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Abstract: This work analyzes the dispersion of a highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxy
octadecan-2-yl)octadec-9-enamide (ceramide-like molecule), with cosmetic and pharmaceutical
interest, by exploiting oil-in-water microemulsions. Two different oils, oleic acid and soybean oil,
were tested as an oil phase while mixtures of laureth-5-carboxylic acid (Akypo) and 2-propanol
were used for the stabilization of the dispersions. This allowed us to obtain stable aqueous-based
formulations with a relatively reduced content of oily phase (around 3% w/w), that may enhance
the bioavailability of this molecule by its solubilization in nanometric oil droplets (with a size range
of 30–80 nm), that allow the incorporation of a ceramide-like molecule of up to 3% w/w, to remain
stable for more than a year. The nanometric size of the droplet containing the active ingredient and
the stability of the formulations provide the basis for evaluating the efficiency of microemulsions
in preparing formulations to enhance the distribution and availability of ceramide-like molecules,
helping to reach targets in cosmetic and pharmaceutical formulations.

Keywords: ceramide; colloidal carriers; cosmetics; drug delivery; formulations; pharmaceutical products

1. Introduction

Encapsulation is a widespread option for increasing the availability of poorly water-
soluble molecules to facilitate their incorporation in products with a technological and
commercial interest [1–3]. Most of the currently used strategies for such purposes rely
on the use of colloidal carriers [4–7], e.g., solubilization in micellar environments and
encapsulation by emulsion-like dispersions, including nano- and micro-emulsions, or
liposomes [8–12]. This is possible because colloidal carriers provide a favorable envi-
ronment for the dispersion of the target molecules, protecting them against degradation,
which contributes to obtaining more stable formulations [13–16]. Furthermore, the use
of well-sketched encapsulation matrices can help in a controlled release of the active
molecules [17,18]. These previously mentioned aspects have stimulated intense research
activity for exploiting the nanodroplets of oil-in-water microemulsions (O/W) as suitable
platforms for encapsulation, facilitating distribution in an aqueous environment, deliver-
ing hydrophobic substances, e.g., vitamins, anticancer drugs, or pigments, among other
types of molecules [19–21], and providing the bases for the fabrication of formulations for
multiple interested industries, including biomedical, food, and cosmetics [22–28].

O/W microemulsions combine their easy preparation and thermodynamically sta-
bility with a high power for solubilizing hydrophobic components and enhancing their
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bioavailability [29,30]. Recently, Rahdar et al. [19] demonstrated that O/W microemul-
sions loaded with doxorubicin may be exploited to enhance the cytotoxicity of anticancer
drugs. However, the use of this type of formulation does not contribute to the reduction
of the drug toxicity against healthy cells. This discovery is in contrast with the findings
by Sargazi et al. [31] in relation to the antitumoral effect of valproic acid. They reported
that the encapsulation of such a compound using O/W microemulsions leads to a sus-
tained release of the drug, which contributes to a stronger inhibition of the proliferation
of cancer cells relative to the free drug and reduces its effect on healthy cells. In another
study, Aboudzadeh et al. [20] showed that the encapsulation of α-tocopherol in O/W
microemulsions enhances its anti-oxidant activity relative to the free form due to a slow
release of the active molecule from the microemulsions. This agrees with the findings by
Hasanein et al. [32] in relation to the power of O/W microemulsions containing spirono-
lactone for preventing ischemia/reperfusion-induced renal injuries, which was ascribed
to the enhanced drug bioavailability and delivery. The above discussion evidences the
potential interest in the use of O/W microemulsions for the encapsulation and delivery of
active hydrophobic substances. However, a practical design of a suitable O/W microemul-
sion for a specific application requires a careful choice of the components, i.e., surfactant,
co-surfactant, and oil phases, used for containing the hydrophobic molecule, as well as the
composition of each component. Furthermore, the most suitable preparation scheme for an
O/W microemulsion may change depending on the storage and application conditions,
even for microemulsions encapsulating the same molecule. Therefore, the preparation
of O/W microemulsions requires a careful experimental design to ensure the optimal
conditions for their preparation [33–35].

