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Abstract: A unit cell model is employed to analyze the electrophoresis and electric conduction in a
concentrated suspension of spherical charged soft particles (each is a hard core coated with a porous
polyelectrolyte layer) in a salt-free medium. The linearized Poisson–Boltzmann equation applicable
to a unit cell is solved for the equilibrium electrostatic potential distribution in the liquid solution
containing the counterions only surrounding a soft particle. The counterionic continuity equation
and modified Stokes/Brinkman equations are solved for the ionic electrochemical potential energy
and fluid velocity distributions, respectively. Closed-form formulas for the electrophoretic mobility
of the soft particles and effective electric conductivity of the suspension are derived, and the effect
of particle interactions on these transport characteristics is interesting and significant. Same as the
case in a suspension containing added electrolytes under the Debye–Hückel approximation, the
scaled electrophoretic mobility in a salt-free suspension is an increasing function of the fixed charge
density of the soft particles and decreases with increases in the core-to-particle radius ratio, ratio of
the particle radius to the permeation length in the porous layer, and particle volume fraction, keeping
the other parameters unchanged. The normalized effective electric conductivity of the salt-free
suspension also increases with an increase in the fixed charge density and with a decrease in the
core-to-particle radius ratio, but is not a monotonic function of the particle volume fraction.

Keywords: electrophoresis; electric conduction; charged soft sphere; salt-free solution; particle
concentration effect

1. Introduction

When charged particles are suspended in an ionic solution and subjected to an external
electric field, both the particles and their neighboring ions move owing to electrophoresis
and electric migration (together with diffusion), respectively. As a result, the disperse fluid
is dragged to flow, and the electric current in the suspension is different from that in a bulk
solution. Numerous formulas for the electrophoretic mobility and electric conductivity in
suspensions of charged particles have been obtained in the past [1–16].

Salt-free solutions are liquid media that contain no added electrolytes, but only coun-
terions dissociated from ionogenic groups at adjoining solid surfaces [17–19]. In a salt-free
solution suspending colloidal particles, most of the counterions are condensed in the elec-
tric double layers when the fixed charge density of the particles is high, whereas this effect
of counterion condensation and electrostatic screening disappears when the fixed charge
density is low. Thus, the electrophoresis and electric conduction in a salt-free suspension
of particles in general differ from those in salt-containing suspensions.

The electrophoresis and electric conduction of dilute salt-free suspensions of charged
hard and soft spheres were analyzed by Ohshima [20–22] using a unit cell model and
the electrophoretic mobility and electric conductivity in the suspensions are found to be
proportional to the fixed charges of the particles (and coincide with those in salt-containing
suspensions) when these charges are lower than some critical values, but approach con-
stants due to the effect of counterion condensation around the fixed charges when they
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are higher than the critical values. On the other hand, Carrique et al. [23] numerically
solved for the electrophoretic mobility and electric conductivity of concentrated salt-free
suspensions of hard spherical particles via the unit cell model and confirmed the effect of
counterion condensation at high surface charge density of the particles. Chiang et al. [24]
and He et al. [25] also numerically predicted the electrophoretic mobility of concentrated
salt-free suspensions of charged hard and porous spheres, respectively, using the cell model.
Recently, the electrophoresis and electric conduction of salt-free suspensions of hard spher-
ical particles have been analyzed by Luo and Keh [26] using the cell model to investigate
the effects of particle concentration. However, the particle concentration effects on the
electrophoretic mobility and electric conductivity in a salt-free suspension of charged soft
particles [27,28] of arbitrary volume fraction have not been analytically studied.

In this article, the electrophoresis and electric conduction in concentrated suspensions
of spherical charged soft particles (polyelectrolyte-coated particles) in salt-free solutions are
analyzed. The linearized Poisson–Boltzmann equation, counterionic continuity equation,
and modified Stokes/Brinkman equations are solved for the electrostatic potential, ionic
electrochemical potential energy, and fluid flow profiles, respectively. Explicit formulas for
the electrophoretic velocity and effective electric conductivity are obtained in Equations (45)
and (47), respectively, in terms of the dimensionless fixed charge density and concentration
of the particles and other relevant parameters.

