
[C3κ̄2 I1(κ̄2r̄2)− C4κ̄2K1(κ̄2r̄2)]

−γ3[F3κ̄3 I1(κ̄3r̄2)− G3κ̄3K1(κ̄3r̄2)] +
ε̄3

s
[C5κ̄3 I1(κ̄3r̄2)− C6κ̄3K1(κ̄3r̄2)],

...

Hi−2 = −Fi−1 I0(κ̄i−1r̄i−1)− Gi−1K0(κ̄i−1r̄i−1) + Fi I0(κ̄i r̄i−1) + GiK0(κ̄i r̄i−1),

Hi−1 = γi−1[Fi−1κ̄i−1 I1(κ̄i−1r̄i−1)− Gi−1κ̄i−1K1(κ̄i−1r̄i−1)]

+
ε̄i−1

s

[
C2(i−1)−1κ̄i−1 I1(κ̄i−1r̄i−1)− C2(i−1)κ̄i−1K1(κ̄i−1r̄i−1)

]
−γi[Fiκ̄i I1(κ̄i r̄i−1)− Giκ̄iK1(κ̄i r̄i−1)] +

ε̄i
s

[
C2(i)−1κ̄i I1(κ̄i r̄i−1)− C2(i)κ̄iK1(κ̄i r̄i−1)

]
,

Hi = −Fi I0(κ̄i)− GiK0(κ̄i)− Γ/s2(λ̄is + 1). (A3)

Appendix C. Constants for Steady-State Velocity

The system of equations obtained after evaluating the corresponding boundary condi-
tions (27) and (30)–(32) in (62), is rewritten in matrix general form as Ax = b. Here, A is
the matrix of known coefficients, x is the vector of unknowns to solve and b is the vector
of constants. To find the solution of the constants Dn and En, represented by the vector x,
the inverse matrix method is used [90]. The arrangement of system of linear equations for
n = 1, 2, 3, ...i is shown as:
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

ln(a) 1 0 0 0 0 . . . 0 0 0 0
ln(r̄1) 1 −ln(r̄1) −1 0 0 . . . 0 0 0 0
1/r̄1 0 −1/r̄1 0 0 0 . . . 0 0 0 0

0 0 ln(r̄2) 1 −ln(r̄2) −1 . . . 0 0 0 0
0 0 1/r̄2 0 −1/r̄2 0 . . . 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 . . . ln(r̄i−1) 1 −ln(r̄i−1) −1
0 0 0 0 0 0 . . . 1/r̄i−1 0 −1/r̄i−1 0
0 0 0 0 0 0 . . . 0 0 0 1





D1
E1
D2
E2
D3
E3
...

Di−1
Ei−1
Di
Ei



=



J1
J2
J3
J4
J5
...

Ji−2
Ji−1

Ji


. (A4)

The coefficients of (A4) are the following:

J1 = −Γa2

4
+ ε̄1{C1[1− I0(κ̄1a)]− C2K0(κ̄2a)},

J2 = − 1
η̄1

{
Γr̄2

1
4

+ ε̄1{C1[1− I0(κ̄1r̄1)]− C2K0(κ̄1r̄1)}
}
+

1
η̄2

{
Γr̄2

1
4

+ ε̄2{C3[1− I0(κ̄2r̄1)]− C4K0(κ̄2r̄1)}
}

,

J3 = −2ε̄1κ̄1[C1 I1(κ̄1r̄1)− C2K1(κ̄1r̄1)] + 2ε̄2κ̄2[C3 I1(κ̄2r̄1)− C4K1(κ̄2r̄1)],

J4 = − 1
η̄2

{
Γr̄2

2
4

+ ε̄2{C3[1− I0(κ̄2r̄2)]− C4K0(κ̄2r̄2)}
}
+

1
η̄3

{
Γr̄2

2
4

+ ε̄3{C5[1− I0(κ̄3r̄2)]− C6K0(κ̄3r̄2)}
}

,

J5 = −2ε̄2κ̄2[C3 I1(κ̄2r̄2)− C4K1(κ̄2r̄2)]− 2ε̄3κ̄3[C5 I1(κ̄3r̄2)− C6K1(κ̄3r̄2)],
...

Ji−2 = − 1
η̄i−1

{
Γr̄2

i−1
4

+ ε̄i−1

{
C2(i−1)−1[1− I0(κ̄i−1r̄i−1)]− C2(i−1)K0(κ̄i−1r̄i−1)

}}

+
1
η̄i

{
Γr̄2

i−1
4

+ ε̄i{C2i−1[1− I0(κ̄i r̄i−1)]− C2iK0(κ̄i r̄i−1)}
}

,

Ji−1 = −2ε̄i−1κ̄i−1

[
C2(i−1)−1 I1(κ̄i−1r̄i−1)− C2(i−1)K1(κ̄i−1r̄i−1)

]
+ 2ε̄iκ̄i[C2i−1 I1(κ̄i r̄i−1)− C2iK1(κ̄i r̄i−i)],

Ji = −
Γ
4
+ ε̄i{C2i−1[1− I0(κ̄i)]− C2iK0(κ̄i)}. (A5)
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