This work attempts to exploit the use of O/W microemulsions as a platform for the en-
capsulation and delivery of a highly hydrophobic molecule that may be used for several cos-
metic and therapeutic purposes: (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide
(a ceramide-like molecule) shown in Figure 1. This molecule may be considered a synthetic
analogous to the main ceramide existing in human tissues and organs that plays a very
central role in several physiological processes, e.g., modulation of skin homeostasis [36,37],
enhancement of cellular membrane permeability [38,39], and apoptosis [40]. Furthermore,
dysfunctions on the metabolic pathways related to the biosynthesis of ceramides may
be a signature of obesity-related diseases, e.g., type 2 diabetes, mellitus, or atherosclero-
sis [41,42]. Additionally, dysregulated ceramide metabolism may also be associated with
the emergence of different types of tumors [43,44].
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Figure 1. Scheme of the molecular structure of (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-
enamide (a ceramide-like molecule).

For a long time, the most common approach in cosmetics and therapy has been
focusing on the external stimulation of ceramide production [45,46]. However, interest is
turning towards the design of cosmetic and pharmaceutical formulations to provide a direct
exogenously delivery of ceramide-like molecules, which may contribute to the mitigation
of physiological dysfunctions associated with ceramide production, and in particular, for
the regulation of cellular stress, proliferation, senescence, and death [47–49]. Nevertheless,
the exploitation of ceramide-like molecules in cosmetic or therapeutic products is limited
by their high hydrophobicity and their hemolytic character, which makes it necessary
to seek new alternatives for including these types of molecules in simple formulations
with long-term stability so their efficacy can be maximized while their adverse effects are
minimized [25,50]. This is possible by the use of liposomes, which allow selective targeting
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of the ceramide-like molecule to the cancer cells, reducing the side effect on healthy cells
and tissues [51,52]. The use of liposomes containing ceramide has also been proven as an
efficient alternative for repairing a disrupted skin barrier [53]. Another alternative carrier of
ceramides are polymeric particles [54], however, O/W nanoemulsions and microemulsions
have emerged as the most suitable carriers for ensuring high efficiency in the encapsulation
of ceramide-like molecules [12,36,55–57]. Therefore, the incorporation of ceramide-like
molecules within the oil droplets of O/W microemulsions containing a high-water content
appears to be a viable alternative for ensuring the stabilization of the active molecules and
contributes to its dispersion, creating a more convenient application. The high aqueous
content of these formulations may favor their dispersion within cosmetic substrates, e.g.,
the skin, and within the bloodstream.

2. Materials and Methods
2.1. Materials

Oleic acid (purity > 99%) supplied from Sigma-Aldrich (Saint Louis, MO, USA)
and soybean oil (purity > 99%) supplied from Alfa Aesar (Haverhill, MA, USA) were
used as oil phases. The stabilization of microemulsions was attained by combining
laureth-5-carboxylic acid (hereinafter Akypo, KAO Chemicals Europe, Barcelona, Spain)
as the surfactant, and 2-propanol (HPLC grade, Sigma-Aldrich, Saint Louis, MO, USA)
as the co-surfactant. The hydrophobic compound to be encapsulated was (9Z)-N-(1,3-
dihydroxyoctadecan-2-yl)octadec-9-enamide (hereinafter, ceramide-R) supplied by Avanti
Polar Lipids, Ltd. (Alabaster, AL, USA).

The cleaning of the material and the sample preparation was done with ultrapure
deionized water obtained from a multi-cartridge purification system aquaMAXTM-Ultra
370 Series (Young Lin Instrument, Co., Gyeonggi-do, Korea). This water presented a
resistivity higher than 18 MΩ·cm, and a total organic content lower than 6 ppm.

2.2. Preparation of O/W Microemulsions

O/W microemulsions were prepared by weighing the required amounts of the differ-
ent components with an analytical balance with a precision of ±0.1 mg to obtain mixtures
with the desired compositions. For this purpose, a protocol adapted from our previous
publication was followed [33]. The order of the addition of the different components to
the mixture plays a key role in the efficient incorporation of the ceramide-like molecule
into the formulation. The protocol used for the preparation of the O/W microemulsions
can be summarized as follows: first, the required amount of oil (oleic acid or soybean oil)
was weighed and poured into a vial to obtain final mixtures with an oil content of 3% w/w.
Secondly, the required amount of 2-propanol was weighed and added to the oil, and the
mixture homogenized for 5 min using a magnetic stirrer (500 rpm). Once the oil phase
was ready, the required amount of a stock solution of Akypo was poured into the vial, and
the obtained mixture diluted by the addition of water. Finally, the obtained mixture was
homogenized by stirring (1000 rpm) for 10 min and left overnight to rule out the emergence
of phase separation for stabilization.