2. Analysis

Consider a suspension of charged soft spheres of radius a in a salt-free medium
containing only counterions with the valence −Z. Each charged soft sphere refers to an
uncharged dielectric hard core of radius r0 coated with a uniform solution-permeable
charged porous layer (e.g., polyelectrolyte layer) of thickness a− r0, and it reduces to an
entirely charged porous sphere of radius a in the limit r0 = 0. When the suspension is
subject to an imposed electric field E∞ez, the particles translate with a velocity Uez by
electrophoresis, where ez is the unit vector in the z direction. We use a unit cell model, as
shown in Figure 1, in which each particle is encompassed by a concentric solution shell of
outside radius b and the particle-to-cell volume ratio equals the particle volume fraction ϕ

of the whole suspension, i.e., ϕ = (a/b)3. The origin of the spherical coordinates (r, θ, ϕ) is
set at the center of the particle/cell, and the problem is axially symmetric about the z axis.

Figure 1. Geometrical sketch for the electrophoresis of a soft sphere in a unit cell for a suspension.

To obtain the electrophoretic mobility of the soft particles and effective electric con-
ductivity of the salt-free suspension, we first need to determine the distributions of the
electrostatic potential, fluid velocity, and counterionic electrochemical potential energy in a
unit cell.
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2.1. Electrostatic Potential Profile

The electrostatic potential distribution ψ(r, θ) in the ionic solution between the hard
core of the soft particle and the cell border (r0 ≤ r ≤ b) can be expressed as the equilibrium
potential profile ψeq(r) arising from the fixed charges in the porous layer (r0 ≤ r ≤ a) of
the particle together with counterions in the ambient fluid superimposed by the perturbed
potential profile ψa(r, θ) resulting from the applied electric field E∞ez [6],

ψ = ψeq + ψa. (1)

With adopting the Debye–Hückel approximation at equilibrium, the electrostatic
potential ψeq satisfies the linearized Poisson–Boltzmann equation [13],

1
r2

d
dr

(r2 dψeq

dr
) =

kT
Ze

κ2exp(
Zeψeq

kT
)− h(r)

Q
ε
∼= κ2(

kT
Ze

+ ψeq)− h(r)
Q
ε

, (2)

where ε is the dielectric permittivity of the fluid, Q is the fixed-charge density in the
porous layer of the soft particle, κ = (nav/εkT)1/2Ze is the Debye screening parameter,
h(r) is a step function equal to unity if r0 ≤ r ≤ a and zero otherwise, k is Boltzmann’s
constant, T is the absolute temperature, e is the elementary electric charge, and nav is
the average concentration (number density) of the counterions in the salt-free solution,
which is related to the fixed-charge density in the porous layer of the soft particle by
Q = (b3 − r3

0)Zenav/(a3 − r3
0) with the electric neutrality in a unit cell containing a particle

and its ambient counterions only. In Equation (2), the value of ψeq has been set to be zero at
the position where the local ionic concentration is identical to nav. The boundary conditions
for the equilibrium potential, which allow overlapping of the neighboring electric double
layers, are

r = r0, b:
dψeq

dr
= 0, (3)

r = a: ψeq and
dψeq

dr
are continuous. (4)

The solution to Equations (2)–(4) can be obtained as

ψeq(r) =
Q

εκ2 [
g1(r0)g2+(r)

2g0(r0)κr
−

a3 − r3
0

b3 − r3
0
] for a ≤ r ≤ b, (5)

ψeq(r) =
Qeκ(2b−a+2r0−r)

2g0(r0)εκ3r
{ 1

g0(r0)
− (κb− 1)[κa(κr0 − 1) + κr0] + κb

+ (κr0 − 1)(κb + 1)eκ(a−2b)[(κa− 1)eκa − 2κreκr]

− (κr0 + 1)(κb− 1)eκ(r−2r0)[(κa + 1)eκr − 2κreκa]

+(κr0 + 1)(κa− 1)(κb + 1)e2κ(a−b−r0+r)} −
Q(a3 − r3

0)

