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Abstract: Adsorption of myoglobin molecules at negatively charged polystyrene microparticles was
studied using the dynamic light scattering (DLS), electrophoresis (LDV) and the solution depletion
method involving atomic force microscopy (AFM). The measurements were carried out at pH 3.5
and NaCl concentration of 10−2 and 0.15 M. Initially, the stability of myoglobin solutions and the
particle suspensions as a function of pH were determined. Afterward, the formation of myoglobin
molecule corona was investigated via the direct electrophoretic mobility measurements, which
were converted to the zeta potential. The experimental results were quantitatively interpreted in
terms of the general electrokinetic model. This approach yielded the myoglobin corona coverage
under in situ conditions. The maximum hard corona coverage was determined using the AFM
concentration depletion method. It was equal to 0.9 mg m−2 for the NaCl concentration in the
range 0.01 to 0.15 M and pH 3.5. The electrokinetic properties of the corona were investigated using
the electrophoretic mobility measurements for a broad pH range. The obtained results confirmed
that thorough physicochemical characteristics of myoglobin molecules can be acquired using nM
amounts of the protein. It was also argued that this method can be used for performing electrokinetic
characteristics of other proteins such as the SARS-Cov-2 spike protein exhibiting, analogously to
myoglobin, a positive charge at acidic pHs.

Keywords: adsorption of myoglobin; myoglobin corona at microparticles; stability of myoglobin
corona; zeta potential of myoglobin corona; zeta potential of myoglobin

1. Introduction

The formation of protein coronas at nanoparticles was extensively studied, both
for single molecule systems and for mixtures comprising the blood serum [1–6]. It is
generally assumed that there exists a fraction of irreversibly bound protein forming the hard
corona and a fraction of less tightly bound molecules forming the soft corona exhibiting
a fuzzy, gel like structure. Because of relatively low stability, soft corona composition
and structure are difficult to be determined by available experimental techniques, which
require nanoparticle suspension centrifugation or filtration steps. Another disadvantage
consists in the destabilization of the suspension by the soft coronas, which may promote
bringing interactions among nanoparticles. Last not least, the presence of soft corona
hinders quantitative investigations of the hard coronas, whose density and structure could
be otherwise predicted in an adequate way applying theoretical modeling.

Therefore, one can argue that more reliable results prone to a quantitative interpreta-
tion can be acquired if the formation of soft corona is prohibited. Additionally, the reliability
of corona formation measurements can be significantly increased using particles of larger
size, which yields an adequate stability of such systems. Experimental results acquired for
albumins [7], immunoglobulin [8] and lysozyme [9] using polymer microparticles confirm
that these systems are prone to a theoretical interpretation.

In this work we focus attention on myoglobin whose main function consists in oxygen
storage and transport in tissues [10,11] as well as the control of the nitric oxide flux
in the heart under physiological and pathological conditions [12]. Myoglobin can also
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serve as a marker of myocardial infraction and acute renal failure [13]. The molar mass
of myoglobin molecule derived from chemical composition is equal to 17,800 g mol−1,
which was confirmed by neutron scattering measurements [14] and its density is equal to
1.35 g cm−3 [15]. Electrokinetic properties of the molecule were studied in Reference [16],
where it is shown that molecule exhibits quite analogous charge distribution at acidic pHs
to the receptor part of the spike protein of the SARS-Cov-2 virus.

Adsorption of myoglobin on zirconium phosphate, zirconium benzenephosphonate
and phosphate grafted zirconia nanoparticles was studied in Refs. [17,18] for the pH range
5–8. In Reference [19], the role of ionic strength and pH in myoglobin adsorption on ordered
mesoporous silicates was determined, whereas adsorption isotherms and conformational
changes of myoglobin upon adsorption on hydroxyapatite were studied by Iafisco et al. [20].
The catalytic activity in an oxidation process of myoglobin layers adsorbed on nanosized
hydrotalcites were investigated in [21]. In Reference [22], the adsorption isotherms of
myoglobin on silica nanoparticles of the size equal to 28 nm at pH 7.4 (0.1 M phosphate)
were determined by the concentration depletion method. It is determined that the obtained
isotherm could be fitted by the Langmuir model with the rather low maximum coverage of
0.25 mg m−2.