The ceramide-load molecule was included during the second step of the preparation
procedure dissolved in 2-propanol, i.e., a solution of ceramide-like molecule in 2-propanol
was mixed with the oil phase, and then the rest of the components were added to the mix-
ture following the same protocol followed in the preparation of the bare O/W microemul-
sions. The preparation, characterization, and storage of both bare O/W microemulsions
and formulations loading the ceramide-like molecule were done at 25 ◦C.

The goal of this work was the optimization of O/W microemulsions to encapsulate a
ceramide-like molecule and to obtain a stable formulation with relevance to the cosmetic
and pharmaceutical industries. This has required modulating the composition of both the
emulsifier mixture formed by a surfactant, laureth-5-carboxylic acid, and a co-surfactant,
2-propanol, and the nature of the carrier oil. Two different natural oils have been tested
(oleic acid and soybean oil), to discover the most favorable conditions for obtaining O/W
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microemulsions and the incorporation of higher amounts of a ceramide-like molecule
within the final formulation. This is important because the oil can contribute to the pene-
tration of the formulation containing ceramide-like molecules through lipid membranes
by modifying their elasticity and hydration [58,59]. In this study, a fixed amount of oil
of 3% w/w was used in the preparation of the O/W microemulsions. This value was
fixed because the results of a previous study indicated that this concentration is enough
to ensure good solubilization of hydrophobic substances within the oil core of O/W mi-
croemulsions [33]. Additionally, the minimization of the oil content for the formulations is
important to different aspects of the formulations, including the reduction of oil-induced
dermal irritation [60,61] and the oily character of the formulations [62]. The control of these
aspects is a very important issue for the consumer perception of the formulation.

2.3. Evaluation of the Formation of O/W Microemulsion

The determination of the boundary of the O/W microemulsion region was evaluated
at 25 ◦C from the ternary pseudo-phase diagrams. For this purpose, the construction of the
phase diagram at three different values of the surfactant/co-surfactant ratio, and a fixed
oil content (3% w/w) was done. Therefore, these diagrams corresponded to cuts of the
whole phase, consistent with the water/Akypo/2-propanol/oil (oleic acid or soybean oil),
for different values of the surfactant/co-surfactant ratio (Akypo/2-propanol) maintaining
a constant oil phase composition (oleic acid or soybean) at 3% w/w. Figure 2 reports the
investigated compositional lines of fixed surfactant/co-surfactant ratio and their character
on the cut of the pseudo-ternary phase diagram with a constant oil ratio (3% w/w).
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Figure 2. Cuts of the pseudo-ternary phase diagram corresponding to a fixed oil concentration 
(3%w/w) showing the explored compositional lines of fixed surfactant/co-surfactant ratio (indicated 
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Figure 2. Cuts of the pseudo-ternary phase diagram corresponding to a fixed oil concentration
(3% w/w) showing the explored compositional lines of fixed surfactant/co-surfactant ratio (indi-
cated in the diagrams) where the compositions corresponding to O/W microemulsions (�) and
phase-separated systems (�) are indicated with different colors. (A) Mixtures containing oleic acid.
(B) Mixtures containing soybean oil.

O/W microemulsions were identified as those dispersions that were transparent
and stable according to visual inspection, i.e., they did not show any evidence of droplet
aggregation and creaming, after more than six months.

2.4. Dynamic Light Scattering

Dynamic Light Scattering (DLS) performed with a Nanosizer ZS (Malvern instruments,
Malvern, UK) was used for the characterization of the prepared microemulsions in terms
of the apparent hydrodynamic diameter of the droplets [10,63–69]. DLS measurements
were performed at 25 ◦C in a quasi-backscattering configuration (scattering angle, θ = 173◦)
using a He-Ne laser (wavelength, λ = 632 nm). The DLS results were obtained as the
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average of five independent experiments consisting of ten measurements of 30 s, with a
standard deviation of less than 5% between independent measurements.