εκ2(b3 − r3
0)

for r0 ≤ r ≤ a, (6)

where
g0(r) = (κb− 1)(κr + 1)e2κb − (κb + 1)(κr− 1)e2κr, (7)

g1(r) = (κa− 1)(κr + 1)− (κa + 1)(κr− 1)e2κ(r−a), (8)

g2±(r) = (κb + 1)eκ(a+r) ± (κb− 1)eκ(a+2b−r). (9)

The relative surface potential of the particle can be expressed as ψs = ψeq(a)− ψeq(b),
the potential difference across the fluid shell in the unit cell, which is positive. Equation (5)
results in

Zeψs

kT
=

Qg1(r0)

2(κa)3g0(r0)
[g2+(a)− 2κaeκ(a+b)], (10)
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where the dimensionless fixed charge density of the porous layer of the soft particle defined
by Q = a2ZeQ/εkT (which equals (κa)2(a3 − r3

0 ϕ)/(a3 − r3
0)ϕ with the electric neutrality

in a unit cell containing a particle and its ambient counterions) is also positive (Z has the
same sign as Q) but low (less than about 10 and valid for the Debye–Hückel approximation).
Note that only two of the three parameters Q, ϕ, and κa in a salt-free suspension may be
specified independently for a given value of the core-to-particle radius ratio r0/a, unlike
suspensions containing added electrolytes in which all of them are independent parameters
tunable in experiments. Equation (10) predicts that, for a nonzero value of ϕ, Zeψs/kT
increases with an increase in Q from zero at Q = 0.

The electric potential ψa induced by the applied electric field E∞ez satisfies the Laplace equation

∇2ψa = 0 (11)

and boundary conditions

r = r0:
∂ψa

∂r
= 0, (12)

r = b: ψa = −E∞r cos θ (for the Dirichlet approach), (13)

∂ψa

∂r
= −E∞ cos θ (for the Neumann approach). (14)

Equation (12) assumes that the permittivity of the hard core of the soft particle is small
relative to that of the fluid. The solution to Equations (11)–(14) is

ψa = −E∞

2ν
(2 +

r3
0

r3 )r cos θ, (15)

where ν = 1 + r3
0/2b3 if Equation (13) is employed and ν = 1− r3

0/b3 if Equation (14) is
used. Note that both boundary conditions (13) and (14) lead to the same result of ν = 1 for
a suspension of porous spheres (r0 = 0). Additionally, the electric field strength at infinity
E∞ in Equation (13) might be replaced more appropriately by the volume-mean electric
field strength [11].

2.2. Ionic Electrochemical Potential Energy Profile

The perturbed electrochemical potential energy distribution µ(r, θ) of the counterions,
which will be used to calculate the effective electric conductivity of the suspension of
particles, satisfies the continuity equation [6]

∇2µ = −Z2e2E∞

νkT
(1−

r3
0

r3 )
dψeq

dr
cos θ (16)

and boundary conditions

r = r0:
∂µ

∂r
= 0, (17)

r = a : µ and
∂µ

∂r
are continuous, (18)

r = b: µ = ZeE∞r cos θ (if Equation (13) is used), (19)

∂µ

∂r
= ZeE∞ cos θ (if Equation (14) is used). (20)

The solution to Equations (16)–(20) is

µ =
ZeE∞

ν
[1 +

r3
0

2r3 + Fµ(r)]r cos θ, (21)



Colloids Interfaces 2021, 5, 45 5 of 14

where

Fµ(r) =
1

6r3 {[2r3
0 I3(a, b) + b3 I0(a, b)]

2r3 + r3
0

νb3 + [2I3(r0, a) + I0(r0, a)]

×
2(1− ν)r3 + r3

0
ν

+ 2r3
0 I3(a, r)− 2r3 I0(a, r)} for a ≤ r ≤ b, (22)

Fµ(r) =
1

6r3 {[2r3
0 I3(r0, b) + b3 I0(r0, b)]

2r3 + r3
0

νb3

+ 2r3
0 I3(r0, r)− 2r3 I0(r0, r)} for r0 ≤ r ≤ a, (23)

In(r1, r2) =
Ze
kT

∫ r2

r1

(1−
r3

0
r3 )(

r
r0
)

n dψeq

dr
dr, (24)

and ψeq was obtained in Equations (5) and (6).