Thorough investigations of myoglobin corona formation at silica nanoparticles of
the size 50 nm at pH the pH range 4–10 and different ionic strength were performed in
Reference [23] also applying the concentration depletion method. The amount of protein
molecules forming the hard and soft corona as well as their equilibrium adsorption constant
were determined. It is shown that for the 0.1 M NaCl concentration the myoglobin coverage
in the hard corona was equal to 0.9 mg m−2 at pH 4 and y decreased to 0.5 mg m−2 at
pH 10. These effects were interpreted as due to the electrostatic interactions controlled by
the surface charge regulation effect.

However, in the above mentioned works the electrokinetic properties of the myo-
globin/nanoparticle complex were not studied because of a limited nanoparticle suspen-
sion stability especially at larger pHs.

Given the deficit of reliable information, the goal of this work is to determine the
mechanism of myoglobin adsorption at polymer microparticles with the emphasis focused
on the hard corona formation. The adsorption is monitored under in situ conditions via
the electrophoretic mobility measurements, which are converted to the zeta potential.
These results are interpreted in terms of a general electrokinetic model enabling the myo-
globin coverage at microparticles to be determined even for the low concentration range.
Additionally, the maximum coverage of the hard corona is determined using the concen-
tration depletion method involving the atomic force microscopy (AFM). The stability and
electrokinetic properties of the hard corona for a broad pH range are also investigated.

It is expected that that exploiting these experimental data one can develop a robust
procedure for preparing stable myoglobin coronas characterized by well-defined coverage,
which can be used for efficiently performing various immunological assays.

2. Materials and Methods

Myoglobin stemming from the equine hart supplied in the form of a lyophilized
powder 95–100% ((Sigma-Aldrich) St. Louis, MO, USA) was used in this work.

Suspension of negatively charged polystyrene particles bearing sulfate surface groups
were a commercial products of Invitrogen. The stock suspension was purified by a thorough
membrane filtration and afterward diluted in the myoglobin adsorption experiments to a
desired mass concentration, typically 50 mg L−1.

Natural ruby mica (Continental Trade, Warsaw, Poland) was used for as a solid
substrate for the residual myoglobin adsorption studied by atomic force microscopy (AFM)
imaging. Thin sheets of mica were freshly cleaved before each experiment and used without
any pretreatment.
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Water was purified using a Milli-Q Elix and Simplicity apparatus. The sodium chloride,
hydrochloric acid and sodium hydroxide were commercial products of Sigma-Aldrich and
used without additional purification.

The effective bulk concentration of myoglobin after dissolving the powder in appro-
priate electrolyte and pH and after filtration, was spectrophotometrically determined using
a Shimadzu UV-2600 apparatus exploiting the peak absorption at 409 nm.

The diffusion coefficients of myoglobin molecules and polymer particles were deter-
mined by dynamic light scattering (DLS) using the Zetasizer Nano ZS instrument (Malvern,
Cambridge, UK). The hydrodynamic diameter was calculated from the Stokes-Einstein
equation. The polymer particle size distribution was also determined using the laser
diffractometer by the Particle Size Analyzer LS 13,320 (Beckman-Coulter).

The electrophoretic mobility of myoglobin molecules and the particles were measured
using the Laser Doppler Velocimetry (LDV) technique using the same Zetasizer Nano ZS
instrument from Malvern (Cambridge, UK). The zeta potential was calculated using the
the Henry and Smoluchowski formulae, respectively.

In the DLS and the LDV measurements myoglobin solutions of the concentration
equal to 300–500 mg L−1 were used whereas in the adsorption experiments they were
diluted by a sodium chloride solution to the desired bulk concentration in the range 0.1 to
1 mg L−1. The pH in the range of 3 to 5 was adjusted by the addition of HCl, the pH of 7.4
was fixed by the PBS buffer and larger pHs were adjusted by NaOH.

The temperature of experiments was kept at a constant value equal to 298 ± 0.1K.
Atomic force microscopy (AFM Moscow, Moscow, Russia) measurements were carried

out using the NT-MDT OLYMPUS IX71 device with the SMENA scanning head. The
measurements were performed in semi-contact mode using silicon probes (polysilicon
cantilevers HA-NC ETALON with resonance frequencies of 140 kHz +/− 10% or 235 kHz
+/− 10%.