DLS provides information about the time dependence of the normalized intensity
autocorrelation function, g(2)(q,t), which is described by a single exponential decay for
dispersion of monodisperse scatters presenting Brownian motion [70]

g(2)(q,t) − 1 = βe−2t/τ , (1)

where τ is the characteristic Brownian decay time; t, in the usual case of polydisperse
samples, is the average decay time; and q = (4πn/λ)sin (θ/2) is the wave vector, with n
being the continuous phase refractive index (n = 1.33). In Equation (1), β is the optical
coherence factor, which in most general experimental conditions is close to 1. The fitting
of the intensity autocorrelation function (using the cumulant method or non-linear fit-
ting) [70] allows for obtaining the apparent diffusion coefficient of the scatters Dapp = 1/τq2

for spherical objects diffusing in a continuous Newtonian medium that can be used for
estimating the average size of the droplets as the apparent hydrodynamic diameter (dh

app)
by the Stoke-Einstein relationship

dh
app = kBT/

(
3πηDapp

)
(2)

where kB and T correspond to the Boltzmann constant and the absolute temperature, respectively.

3. Results
3.1. Characterization of Bare Oil-in-Water Microemulsions

The first step towards a practical design of O/W microemulsions for enhancing the
availability of poorly soluble molecules, such as ceramide-like molecules, is to find the
compositional region which allows for obtaining stable dispersions with long term-stability.
This means that is necessary to identify the stability region associated with the formation of
O/W microemulsions. For this purpose, the pseudo-ternary phase diagram of the system
formed by water, oil, and the emulsifier (surfactant/co-surfactant mixture) was screened to
find dispersions that can be identified as O/W microemulsions. Considering the Akypo/2-
propanol mixture (surfactant/co-surfactant mixture) as a single component simplifies the
analysis of the phase diagram, reducing the number of variables to explore. Thus, by
changing the concentration of the emulsifier (Akypo/2-propanol mixture, cAkypo/2-propanol),
for a fixed surfactant/co-surfactant ratio, it was possible to obtain the regions in which
mono-phasic dispersions were obtained for systems containing a fixed amount of oil
(3% w/w of oleic acid or soybean oil), i.e., the screened region is a cut of the true phase
diagram at constant temperature (25 ◦C) and oil concentration (3% w/w). Following
previous studies for analogous systems [71,72], an Akypo/2-propanol ratio (S/CS ratio) of
3/1 was initially fixed for obtaining stable O/W microemulsions, and once the range of
surfactant/co-surfactant concentrations was determined for the explored ratio (in the range
of Akypo/2-propanol mixture concentrations of 40–48% w/w), other Akypo/2-propanol
ratios were then screened (2/1 and 1/2). It should be noted that the preparation of O/W
microemulsions with different concentrations of the mixture of Akypo and 2-propanol
slightly modifies the water/oil ratio (WOR). Table 1 summarizes the range of compositions
in which stable O/W microemulsions were found for dispersions containing a fixed oil
content (3% w/w of oleic acid or soybean oil) and surfactant/co-surfactant ratios. It should
be noted that the modification of the latter may lead to the compositional range shifting for
the formation of stable O/W microemulsions, or the impossibility of their formation (2/1
for emulsions with both oils and 1/2 using soybean oil as oil phase).
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Table 1. Summary of the compositional range for obtaining stable O/W microemulsions which may be tested for encapsula-
tion purposes.

Oil Phase S/CS Ratio WOR Range cAkypo/2-propanol Range for Stable O/W Microemulsions
(% w/w)

Oleic acid
3/1 19/1–17/1 40–48
1/2 20/1–17/1 38–48

Soybean oil 3/1 19/1–17/1 40–48

For mixtures containing an Akypo/2-propanol ratio of 3/1, it was possible to obtain
O/W microemulsions for mixtures with a total concentration of emulsifier (surfactant/co-
surfactant mixture) in the range 40–48% w/w, independently on the type of oil used.
Notably, for concentrations of the surfactant/co-surfactant mixture below 40% w/w, the
dispersions undergo a fast phase separation. For surfactant concentrations higher than
48% w/w, the surfactant/co-surfactant mixture becomes the main component of the dis-
persion, and hence it is not possible to define the dispersions as O/W microemulsions.
However, the results show that, regardless of the oil used, for mixtures with a ratio of
Akypo/2-propanol of 2/1 it was not possible to obtain O/W microemulsions. This may
be the result of the inefficiency of the surfactant/co-surfactant mixtures to effectively re-
duce the oil droplet/aqueous phase interfacial tension. If the 2-propanol concentration
is increased in relation to that of Akypo (surfactant/co-surfactant ratio 2/1), the range of
concentrations of the surfactant/co-surfactant mixture allowing the formation of O/W mi-
croemulsions is enlarged to mixtures with a 3/1 ratio (38–48% w/w against 40–48% w/w)
for dispersions including oleic acid in the oil phase. However, the formation of O/W
microemulsions is completely hindered when soybean oil is used in dispersions. This may
be explained as a result of the partial incorporation of oil molecules into the interfacial
layer, as was previously reported in the literature [73,74], which can provide additional
stabilization to the dispersion. Thus, oleic acid, whose molecular size similar to a conven-
tional surfactant, may play a surfactant role at the interface, contributing to the decrease
of the surface tension and hence, to the stabilization of the O/W microemulsions. In
contrast, the large size of the triglyceride molecules that form soybean oil makes it diffi-
cult for their incorporation between the surfactant molecules at the oil droplet/aqueous
phase interface [75].