2.3. Fluid Flow Field

The fluid velocity profile v(r, θ) and dynamic pressure distribution p(r, θ) satisfy the
modified Stokes/Brinkman equations

∇2v− h(r)λ2v =
1
η
[∇p− εκ2(

kT
Ze

+ ψeq)∇ψa], (25)

∇ · v = 0, (26)

where λ is the reciprocal of the permeation length (shielding coefficient) in the porous layer
of the soft particle and η is the fluid viscosity. Letting the coordinate frame travel with the
particle, one may write the boundary conditions of the fluid velocity as

r = r0: vr = vθ = 0, (27)

r = a: vr, vθ , τrr, and τrθ are continuous, (28)

r = b: vr = −U cos θ, (29)

τrθ

η
= r

∂

∂r
(

vθ

r
) +

1
r

∂vr

∂θ
= 0 (for the Happel model), (30)

[∇× v]ϕ =
1
r

∂

∂r
(rvθ)−

1
r

∂vr

∂θ
= 0 (for the Kuwabara model), (31)

where vr and vθ are the nontrivial fluid velocity components, τrr and τrθ are the normal
and shear stresses, respectively, and U is the electrophoretic velocity of the particle to
be determined.

The solution to Equations (25)–(31) and Equation (15) is

vr =
QE∞

νκ2η
Fr(r) cos θ, (32)

vθ = −∂(r2vr)

2r∂r
tan θ, (33)

p =
QE∞

νκ2a
Fp(r) cos θ, (34)

where
Fr(r) = C1 − J2(r) + [C2 + J3(r)]

a
r
+ [C3 −

1
5

J5(r)](
a
r
)

3

+[C4 +
1
5

J0(r)](
r
a
)

2
for a ≤ r ≤ b, (35)
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Fr(r) = C5 + [C6 + C7α(λr) + C8β(λr)](
a
r
)

3
− 2

(λa)2 [J0(r)− J3(r)(
a
r
)

3

−3Jα(r)
β(λr)

(λr)3 + 3Jβ(r)
α(λr)

(λr)3 ] for r0 ≤ r ≤ a, (36)

Fp(r) = [C2 + J3(r)](
a
r
)

2
+ {10C4 + 2J0(r)

− εa2κ4

Q
(1 +

r3
0

2r3 )[
kT
Ze

+ ψeq(r)]}
r
a

for a ≤ r ≤ b, (37)

Fp(r) = J3(r)(
a
r
)

2
+ {2J0(r)− (λa)2[C5 −

C6

2
(

a
r
)

3
]

− εa2κ4

Q
(1 +

r3
0

2r3 )[
kT
Ze

+ ψeq(r)]}
r
a

for r0 ≤ r ≤ a, (38)

Jn(r) =
Ze(a3 − r3

0)

6kT(b3 − r3
0)
(κa)2

∫ r

a
(

r
a
)

n
(2 +

r3
0

r3 )
dψeq

dr
dr, (39)

Jα(r) =
Ze(a3 − r3

0)

6kT(b3 − r3
0)
(κa)2

∫ r

a
α(λr)(2 +

r3
0

r3 )
dψeq

dr
dr, (40)

Jβ(r) =
Ze(a3 − r3

0)

6kT(b3 − r3
0)
(κa)2

∫ r

a
β(λr)(2 +

r3
0

r3 )
dψeq

dr
dr, (41)

α(x) = x cosh x− sinhx, (42)

β(x) = xsinhx− cosh x, (43)

The expressions for the dimensionless constants Cn in both the Happel and Kuwabara
cell models are lengthy and available elsewhere [29], and the equilibrium potential ψeq is
given by Equations (5) and (6).