3. Results and Discussion
3.1. Physicochemical Characteristics of Myoglobin Molecules and Polymer Particles

Initially, the stability of myoglobin solutions under various physicochemical con-
ditions was investigated. For this purpose, the diffusion coefficient was measured by
DLS as a function of the storage time. It is confirmed the molecule diffusion coefficient
was practically independent of pH within the range 3–8 and assumed an average value of
1.2 ± 0.1 × 10−6 cm2 s−1. This corresponds to the hydrodynamic diameter of the myoglobin
molecules dH equal to 4.1 ± 0.2 nm (calculated from the Stokes–Einstein relationship). Af-
ter 400 min it slightly increased to 4.2 ± 0.1 nm, (see Figure 1), which suggests that the
myoglobin solutions were stable for the above time period. A more significant changes in
the hydrodynamic diameter only occurred after the time of 20 h.

In an analogous way, applying the DLS measurements, the hydrodynamic diameter of
the polymer particles was determined. It was equal to 830 ± 20 and 820 ± 30 nm for NaCl
concentration equal to 0.01 and 0.15 M, NaCl, respectively. The particle size distribution
was also determined using the laser diffractometry measurements and is shown in Figure 2.
The average particle size acquired in this way was equal to 810 ± 30 nm a for NaCl
concentration equal to 0.01 M. It should be mentioned that the particle suspensions were
stable for both NaCl concentrations and pH 3–8 for the storage time of 48 h.

The electrophoretic mobility of myoglobin molecules and microparticles was measured
using LDV for NaCl concentration equal to 0.01 and 0.15 M. Using these electrophoretic
mobility data, the zeta potential was calculated. The results shown in Figure 3 indicate that
the myoglobin zeta potential is positive for H below 5 attaining 38 and 15 mV at pH 3.5, for
NaCl concentration of 0.01 and 0.15 M, respectively. At pH > 5, the zeta potential becomes
negative. However, its absolute values are rather small, especially for the 0.15 M NaCl
concentration, prohibiting a precise determination of the myoglobin isoelectric point (iep).
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Figure 1. Dependence of the myoglobin hydrodynamic diameter on the 
storage time derived applying DLS measurements NaCl concentration 
0.01 M; 1. ● pH 3.5, 2. ▲ pH 7.4 (PBS). The dashed line shows the initial 
value of the hydrodynamic diameter equal to 4.1 nm. 
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Figure 1. Dependence of the myoglobin hydrodynamic diameter on the storage time derived
applying DLS measurements for NaCl concentration of 0.01 M; 1. • pH 3.5, 2. N pH 7.4 (PBS), and
0.15 M. The dashed line shows the initial value of the hydrodynamic diameter equal to 4.1 nm.
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Figure 2. Histogram of the microparticle size distribution derived from laser diffractometry, the 
average particle size is equal to 810 ± 30 nm. 

Figure 2. Histogram of the microparticle size distribution derived from laser diffractometry, the
average particle size is equal to 810 ± 30 nm.

On the other hand, the zeta potential of particles was markedly negative for the entire
pH range and equal to −85 and −60 mV for the NaCl concentration of 10−2 M and 0.15 M,
respectively (see Figure 2).

3.2. Formation of Myoglobin Corona

The procedure of the myoglobin corona formation on polymer particles was analogous
to that described previously in References [7–9]. Initially, the protein solution of the concen-
tration varied between 0.1 and 5 mg L−1 was mixed with the suspension of microparticles
of a controlled bulk concentration typically equal to 50 mg L−1 and incubated over 15 min
at room temperature. Afterward, the electrophoretic mobility of protein covered particles
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was measured. In this way, the primary dependencies of the electrophoretic mobility of
microparticles on the amount of added protein were acquired. It should be underlined
that this procedure was reproducible, enabling to derive in a reliable way dependencies
of the electrophoretic mobility and the zeta potential of particles on the initial protein
concentration in the suspension.
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It is also worth mentioning that the kinetics of corona formation at polymer micropar-
ticles is significantly faster compared to the adsorption at planar substrates [24]. Moreover,
it is practically independent of the bulk protein concentration, whereas for planar sub-
strates the monolayer formation time increases inversely proportionally to the bulk protein
concentration, exceeding many hours for the bulk concentration below 1 mg L−1. The
corona formation time tc can be calculated from the following formula [24]

tc =

(
Φmxρm

cm

) 2
3 d2

m
−

4D
(1)

where Φmx is the maximum volume fraction of polymer particles in the suspension that
is equal to 0.62 for a random configuration of spheres, ρm and dm are the particle den-

sity and the diameter, respectively, cm is the particle bulk concentration and
−
D is the

effective diffusion coefficient, which is the sum of the protein molecule and the particle
diffusion coefficients.