The characterization of the stable O/W microemulsions was performed in terms of
the droplet size evaluated as related to the apparent hydrodynamic diameter obtained
from DLS. Figure 3A shows the autocorrelation functions of intensities, and the respective
intensity distributions obtained from the analysis of a set of three O/W microemulsions
with a fixed surfactant/co-surfactant ratio in which the concentration of the mixture of
a stabilizing agent is fixed. This allows one to evaluate the effect of the emulsifier con-
centration (Akypo/2-propanol mixture) on the stabilization of the O/W microemulsions.
The results indicate that the dispersions have a mostly monomodal character with the
intensity autocorrelation functions (see Figure 3A) decaying at long times, and appear-
ing very similar independent of the composition of the mixture. On the other hand, the
intensity distributions (see Figure 3B) indicate a rather monodisperse character, with a
polydispersity index around 0.10, independent of the O/W microemulsion composition.
This monodisperse character of the droplets allows the results to be discussed in terms
of the average value of the apparent hydrodynamic diameter, referred to as a size. Fur-
thermore, the characteristic decay time is shorter as the content of the emulsifier mixture
(Akypo/2-propanol mixture) increases, which evidences the decrease of the droplet size
and an increase of the dispersion stability.
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The analysis of the autocorrelation intensity functions allows for obtaining infor-
mation on the apparent hydrodynamic diameter of the O/W microemulsion droplets.
Figure 4 reports the variation of the droplet size of O/W microemulsions with the emulsi-
fier (Akypo/2-propanol mixture) concentration for fixed values of the Akypo/2-propanol
ratio. The results indicate that the droplet size range between 20 and 90 nm, becomes
smaller as the emulsifier concentration (Akypo/2-propanol mixture, cAkypo/2-propanol) in-
creases. Considering that one of the most critical parameters controlling the droplet size is
the packing density of the stabilizing molecules at the oil droplet/aqueous phase interface,
this can be easily explained. Thus, the higher the packing density of the interfacial film,
the higher its stiffness, and the smaller the droplet size. This may be explained consid-
ering that the increase of the total concentration of the surfactant/co-surfactant mixture
is associated with an enhanced reduction of the surface tension, favoring the formation
of smaller droplets [76]. Furthermore, according to the thermodynamic picture for O/W
microemulsion stability, it may be supposed that for systems with the same oil content
as those studied, the smaller the droplet size leads to a higher number of droplets, which
increases the entropy, and consequently the stability of the dispersions.

The combination of the decrease in steric hindrance and the occurrence of cohesive
forces between the surfactant and the oleic acid at the oil droplet/aqueous phase interface
leads to the formation of the smallest droplets for dispersions containing a surfactant/co-
surfactant ratio of 1/2. Assuming that mixtures with an akypo/2-propanol ratio of 3/1, the
high amount of surfactant (Akypo) favors the cohesive van der Waals interactions which
enhances the stability of the dispersion. However, for dispersions with a surfactant/co-
surfactant ratio of 1/2 containing oleic acid (which presents a lower Akypo concentration)
within the oil phase, the steric hindrance to the incorporation of oleic acid molecules
into the interfacial film as the oil droplet/aqueous phase interface is reduced, and van
der Waals interactions in the interfacial region may occur between the oleic acid and the
hydrophobic tail of the Akypo, thus conferring high stability to the obtained dispersions.
The incorporation of the oil is not possible in the case of mixtures with a surfactant/co-
surfactant ratio of 1/2 when soybean oil is used. This indicates the importance of steric
hindrance in the control of the packing of interfacial film at the oil droplet/aqueous phase
interface. Accordingly, the largesize of the soybean oil molecules limits the possibility of
being placed in the interfacial region with the proper configuration to interact with Akypo
molecules at the interface.
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The impossibility of stabilizing O/W microemulsions using a surfactant/co-surfactant
ratio of 2/1, independently of the oil used, can be justified considering that neither the
concentration of surfactant is high enough to form rigid films, nor the amount of 2-propanol
is high enough to decrease the steric hindrance to favor the incorporation of oil molecules
at the interfacial region in such a way that promotes the formation of a strong cohesive
interaction between surfactant and oil molecules [77].