2.4. Electrophoretic Velocity

The drag force exerted by the fluid on the outer border of a unit cell is

Fh = 2πb2
∫ π

0
{−per + η[∇v + (∇v)T] · er}r=b sin θdθ, (44)

where er is the unit vector in the r direction. As an entire cell is electrically neutral, this
drag force vanishes. Applying this constraint after the substitution of Equations (32)–(38)
into Equation (44), we obtain the particle velocity as

U =
Qa2E∞

νη
{ J2(b)

(κa)2 +
1

(κa)2 A0
[
A1εκ4

6aQ
{(2b3 + r3

0)[
kT
Ze

+ ψeq(b)]}+ A2 J0(b)

+(A1 + A3)J3(b) + A4 J5(b) + A5 J0(r0) + A6 J3(r0) + A7 Jα(r0) + A8 Jβ(r0)]
}

, (45)

and the expressions of the dimensionless constants An are lengthy and available else-
where [29]. Since the perturbation to the electric potential distribution ψ(r, θ) by the fluid
flow is not considered in the analysis, the relaxation (polarization) effect of the mobile ions
around the soft sphere is not contained in this result. For a suspension of charged porous
spheres (r0 = 0 and ν = 1), Equation (45) reduces to Equation (A1) or (A2) in Appendix A.
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2.5. Electric Conductivity

The volume average of the electric current density in a suspension of charged spherical
particles leads to its effective electric conductivity, expressed by [9]

Λ = Λ∞ +
3ZeDnav

2bkTE∞

∫ π

0
( r

∂µ

∂r
− µ)

r=b
sin θ cos θdθ, (46)

where Λ∞ = Z2e2navD/kT is a characteristic electric conductivity of the counterionic
solution, which is an increasing function of the particle volume fraction ϕ for a specified
value of the dimensionless fixed charge density Q, and D is the diffusion coefficient of
the counterions. Substituting Equations (21)–(23) for the perturbed ionic electrochemical
potential energy µ as well as Equations (5) and (6) for the equilibrium potential ψeq into
Equation (46), we obtain the effective electric conductivity as

Λ = Λ∞[1−
3r3

0
2νb3 +

b
ν
(

dFµ

dr
)

r=b
] = Λ∞{1−

3r3
0

2νb3

+
Q

32ν2g0(r0)κ5a6b6 [b
3g1(b)K1 − 8a3g1(r0)K2]}, (47)

where

K1 = κ6r6
0a4eκa{e 2κr0(κr0 − 1)[E(κa)− E(κr0)] + (κr0 +1)[E(−κa)− E(−κr0)]}

+ 2eκ(a+r0){2κ3r3
0a4(κ2r2

0 +4) + κ[48a4(a− r0)− 2κ2r0(8a6 − 4r3
0a3 + r5

0a− r6
0)

− κ4r6
0a2(a + r0)] cosh(κa− κr0) + [48a4 + 2κ2(8a6 − 24a5r0 − 4a3r3

0 − r6
0)

+ κ4r6
0a(a + 2r0) + κ6r7

0a3]sinh(κa− κr0)}, (48)

K2 = (2r3
0 + b3 + 2νb3)[2κ3a(b3 − r3

0)e
κ(b+a)

− (3a + κ2a3 − κ2r3
0)g2+(a) + 3κa2g2−(a)], (49)

E(x) =
∫ ∞

1
t−1e−xtdt, (50)

and the functions g0(r), g1(r), and g2±(r) are defined by Equations (7)–(9). As Equation (21)
for µ is not affected by the fluid flow, Equation (47) for the effective conductivity does not
depend on the reciprocal permeation length λ and the hydrodynamic condition at the outer
border of the cell (i.e., applicable to both Happel and Kuwabara models). For a suspension
of charged porous spheres (r0 = 0 and ν = 1), Equation (47) reduces to Equation (A3) in
Appendix A.