Using the parameters pertinent to our measurements, i.e., cm = 50 mgL−1, ρm = 1.05

× 103 kg m−3, dm = 8.3 × 10−7 m, and
−
D = 1.2 × 10−10 m2 s−1 one obtains from Equation (1)

that tc = 3.2 s, which is considerable shorter than the experimental incubation time, equal
to 900 s.

In Figure 4 the corona formation results are shown as the dependence of the zeta
potential of particles (calculated from using the Smoluchowski equation) on the initial
myoglobin concentration in the suspension cb. As can be seen, the zeta potential rapidly
increases and becomes positive for the myoglobin concentration larger than ca. 0.2 mg L−1.
It is also worth underlining that for 0.01 M NaCl, the initial slope of the zeta potential
vs. the bulk protein concentration exceeds 500 mV L mg−1. Considering that the zeta
potential can be determined with a precision of 1 mV, one can predict that applying the
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LDV technique one can detect in a robust way myoglobin concentration of the order of
1 nM. However, for bulk protein concentration larger than 0.2 mg L−1 changes in the zeta
potential become rather moderate. Finally plateau values of zeta potential are attained
equal to 20 and 5 mV for 0.01 and 0.15 M, NaCl, respectively. They are markedly smaller
than the limiting bulk myoglobin zeta potential values equal to 38 and 15 mV for the 0.01
and 0.15 M, NaCl concentration, respectively.
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electrokinetic model.

The primary experimental data shown in Figure 4 were interpreted in terms of the
theoretical electrokinetic model formulated in Reference [25]. In contrast to the Gouy-
Chapmann approach, in this model three-dimensional fluid velocity and electric potential
distributions around adsorbed protein molecules are considered in an exact way applying
the multiple expansion method. This enabled the following expression for the zeta potential
of interfaces covered by protein molecules ζ(Θ) to be formulated.

ζ(Θ) = Fi(Θ)ζi + Fp(Θ)ζp (2)

where Θ is the absolute (dimensionless) coverage of protein molecules, ζi is the zeta
potential of bare substrate, ζp is the particle (protein) zeta potential in the bulk, and
Fi(Θ), Fp(Θ) are the dimensionless functions. The Fi function describes the damping of the
flow within the adsorbed molecule layer and the Fp function characterizes the contribution
to the zeta potential stemming from the molecules. Accordingly, for low particle coverage,
the Fi function approaches unity and the Fp function vanishes. For thin double-layers, one
can express the functions by the following analytical expressions [25]

Fi(Θ) = e−CiΘ

Fp(Θ) = apΘ + bp
(
1 − e−CiΘ

) (3)

where the Ci, ap and bp coefficients for spherical particles layers assume the limiting values
of 10.2, 0.202 and 0.618, respectively.

The absolute coverage in Equations (2) and (3) can be calculated as:

Θ = SgN = Sg

(
Av
Mw

)
Γc (4)
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where Sg is the characteristic cross-section area of the protein molecule, Av is the Avogadro
constant, Mw is the molar mass of the protein and Γc is the nominal coverage of the protein
corona connected with the bulk protein concentration by the dependence:

Γc =

(
ρmdm

6

)
cb
cm

(5)