Finally, it was found that for a fixed surfactant/co-surfactant ratio (3/1), the size of
the droplets of O/W microemulsions, including oleic acid in the oil phase, is relatively
larger than those that are found for dispersions containing soybean oil, and therefore
more susceptible to undergo coalescence and the subsequent creaming [78,79]. This is
dependent on the characteristics of the interfacial film surrounding the individual droplets,
in particular its stiffness, and the viscosity of the continuous fluid. Thus, assuming that
the stiffness of the interfacial film for dispersions with surfactant/co-surfactant ratio of
3/1 is identical, independent of the oil used, the only parameter that distinguishes both
systems is the oil phase. The viscosity of the oleic acid is 0.6 times the viscosity of the
soybean oil, which may favor a faster diffusion of the droplets leading to coalescence
phenomena and consequently increasing the droplet size. Therefore, viscosity becomes
another determining factor for obtaining O/W microemulsions [80]. This also justifies
the emergence of gel-like O/W microemulsions due to the formation of a network of
percolated droplets for dispersions including oleic acid within the oil phase and stabilized
with surfactant/co-surfactant mixtures with concentrations ranging between 40% and
43% w/w and a fixed Akypo/2-propanol ratio (3/1) [81]. It should be noted that the high
viscosity of the gel-like microemulsions leads to auto-correlation functions in which the
Brownian fluctuations slow down which, combined with a loss of coherence due to the
arrested motion of droplets, prevents the estimation of values of apparent hydrodynamic
diameter for this type of microemulsions from DLS experiments [33].

3.2. Inclusion of Ceramide-like Molecule in O/W Microemulsions

Once the compositional region in which it is possible to obtain O/W microemulsions
was defined, they were tested as platforms for the solubilization of the ceramide-like
molecule. It is worth noting that the incorporation of an additional molecule within the
formulation may modify the compositional region in which O/W microemulsions are
formed, or even completely hinder their formation. This highlights the importance of
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the adequate determination of the limit of the region in which O/W microemulsions are
obtained. Thus, the solubilization of the ceramide-like molecule was evaluated by selecting
O/W microemulsions with different surfactant/co-surfactant ratios, separated from the
boundaries of the compositional range in which O/W microemulsions were obtained, to
prevent the inclusion of an additional component (ceramide-like molecule) leading to a
catastrophic destabilization of the dispersion. Considering the above boundary condition,
O/W microemulsions with a total concentration of the surfactant/co-surfactant mixture
of about 43–44% w/w were tested as platforms for ceramide-like molecule solubilization.
Table 2 summarizes the compositions of the O/W microemulsions used with the maximum
amount of such molecules that can be solubilized before finding evidence of destabilization.
The maximum amount of incorporated ceramide-like molecule in O/W microemulsions
with a specific composition without altering the dispersion stability was determined by
analyzing independent samples of fixed composition with increasing amounts of the
ceramide-like molecule. Thus, it is possible to determine the maximum content of a
ceramide-like molecule that can be loaded in the O/W microemulsions without an excess
of insolubilized ceramide-like molecules appearing in the vial or the dispersion under-
going destabilization, i.e., the excess incorporation of ceramide-like molecules induces
phase separation.

Table 2. Summary of the maximum amount of ceramide-like molecule that can be solubilized within O/W microemulsions
with fixed surfactant/co-surfactant ratio and concentration, and oil content of 3% w/w.