3. Results and Discussion
3.1. Equilibrium Electrostatic Potential

The equilibrium electrostatic potential distribution ψeq(r) inside a unit cell for a
suspension of charged soft spheres in a salt-free solution is given by Equations (5) and (6).
In Figure 2a,b, the dimensionless electric potential Zeψeq/kT is plotted versus the scaled
coordinate r/a around a porous sphere (r0 = 0) and a soft sphere with r0/a = 1/2,
respectively, for various values of the scaled fixed charge density Q of the particles in the
case of the particle volume fraction ϕ = (a/b)3 = 0.125. For specified values of Q and
ϕ, as expected, the value of Zeψeq/kT is positive near the center of the porous particle
and the hard-core surface of the soft particle, decreases monotonically with an increase in
r/a (especially in the vicinity of the particle surface), and becomes negative after a critical
value of r/a, which corresponds to nav for the local counterionic concentration and is a
weak decreasing function of ϕ and Q. The values of ψeq(r0), −ψeq(b), ψeq(r0)− ψeq(r),
and ψeq(r)− ψeq(b) (where r0 < r < b) are greater for a soft sphere with a smaller value of
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the core-to-particle radius ratio r0/a (i.e., greatest for a porous sphere) and increase with
an increase in Q from zero at Q = 0, keeping the other parameters unchanged.

Figure 2. Dimensionless equilibrium electric potential Zeψeq/kT for a soft sphere in a unit cell of ϕ = 0.125 (a/b = 0.5)
versus the scaled coordinate r/a with Q as a parameter: (a) r0/a = 0 (porous sphere); (b) r0/a = 1/2.

The values of the dimensionless relative surface potential Zeψs/kT for a charged
porous sphere (r0 = 0) and a charged soft sphere with r0/a = 4/5 in their corresponding
salt-free suspensions calculated from Equation (10) are plotted versus the scaled fixed
charge density Q in Figure 3a,b, respectively, for various values of ϕ. As expected, ψs (or
ψeq(r0) or−ψeq(b)) for a constant value of Q decreases with an increase in ϕ (i.e., a decrease
in the relative cell size) and the effect of interactions among the particles in the suspensions
on ψs or ψeq is significant. Note that, if Q is relatively high, our results obtained with the
Debye–Hückel approximation may not apply for the salt-free suspensions with a low ϕ,
since in this case the electric potential becomes high because of the presence of very small
amount of ions. When Q is small (say, Q ≤ 10, which corresponds to Zeψs/kT < 0.95 for
ϕ ≥ 0.1), Zeψs/kT is nearly proportional to Q. When Q is relatively high, however, the
increase of Zeψs/kT with Q is somewhat suppressed due to the counterion condensation
occurring near the fixed charges of the particles (which is obviously underestimated with
the linearized Poisson–Boltzmann equation for obtaining Equations (5) and (6)). For fixed
values of Q and ϕ, the value of Zeψs/kT for a soft sphere decreases with an increase in the
core-to-particle radius ratio r0/a from r0/a = 0 (a porous sphere).

3.2. Electrophoretic Mobility

The scaled electrophoretic mobility ηZeU/εkTE∞ in a bounded salt-free suspension of
charged soft spheres, calculated from Equation (45) for the Happel and Kuwabara models,
is plotted versus the scaled fixed charge density Q, shielding parameter λa, particle volume
fraction ϕ, and core-to-particle radius ratio r0/a in Figures 4–7, respectively. For the case
of porous spheres (r0 = 0), the coefficient ν in Equation (45) equals unity, independent of
the boundary condition (13) or (14) for the external electric potential applied at the border
of the unit cell. Consistent with the previous results [22,25] without the relaxation effect,
ηZeU/εkTE∞ increases substantially with an increase in Q, a decrease in λa, a decrease
in ϕ, and a decrease in r0/a, keeping the other parameters unchanged. Additionally,
ηZeU/εkTE∞ is nearly proportional to Q as Q ≤ 10 and its increase with Q is somewhat
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suppressed due to the counterion condensation effect (which is underestimated again with
the Debye–Hückel approximation) when the value of Q is relatively high. For fixed values
of Q, λa, r0/a, and ϕ, the Kuwabara model leads to a less value of ηZeU/εkTE∞ than
the Happel model does, and the Neumann condition for the electrostatic potential at the
outer boundary of the unit cell results in a greater value of ηZeU/εkTE∞ than the Dirichlet
condition does, but both differences are unsubstantial.