The results calculated from Equations (3)–(5) are plotted as solid lines in Figure 4. As
can be seen, they adequately reflect the main features of the experimental runs especially for
0.01 M NaCl albeit for the bulk myoglobin concentration below 0.3 mg L−1. This confirms
an irreversible adsorption of myoglobin for this bulk suspension concentration range. A
more precise estimate of the maximum coverage can be acquired as the intersection of
the horizontal lines approximating the zeta potential for large cb with the theoretical lines
derived from Equation (3). In this way one obtains that the limiting concentration was
equal to 0.27 mg L−1 (for the NaCl concentration of 0.01 M) that corresponds according to
Equation (5) to the maximum myoglobin corona coverage of 0.80 ± 0.2 mg m−2. For 0.15 M
NaCl, one can estimate obtains in an analogous way that the maximum coverage was equal
0.75 ± 0.2 mg m−2. These results agree with the coverage of myoglobin hard corona on
silica particles previously determined by Lee et al. [23] at pH 4 and with the maximum
coverage of lysozyme on polymer microparticles [9] which was equal to 0.8 and 0.9 mg m−2

for 0.01 M and 0.15 M NaCl, respectively (at pH 3.5). However, it should be mentioned
that the precision of the maximum coverage determination via the LDV method does not
exceed 0.1 mg m−2 because it relies on small variations of the zeta potential appearing for
larger bulk protein concentration.

In order to increase the precision of the maximum coverage determination a con-
centration depletion method exploiting AFM was applied, which yields the residual con-
centration of myoglobin in the solution remaining after the adsorption on microparticles.
According to this procedure previously applied for albumins [7] and lysozyme [9] the
particle/myoglobin mixture acquired after the corona formation step is transferred to a
thermostated cell. Then, a few freshly cleaved mica sheets are immersed into the mixture
and the residual myoglobin molecule are allowed to adsorb under diffusion-controlled
transport over the time typically equal to 30 min. It should be mentioned that the particle
deposition is negligible during this time because of their small number concentration and
much smaller diffusion coefficient. Afterward, the mica sheets covered by the protein are
rinsed and dried. The average number of adsorbed myoglobin molecules Np is determined
over a few equal sized spots randomly chosen over the mica sheets using AFM imaging.
Knowing Np, the surface concentration of myoglobin on mica was calculated as Nm = Np/Sl
(where Sl is the surface area of one spot). Under the diffusion transport, the myoglobin
surface concentration is connected with the residual concentration in the suspension after
the corona formation step cr by the formula [26]

Nm = Cmcr = Cm(cb − cads) (6)

where Cm = 2(Dta/π)1/2, ta is he adsorption time, and cads is the concentration of the
adsorbed (depleted) myoglobin forming the corona.

One can infer from Equation (6) that for Nm = 0 the amount of protein adsorbed cads is
equal to the initial protein concentration in the solution equal to cb.

The results of AFM measurements carried out at pH 3.5 and NaCl concentration of
10−2 M plotted as the dependence of on Nm on cb are shown in Figure 5. One can observe
that for cb up to 0.3 mg L−1 the myoglobin adsorption on mica was negligible. This means
that the entire myoglobin concentration initially present in the solution was consumed
for the corona formation. For cb larger than 0.3 mg L−1 an abrupt and linear increase in
Nm was observed. Hence, these measurements indicate that the maximum coverage of
the hard corona calculated from Equation (5) using the above threshold cb concentration
of 0.3 mg L−1 is equal to 0.87 ± 0.1 mg m−2. In an analogous way, for 0.15 M, NaCl one
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obtained 0.90 ± 0.1 mg m−2. These measurements confirmed that one can produce hard
coronas on polymer particles of well-controlled coverage attaining 0.9 mg m−2.
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points denote experimental data obtained from AFM measurements and the solid line shows is a
non-linear fit of experimental data. The inset shows the myoglobin layer at mica imaged by AFM.

The stability of the polymer particles with adsorbed coronas was determined measur-
ing their diffusion coefficient and electrophoretic mobility as a function of storage time.
These primary data were converted to the hydrodynamic diameter and the zeta potential,
respectively and shown in Figure 6 as the dependence of the normalized zeta potential and
the normalized hydrodynamic diameter on the storage time. As can be seen, the particles
bearing the corona characterized by the coverage of 0.87 mg m−2 were stable over the time
up to 500 min, which suggests that they are prone to long-lasting electrokinetic investi-
gations. This finding is of a practical significance given that the corona formation only
requires a myoglobin concentration of 0.3 mg L−1, whereas in the bulk LDV measurement
at least two orders of magnitude larger bulk concentrations are needed.
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The utility of hard coronas on polymer particles for performing robust electrokinetic
characteristics of protein molecules is illustrated in Figure 7 where the pH dependence of
the zeta potential of myoglobin molecules in the bulk is compared with analogous depen-
dence obtained for the myoglobin corona characterized by the coverage of 0.85 mg m−2.
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The primary zeta potential values obtained for the corona were used to calculate
the myoglobin zeta potential using the transformed version of Equation (2) in the follow-
ing form:

ζp = ζ(Θ)/Fp(Θ)− Fi(Θ)ζi/Fp(Θ) (7)

where the absolute coverage was calculated using Equation (4) for the above corona coverage.
As one can see in Figure 7 the experimental data obtained for the corona transformed

in this way agree within experimental error bounds with less effective bulk LDV measure-
ments, requiring much larger amounts of the protein to be used.

4. Conclusions

The LDV electrophoretic mobility measurements supplemented by the AFM based
concentration depletion methods enable a quantitative analysis of the myoglobin hard
corona formation on polymer microparticles An adequate stability of the polymer particles
with the hard corona characterized by the coverage up to 0.90 mg m−2 was confirmed.
This enabled to perform thorough measurements yielding the dependence of the corona
zeta potential on pH. From these data one was able to extract using Equation (7) the zeta
potential of the myoglobin molecules as a function of pH. The obtained results indicate
that a thorough electrokinetic characteristics of myoglobin molecules can be acquired using
nM amounts of the protein, whereas the conventional bulk characteristics require at least
two orders of magnitude larger amounts. Hence, this procedure based on electrokinetic
measurements has a particular significance for investigations of difficult to acquire proteins,
for example the virus (SARS-Cov-2) spike protein.

Additionally, hard coronas characterized by well-defined coverage and electrokinetic
properties can be exploited for quantitative studies of their interactions with various
ligands, for example immunoglobulins.



Colloids Interfaces 2021, 5, 27 10 of 11

Author Contributions: Z.A., conceptualization, writing—original draft, supervision, review and
editing; M.N.-R., data curation, investigation and writing—original draft, review and editing. Both
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data was obtained from and are available ncadamcz@cyf-kr.edu.pl or
ncnattic@cyf-kr.edu.pl.

Acknowledgments: This work was supported by the Statutory activity of the Jerzy Haber Institute
of Catalysis and Surface Chemistry PAS.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the

Nanoparticle—Protein Corona Using Methods to Quantify Exchange Rates and Affinities of Proteins for Nanoparticles. Proc.
Natl. Acad. Sci. USA 2007, 104, 2050–2055. [CrossRef]

2. Monopoli, M.M.; Aberg, C.; Salvati, A.; Dawson, K.A. Biomolecular Coronas Provide the Biological Identity of Nanosized
Materials. Nat. Nanotechnol. 2012, 7, 779–786. [CrossRef] [PubMed]

3. Milani, S.; Bombelli, F.B.; Pitek, A.S.; Dawson, K.A.; Radler, J. Reversible Versus Irreversible Binding of Transferrin to Polystyrene
Nanoparticles: Soft and Hard Coronas. ACS Nano 2012, 6, 2432–2541. [CrossRef] [PubMed]

4. Truel, L.; Brandholt, S.; Maffre, P.; Wiegele, S.; Shang, L.; Nienhaus, G.U. Impact of Protein Modificationon the Protein Corona on
Nanoparticles and Nanoparticle-Cell Interactions. ACS Nano 2014, 8, 503–513. [CrossRef]

5. Winzen, S.; Schoettler, S.; Baier, G.; Rosenauer, C.; Mailaender, V.; Landfestera, K.; Mohr, K. Complementary Analysis of the Hard
and Soft Protein Corona: Sample Preparation Critically Effects Corona Composition. Nanoscale 2015, 7, 2992–3001. [CrossRef]
[PubMed]

6. Rezaei, G.; Daghighi, S.M.; Haririan, I.; Yousefi, I.; Raoufi, M.; Rezaee, F.; Dinarvand, R. Protein Corona Variation in Nanoparticles
Revisited: A Dynamic Grouping Strategy. Colloids Surf. B Biointerfaces 2019, 179, 505–516. [CrossRef]
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