Oil Phase Surfactant/Co-Surfactant Ratio cAkypo/2-propanol
(% w/w)

Maximum Amount of Ceramide
(% w/w) Character

Oleic acid 3/1 43 1 Gel-like
Soybean

oil 3/1 43 ≤2 Liquid

Oleic acid 1/2 43 ≤3 Liquid
Oleic acid 3/1 44 ≤2 Gel-like
Soybean

oil 3/1 44 ≤2 Liquid

Oleic acid 1/2 44 ≤3 Liquid

The results show that the smaller the size of the O/W microemulsion droplets and
the higher their number, the higher the amount of ceramide-like molecules that can be
solubilized within them, with the latter (in the range 1–3% w/w) being dependent on
the composition of the O/W microemulsion used as a platform for the incorporation of
the target molecule. Furthermore, the analysis of the appearance of the O/W microemul-
sions allows for certain information to be obtained about the incorporation process of the
ceramide-like molecule to the microemulsions. O/W microemulsions with a composition
closer to the boundary of the destabilization line, i.e., O/W microemulsions containing
oleic acid and a fixed surfactant/co-surfactant ratio of 3/1, present a gel-like character upon
the incorporation of the ceramide-like molecule. This behavior may be correlated to an
increase in the tendency of the droplets to coalesce, which appears reasonable considering
that the incorporation of the ceramide-like molecule is associated with an increase of the
volume of the dispersed phase, and hence the packing of the interfacial film is expected to
be reduced with the incorporation of a ceramide-like molecule, favoring the coalescence of
the droplets. This does not occur when the surfactant/co-surfactant ratio is 1/2 because
the oleic acid included within the oil droplets can likely diffuse to the interfacial region to
compensate for the weakening of the interfacial packing emerging from the increase of the
volume of the oil phase.

Figure 5 displays the dependence of the apparent hydrodynamic diameter of O/W
microemulsion droplets on the amount of ceramide-like molecule (cceramide) for liquid-like
O/W microemulsions (see Table 2) with the two studied oils and two different values of
the concentration of the Akypo/2-propanol mixture (43% w/w and 44% w/w, respectively).
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As expected, the increase of the volume of the oil phase for a fixed amount of the emulsifier
mixture results in the formation of bigger droplets, i.e., the results show an increase in
droplet size with ceramide concentration, with an increase of the PDI. The latter assumes
values slightly higher than 0.20 for the highest concentrations of the incorporated ceramide-
like molecule, which indicates that the incorporation of the ceramide-like molecule into
the oil reduces the size homogeneity of the droplets in relation to the bare emulsion. Fur-
thermore, the incorporation of the ceramide-like molecule at a fixed concentration of the
emulsifier mixture drives the dispersion to a new composition that is closer to the limit of
the O/W microemulsion region. Notably, the visual inspection of the O/W microemul-
sions loaded with the ceramide-like molecule had no indication of droplet aggregation or
creaming associated with the incorporation of the ceramide-like molecule after more than
six months post preparation, evidence of the long-term stability of these formulations.
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microemulsions with soybean in the oil phase and Akypo/2-propanol of a 1/2 ratio with a total concentration of the 
emulsifier mixture of (●) 43% w/w and (●) 44% w/w. The oil content in all the dispersions was 3% w/w. 
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4. Conclusions

This work focused on the practical design of suitable platforms for the dispersion of a
highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide
(a ceramide-like molecule), in an aqueous environment to enhance its bioavailability and
facilitate its development in cosmetic and pharmaceutical formulations. This may be
possible by using O/W microemulsions stabilized by a mixture of laureth-5-carboxylic
acid (Akypo) and 2-propanol in addition to one of two different oils (oleic acid and
soybean) as an environment to include the hydrophobic molecule. The results indicate
the possibility of exploiting O/W microemulsions in a broad range of compositions for
the dispersion of a ceramide-like molecule with an almost 3% w/w. The type of oil, the
surfactant/co-surfactant ratio, the total emulsifier concentration (Akypo+2-propanol), and
the amount of the incorporated ceramide-like molecule play a very important role in
controlling the properties of the formulations, especially the droplet size (in the range of
30–80 nm). The most suitable formulations for solubilizing the ceramide-like molecule
were O/W microemulsions presenting compositions far from those expected from the
onset of the phase separation region. This work has only analyzed the optimization of the
solubilization efficiency of O/W microemulsions for a ceramide-like molecule, however, the
obtained results suggest that O/W microemulsions may be a versatile tool for enhancing
the distribution of hydrophobic molecules of cosmetic or pharmaceutical interest.
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