Figure 3. Dimensionless relative surface potential Zeψs/kT for a suspension of soft spheres versus Q with ϕ as a parameter:
(a) r0/a = 0 (porous spheres); (b) r0/a = 4/5.

Figure 4. Scaled electrophoretic mobility ηZeU/εkTE∞ versus Q for a suspension of soft spheres with λa = 10: (a)
r0/a = 0 (porous spheres) with the solid and dashed curves representing calculations for the Happel and Kuwabara models,
respectively; (b) ϕ = 0.125 for the Happel model with the solid and dashed curves denoting results obtained from conditions
(13) and (14), respectively, at the cell border.
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Figure 5. Scaled electrophoretic mobility ηZeU/εkTE∞ versus λa for a suspension of soft spheres with ϕ = 0.125:
(a) r0/a = 0 (porous spheres) with the solid and dashed curves representing calculations for the Happily and Kuwabara
models, respectively; (b) r0/a = 1/2 for the Happel model with the solid and dashed curves denoting results obtained from
conditions (13) and (14), respectively, at the cell border.

Figure 6. Scaled electrophoretic mobility ηZeU/εkTE∞ versus ϕ for a suspension of soft spheres with Q= 4: (a) r0/a = 0
(porous spheres) with the solid and dashed curves representing calculations for the Happel and Kuwabara models,
respectively; (b) r0/a = 1/2 for the Happel model with the solid and dashed curves denoting results obtained from
conditions (13) and (14), respectively, at the cell border.

For comparison with the case of a suspension containing added electrolytes, ηU/a2QE∞
(or ηκ2U/QE∞ or ηλ2U/QE∞), the electrophoretic mobility of the salt-free suspension of
soft spheres normalized with the fixed charge density Q in the porous surface layer can
be plotted versus the parameters κa, λa, r0/a, and ϕ. These figures, in which the value of
ηU/a2QE∞ decreases monotonically with increases in κa, λa, r0/a, and ϕ, are the same as
those for a salt-containing suspension under the Debye–Hückel approximation [12,13,30].
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Figure 7. Scaled electrophoretic mobility ηZeU/εkTE∞ versus r0/a for a suspension of soft spheres
with Q= 4, λa = 10, and ϕ as a parameter for the Happel model. The solid and dashed curves denote
results obtained from conditions (13) and (14), respectively, at the cell border.

3.3. Effective Electric Conductivity

The normalized effective electric conductivity Λ/Λ∞ of a salt-free suspension of
charged soft spheres calculated using Equation (47) is plotted versus the particle volume
fraction ϕ and core-to-particle radius ratio r0/a in Figures 8 and 9, respectively. The effect
of particle interactions on the effective conductivity is significant. For a specified value
of ϕ, Λ/Λ∞ is a monotonic increasing function of the scaled fixed charge density Q and
almost proportional to Q as Q ≤ 10. For a given value of Q, Λ/Λ∞ first increases with an
increase in ϕ, attains a maximum, and then decreases with a further increase in ϕ. This
behavior is different from that for the effective conductivity of a salt-containing suspension
of charged soft spheres, where Λ/Λ∞ (with Λ∞ being the electric conductivity of the ionic
solution in the absence of particles) as a function of ϕ depends on the valence, diffusivity,
and bulk concentration of each ionic species [12,13]. For fixed values of Q and ϕ, the value
of Λ/Λ∞ decreases with an increase in r0/a from r0/a = 0 (porous spheres). Note that
Λ/Λ∞ can be less than unity when Q is small, ϕ is large, and r0/a is large.

Figure 8. Normalized effective electric conductivity Λ/Λ∞ versus ϕ with Q as a parameter for a suspension of soft spheres:
(a) r0/a = 0 (porous spheres); (b) r0/a = 1/2 with the solid and dashed curves denoting results obtained from conditions
(13) and (14), respectively, at the cell border.
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Figure 9. Normalized effective electric conductivity Λ/Λ∞ versus r0/a for a suspension of soft
spheres with Q= 4 and ϕ as a parameter. The solid and dashed curves denote results obtained from
conditions (13) and (14), respectively, at the cell border.

4. Summary

The electrophoresis and electric conduction of a salt-free suspension of charged soft
spheres with arbitrary values of the particle volume fraction ϕ, core-to-particle radius ratio
r0/a, and shielding parameter λa are analyzed by using a unit cell model in this work. Each
soft sphere reduces to an entirely porous sphere if its hard core vanishes. The linearized
Poisson–Boltzmann equation is solved for the equilibrium electric potential profile in the
fluid containing the counterions only around the particle in a unit cell, and the counterionic
continuity equation and modified Stokes/Brinkman equations are solved for the ionic
electrochemical potential energy and fluid velocity distributions, respectively. Closed-form
expressions for the electrophoretic velocity of the suspended particles with a low value of
the scaled fixed charge density Q and the effective electric conductivity of the suspension
are obtained in Equations (45) and (47), respectively. The effect of particle interactions
on these transport characteristics is significant. Same as the case in a salt-containing
suspension under the Debye–Hückel approximation, the scaled electrophoretic mobility in
a salt-free suspension is a monotonic increasing function of Q and decreases with increases
in r0/a, λa, and ϕ, keeping the other parameters unchanged. The normalized effective
electric conductivity of the salt-free suspension also increases with an increase in Q and
with a decrease in r0/a, but is not a monotonic function of ϕ.
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Appendix A

For a salt-free suspension of charged porous spheres (r0 = 0 and ν = 1), Equation (45)
for the electrophoretic velocity reduces to

U =
QE∞

ηκ2λ2a2[3(λa)2
α
(
λa) + 2B2 ϕ5/3

]{ εκ4a2

3Qϕ
[
kT
Ze

+ ψeq(b)][3B4 ϕ5/3

− 3(λa)4α(λa)ϕ1/3 + (λa)2(B1 − 2B2 ϕ2)] + 3(λa)4α(λa)J2(b)

+ 3[2B2 J3(0)− B4 J3(b)]ϕ5/3 + (λa)2[6Jα(0) + 3α(λa)J3(0)− B1 J3(b)

− B3 J0(b)] + (λa)2[2B2 J2(b) + B3 J5(b) + 6α(λa)J3(0)− 6Jα(0)]ϕ5/3} (A1)

for the Happel model and

U =
QE∞

15ηκ2λ2a2α(λa)
{ εκ4a2

3Qϕ
[
kT
Ze

+ ψeq(b)][5B1 − 18(λa)2α(λa)ϕ1/3

+ 2(5B3 − B2 ϕ)ϕ] + 3(λa)2α(λa)[5 J2(b) + J5(b)ϕ] + 15α(λa)J3(0)

− 5B1 J3(b) + 2B2 J0(b)ϕ− 5B3[J0(b) + J3(b)ϕ]

+ 30[Jα(0)− Jα(0)ϕ + α(λa) J3(0)ϕ]} (A2)

for the Kuwabara model, and Equation (47) for the effective electric conductivity becomes

Λ = Λ∞ +
Λ∞Q e−κa

4κ5a2b3g2+(0)
{2[e 2κa(κ2a2 − 3κa + 3)

− (κ2a2 + 3κa + 3)]g0(a) + 3[κa + 1 + e2κa(κa− 1)]

× [(κ2a2 + 3)g2+(a)− 3κag2−(a)− 2κ3b3eκ(a+b)]}, (A3)

where
B1 = 3α(λa) + 2(λa)3 cos h(λa), (A4)

B2 = 15α(λa) + (λa)2[λa cos h(λa)− 6 sin h(λa)], (A5)

B3 = 6α(λa) + (λa)2[λa cos h(λa)− 3 sin h(λa)], (A6)

B4 = 30α(λa) + 2(λa)2[7λa cos h(λa)− 12 sin h(λa)]

+ (λa)4[λa cos h(λa)− 5 sin h(λa)], (A7)

and the functions g0(r) and g2±(r) are defined by Equations (7) and (9).
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